logo

SCIENCE CHINA Chemistry, Volume 62, Issue 2: 251-255(2019) https://doi.org/10.1007/s11426-018-9380-7

A new asymmetric anthracene derivative with high mobility

More info
  • ReceivedJul 29, 2018
  • AcceptedOct 30, 2018
  • PublishedJan 7, 2019

Abstract

An asymmetric anthracene derivative (4-HDPA) was designed and synthesized. With the optimization of proper scenario of fabrication process, top-contact thin film devices based on 4-HDPA exhibit mobility as high as 3.59 cm2 V--1 s--1, while its single-crystal devices exhibit mobility as high as 5.12 cm2 V--1 s--1, which is higher than the symmetrical counterpart of 4-HDPA in both single-crystal and thin film devices.


Funded by

the Ministry of Science and Technology of China(Grant,No.,2017YFA0204503,2016YFB0401100,2015CB856502)

the National Natural Science Foundation of China(Grant,No.,51733004,91433115,51633006,51703160,21661132006,21473222)

the Strategic Priority Research Program(Grant,No.,XDB12000000)

and the Youth Innovation Promotion Association of the Chinese Academy of Sciences.


Acknowledgment

This work was supported by the National Key R&D Program (2017YFA0204503, 2016YFB0401100), the National Natural Science Foundation of China (51703159, 51633006, 51733004), and the Strategic Priority Research Program (XDB12030300) of the Chinese Academy of Science.


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Di C, Zhang F, Zhu D. Adv Mater, 2013, 25: 313-330 CrossRef PubMed Google Scholar

[2] Dong H, Wang C, Hu W. Chem Commun, 2010, 46: 5211-5222 CrossRef PubMed Google Scholar

[3] Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem Rev, 2012, 112: 2208-2267 CrossRef PubMed Google Scholar

[4] Tang Q, Tong Y, Hu W, Wan Q, Bjørnholm T. Adv Mater, 2009, 21: 4234-4237 CrossRef Google Scholar

[5] Clark J, Lanzani G. Nat Photon, 2010, 4: 438-446 CrossRef ADS Google Scholar

[6] Minemawari H, Yamada T, Matsui H, Tsutsumi J, Haas S, Chiba R, Kumai R, Hasegawa T. Nature, 2011, 475: 364-367 CrossRef PubMed ADS Google Scholar

[7] Yuan Y, Giri G, Ayzner AL, Zoombelt AP, Mannsfeld SCB, Chen J, Nordlund D, Toney MF, Huang J, Bao Z. Nat Commun, 2014, 5: 3005 CrossRef PubMed ADS Google Scholar

[8] Jiang H, Hu P, Ye J, Li Y, Li H, Zhang X, Li R, Dong H, Hu W, Kloc C. Adv Mater, 2017, 29: 1605053 CrossRef PubMed Google Scholar

[9] Jurchescu O , Popinciuc M, van Wees B , Palstra T. Adv Mater, 2007, 19: 688-692 CrossRef Google Scholar

[10] Li H, Tee BCK, Cha JJ, Cui Y, Chung JW, Lee SY, Bao Z. J Am Chem Soc, 2012, 134: 2760-2765 CrossRef PubMed Google Scholar

[11] Watanabe M, Chang YJ, Liu SW, Chao TH, Goto K, Islam MM, Yuan CH, Tao YT, Shinmyozu T, Chow TJ. Nat Chem, 2012, 4: 574-578 CrossRef PubMed ADS Google Scholar

[12] Brédas JL, Beljonne D, Coropceanu V, Conrnil J. Chem Rev, 2004, 104: 4971–5003. Google Scholar

[13] Yue W, Lv A, Gao J, Jiang W, Hao L, Li C, Li Y, Polander LE, Barlow S, Hu W, Di Motta S, Negri F, Marder SR, Wang Z. J Am Chem Soc, 2012, 134: 5770-5773 CrossRef PubMed Google Scholar

[14] Roberson LB, Kowalik J, Tolbert LM, Kloc C, Zeis R, Chi X, Fleming R, Wilkins C. J Am Chem Soc, 2005, 127: 3069-3075 CrossRef PubMed Google Scholar

[15] Klauk H, Zschieschang U, Weitz R , Meng H, Sun F, Nunes G, Keys D , Fincher C , Xiang Z. Adv Mater, 2007, 19: 3882-3887 CrossRef Google Scholar

[16] Dadvand A, Moiseev AG, Sawabe K, Sun WH, Djukic B, Chung I, Takenobu T, Rosei F, Perepichka DF. Angew Chem Int Ed, 2012, 51: 3837-3841 CrossRef PubMed Google Scholar

[17] Zhang X, Zhao G, Zhen Y, Tu Z, He P, Yi Y, Dong H, Hu W. J Mater Chem C, 2015, 3: 5368-5371 CrossRef Google Scholar

[18] Liu J, Dong H, Wang Z, Ji D, Cheng C, Geng H, Zhang H, Zhen Y, Jiang L, Fu H, Bo Z, Chen W, Shuai Z, Hu W. Chem Commun, 2015, 51: 11777-11779 CrossRef PubMed Google Scholar

[19] Liu J, Zhang H, Dong H, Meng L, Jiang L, Jiang L, Wang Y, Yu J, Sun Y, Hu W, Heeger AJ. Nat Commun, 2015, 6: 10032 CrossRef PubMed ADS Google Scholar

[20] Xu C, He P, Liu J, Cui A, Dong H, Zhen Y, Chen W, Hu W. Angew Chem Int Ed, 2016, 55: 9519-9523 CrossRef PubMed Google Scholar

[21] Tang ML, Roberts ME, Locklin JJ, Ling MM, Meng H, Bao Z. Chem Mater, 2006, 18: 6250-6257 CrossRef Google Scholar

[22] Tian H, Han Y, Bao C, Yan D, Geng Y, Wang F. Chem Commun, 2012, 48: 3557-3559 CrossRef PubMed Google Scholar

[23] Škalamera Đ, Veljković J, Ptiček L, Sambol M, Mlinarić-Majerski K, Basarić N. Tetrahedron, 2017, 73: 5892-5899 CrossRef Google Scholar

[24] Hodge P, Power GA, Rabjohns MA. Chem Commun, 1997, 0: 73-74 CrossRef Google Scholar

[25] Li J, Zhou K, Liu J, Zhen Y, Liu L, Zhang J, Dong H, Zhang X, Jiang L, Hu W. J Am Chem Soc, 2017, 139: 17261-17264 CrossRef PubMed Google Scholar

[26] Rao MR, Desmecht A, Perepichka DF. Chem Eur J, 2015, 21: 6193-6201 CrossRef PubMed Google Scholar

[27] Zapf A, Ehrentraut A, Beller M. Angew Chem, 2000, 112: 4315-4317 CrossRef Google Scholar

[28] Liu L, Zhang Y, Wang Y. J Org Chem, 2005, 70: 6122-6125 CrossRef PubMed Google Scholar

[29] Shao W, Dong H, Jiang L, Hu W. Chem Sci, 2011, 2: 590-600 CrossRef Google Scholar

  • Figure 1

    (a) TGA curve of 4-HDPA with a heating rate of 10 °C min−1 under nitrogen; (b) UV-Vis spectra of 4-HDPA in CH2Cl2 (red) and thin film (blue); (c) photoluminescence (PL) spectra of 4-HDPA in CH2Cl2 (red) and thin film (blue); (d) cyclic voltammogram of 4-HDPA in CH2Cl2 solution (color online).

  • Scheme 1

    Synthetic route of 4-HDPA.

  • Figure 2

    AFM images of thin film at deposition rate of 0.15 Å s−1 (a),0.10 Å s−1 (b) and 0.05 Å s−1 (c); typical transfer (d) and output (e) curves of thin film transistor; (f) optical image of a typical 4-HDPA thin film-based transistor (color online).

  • Figure 3

    (a, b) Polarized optical micrographs of 4-HDPA single microcrystals; (c) SEM image of single microcrystal; typical transfer (d) and output (e) curves of single crystal transistor; (f) mobility distribution of 20 single crystal transistors (color online).

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1