logo

SCIENCE CHINA Chemistry, Volume 62, Issue 4: 479-490(2019) https://doi.org/10.1007/s11426-018-9390-6

Selectivity enhancement of quaternized poly(arylene ether ketone) membranes by ion segregation for vanadium redox flow batteries

More info
  • ReceivedSep 11, 2018
  • AcceptedNov 19, 2018
  • PublishedJan 31, 2019

Abstract

Quaternary ammonium densely functionalized octa-benzylmethyl-containing poly(arylene ether ketone)s (QA-OMPAEKs) with ion exchange capacities (IECs) ranging from 1.23 to 2.21 mmol g−1 were synthesized from: (1) Ullmann coupling extension of tetra-benzylmethyl-containing bisphenol A; (2) condensation polymerization with activated dihalide in the presence of K2CO3; (3) selective bromination using N-bromosuccinimide; and (4) quantitative quaternization using trimethylamine. Both small-angle X-ray scattering (SAXS) and transmission electron microscope (TEM) characterizations revealed distinct nano-phase separation in QA-OMPAEKs as a result of the dense quaternization. The QA-OMPAEK-20 with an IEC of 1.98 mmol g−1 exhibited a high SO42− conductivity of 11.4 mS cm−1 and a low VO2+ permeability of 0.06×10−12 m2 s−1 at room temperature, leading to a dramatically higher ion selectivity than Nafion N212. Consequently, the vanadium redox flow battery (VRFB) assembled with QA-OMPAEK-20 achieved a Coulombic efficiency of 96.9% and an energy efficiency of 84.8% at a current density of 50 mA cm−2, which were much higher than those of the batteries assembled with Nafion N212 and a home-made control membrane without distinct nano-phase separation. Therefore, ion segregation is demonstrated to be a strategical route for the design of high performance anion exchange membranes (AEMs) for VRFBs.


Funded by

the National Natural Science Foundation of China(51503038,51873037)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (51503038, 51873037).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Ding C, Zhang H, Li X, Liu T, Xing F. J Phys Chem Lett, 2013, 4: 1281-1294 CrossRef PubMed Google Scholar

[2] Ravikumar MK, Rathod S, Jaiswal N, Patil S, Shukla A. J Solid State Electrochem, 2017, 21: 2467-2488 CrossRef Google Scholar

[3] Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M. Electrochim Acta, 2013, 101: 27-40 CrossRef Google Scholar

[4] Li X, Zhang H, Mai Z, Zhang H, Vankelecom I. Energy Environ Sci, 2011, 4: 1147-1160 CrossRef Google Scholar

[5] Chen L, Zhang S, Chen Y, Jian X. J Power Sources, 2017, 355: 23-30 CrossRef ADS Google Scholar

[6] Hwang GJ, Kim SW, In DM, Lee DY, Ryu CH. J Ind Eng Chem, 2018, 60: 360-365 CrossRef Google Scholar

[7] Luo Q, Zhang H, Chen J, You D, Sun C, Zhang Y. J Membrane Sci, 2008, 325: 553-558 CrossRef Google Scholar

[8] Chen D, Wang S, Xiao M, Meng Y. Energy Environ Sci, 2010, 3: 622-628 CrossRef Google Scholar

[9] Zhang H, Zhang H, Li X, Mai Z, Wei W, Li Y. J Power Sources, 2012, 217: 309-315 CrossRef Google Scholar

[10] Lu W, Yuan Z, Zhao Y, Zhang H, Zhang H, Li X. Chem Soc Rev, 2017, 46: 2199-2236 CrossRef PubMed Google Scholar

[11] Mögelin H, Yao G, Zhong H, dos Santos AR, Barascu A, Meyer R, Krenkel S, Wassersleben S, Hickmann T, Enke D, Turek T, Kunz U. J Power Sources, 2018, 377: 18-25 CrossRef ADS Google Scholar

[12] Wei W, Zhang H, Li X, Zhang H, Li Y, Vankelecom I. Phys Chem Chem Phys, 2013, 15: 1766-1771 CrossRef PubMed ADS Google Scholar

[13] Zeng L, Zhao TS, Wei L, Zeng YK, Zhang ZH. J Power Sources, 2016, 331: 452-461 CrossRef ADS Google Scholar

[14] Zhang B, Zhang S, Weng Z, Wang G, Zhang E, Yu P, Chen X, Wang X. J Power Sources, 2016, 325: 801-807 CrossRef ADS Google Scholar

[15] Cha MS, Lee JY, Kim TH, Jeong HY, Shin HY, Oh SG, Hong YT. J Membrane Sci, 2017, 530: 73-83 CrossRef Google Scholar

[16] Schwenzer B, Zhang J, Kim S, Li L, Liu J, Yang Z. ChemSusChem, 2011, 4: 1388-1406 CrossRef Google Scholar

[17] Sata T. J Membrane Sci, 2000, 167: 1-31 CrossRef Google Scholar

[18] Chen D, Hickner MA, Agar E, Kumbur EC. ACS Appl Mater Interfaces, 2013, 5: 7559-7566 CrossRef PubMed Google Scholar

[19] Zhang B, Zhang S, Xing D, Han R, Yin C, Jian X. J Power Sources, 2012, 217: 296-302 CrossRef Google Scholar

[20] Cha MS, Jeong HY, Shin HY, Hong SH, Kim TH, Oh SG, Lee JY, Hong YT. J Power Sources, 2017, 363: 78-86 CrossRef ADS Google Scholar

[21] Ren J, Dong Y, Dai J, Hu H, Zhu Y, Teng X. J Membrane Sci, 2017, 544: 186-194 CrossRef Google Scholar

[22] Mauritz KA, Moore RB. Chem Rev, 2004, 104: 4535-4586 CrossRef Google Scholar

[23] Dai J, Dong Y, Yu C, Liu Y, Teng X. J Membrane Sci, 2018, 554: 324-330 CrossRef Google Scholar

[24] Jiang B, Wu L, Yu L, Qiu X, Xi J. J Membrane Sci, 2016, 510: 18-26 CrossRef Google Scholar

[25] Shin DW, Guiver MD, Lee YM. Chem Rev, 2017, 117: 4759-4805 CrossRef PubMed Google Scholar

[26] Li N, Wang C, Lee SY, Park CH, Lee YM, Guiver MD. Angew Chem Int Ed, 2011, 50: 9158-9161 CrossRef PubMed Google Scholar

[27] Zhang Z, Shen K, Lin L, Pang J. J Membrane Sci, 2016, 497: 318-327 CrossRef Google Scholar

[28] Wu C, Lu S, Wang H, Xu X, Peng S, Tan Q, Xiang Y. J Mater Chem A, 2016, 4: 1174-1179 CrossRef Google Scholar

[29] Zhou J, Zuo P, Liu Y, Yang Z, Xu T. Sci China Chem, 2018, 61: 1062-1087 CrossRef Google Scholar

[30] Chen D, Hickner MA, Agar E, Kumbur EC. Electrochem Commun, 2013, 26: 37-40 CrossRef Google Scholar

[31] Ran J, Wu L, He Y, Yang Z, Wang Y, Jiang C, Ge L, Bakangura E, Xu T. J Membrane Sci, 2017, 522: 267-291 CrossRef Google Scholar

[32] Li Z, Liu L, Yu L, Wang L, Xi J, Qiu X, Chen L. J Power Sources, 2014, 272: 427-435 CrossRef ADS Google Scholar

[33] Zeng QH, Liu QL, Broadwell I, Zhu AM, Xiong Y, Tu XP. J Membrane Sci, 2010, 349: 237-243 CrossRef Google Scholar

[34] Zhang S, Yin C, Xing D, Yang D, Jian X. J Membrane Sci, 2010, 363: 243-249 CrossRef Google Scholar

[35] Jasti A, Shahi VK. J Mater Chem A, 2013, 1: 6134-6137 CrossRef Google Scholar

[36] Tanaka M, Koike M, Miyatake K, Watanabe M. Polym Chem, 2011, 2: 99-106 CrossRef Google Scholar

[37] Kim E, Lee S, Woo S, Park SH, Yim SD, Shin D, Bae B. J Power Sources, 2017, 359: 568-576 CrossRef ADS Google Scholar

[38] Wang C, Shen B, Xu C, Zhao X, Li J. J Membrane Sci, 2015, 492: 281-288 CrossRef Google Scholar

[39] Zhao Z, Wang J, Li S, Zhang S. J Power Sources, 2011, 196: 4445-4450 CrossRef ADS Google Scholar

[40] Fujimoto CH, Hickner MA, Cornelius CJ, Loy DA. Macromolecules, 2005, 38: 5010-5016 CrossRef ADS Google Scholar

[41] Huang F, Largier TD, Zheng W, Cornelius CJ. J Membrane Sci, 2018, 545: 1-10 CrossRef Google Scholar

[42] Wiedemann E, Heintz A, Lichtenthaler RN. J Membrane Sci, 1998, 141: 215-221 CrossRef Google Scholar

[43] Kim S, Tighe TB, Schwenzer B, Yan J, Zhang J, Liu J, Yang Z, Hickner MA. J Appl Electrochem, 2011, 41: 1201-1213 CrossRef Google Scholar

[44] Xing D, Zhang S, Yin C, Zhang B, Jian X. J Membrane Sci, 2010, 354: 68-73 CrossRef Google Scholar

[45] Cheng S, Beyer FL, Mather BD, Moore RB, Long TE. Macromolecules, 2011, 44: 6509-6517 CrossRef ADS Google Scholar

[46] Chen D, Hickner MA. Macromolecules, 2013, 46: 9270-9278 CrossRef ADS Google Scholar

[47] Yan J, Moore HD, Hibbs MR, Hickner MA. J Polym Sci Part B-Polym Phys, 2013, 51: 1790-1798 CrossRef ADS Google Scholar

[48] Mallinson SL, Varcoe JR, Slade RCT. Electrochim Acta, 2014, 140: 145-151 CrossRef Google Scholar

[49] Zhang Q, Dong QF, Zheng MS, Tian ZW. J Membrane Sci, 2012, 421-422: 232-237 CrossRef Google Scholar

[50] Varcoe JR, Atanassov P, Dekel DR, Herring AM, Hickner MA, Kohl PA, Kucernak AR, Mustain WE, Nijmeijer K, Scott K, Xu T, Zhuang L. Energy Environ Sci, 2014, 7: 3135-3191 CrossRef Google Scholar

[51] Weiber EA, Jannasch P. ChemSusChem, 2014, 7: 2621-2630 CrossRef PubMed Google Scholar

[52] Monteiro R, Leirós J, Boaventura M, Mendes A. Electrochim Acta, 2018, 267: 80-93 CrossRef Google Scholar

  • Figure 1

    1H NMR spectra of octa-benzylmethyl-containing compounds a and b in CDCl3.

  • Scheme 1

    Synthesis of benzylmethyl-containing compounds a and b.

  • Figure 2

    1H NMR spectra of OMPAEK-20 in CDCl3 (A), Br-OMPAEK-20 in CDCl3 (B), and QA-OMPAEK-20 in DMSO-d6 (C) (color online).

  • Scheme 2

    Synthesis of QA-OMPAEKs from condensation polymerization, bromination and quaternization (color online).

  • Scheme 3

    The chemical structure of the control sample QA-TMPAEKs.

  • Figure 3

    FT-IR spectra of OMPAEK-20, Br-OMPAEK-20 and QA-OMPAEK-20 (a) and XPS survey spectrum of QA-OMPAEK-20 (b) (color online).

  • Figure 4

    Schematic comparison (a) and SAXS patterns (b) of QA-OMPAEK-20 and QA-TMPAEK-40; TEM image of QA-OMPAEK-20 (c) and QA-TMPAEK-40 (d).

  • Figure 5

    Water uptake (a), swelling ratio (b), SO42− conductivity (c), and VO2+ permeability (d) of QA-OMPAEKs and QA-TMPAEKs as a function of IEC at room temperature (color online).

  • Figure 6

    Stress-strain curves (a) and oxidation stabilities (b) of QA-OMPAEK-20, QA-TMPAEK-40, and Nafion N212 (color online).

  • Figure 7

    Cell performance of VRFBs assembled with Nafion N212 (black items), QA-OMPAEK-20 (red items), and QA-TMPAEK-40 (blue items). (a) Charge/discharge curves at the current density of 50 mA cm−2; (b) efficiencies as a function of current density; (c) discharge capacity retention as a function of cycling numbers; (d) open circuit voltage as a function of time (color online).

  • Table 1   Inherent viscosities and average molecular weights of the polymers

    Sample

    η (dL g−1)

    Mn (kDa)

    Mw (kDa)

    PDI

    η a) (dL g−1)

    Mn a) (kDa)

    Mw a) (kDa)

    PDI a)

    η b) (dL g−1)

    OMPAEK-10

    0.95

    60.2

    168.6

    2.8

    0.83

    60.0

    162.0

    2.7

    1.33

    OMPAEK-15

    1.04

    63.6

    159.0

    2.5

    0.90

    62.7

    150.5

    2.4

    1.54

    OMPAEK-20

    1.02

    64.9

    168.7

    2.6

    0.82

    64.7

    168.2

    2.6

    1.86

    OMPAEK-25

    0.93

    63.9

    166.4

    2.6

    0.91

    60.5

    127.1

    2.1

    2.35

    After bromination; b) after quaternization.

  • Table 2   Physical properties of the samples and Nafion N212

    Sample

    Target IEC (mmol g−1)

    Titrated IEC (mmol g−1)

    Water uptake (%)

    Swelling ratio (%)

    Ion conductiity

    (mS cm−1 )

    VO2+ permeability

    (×10−12 m2 s−1)

    Φ

    QA-OMPAEK-20

    2.33

    1.98

    40.9

    20.8

    11.4

    0.06

    189.3

    QA-TMPAEK-40

    2.46

    2.12

    97.1

    41.1

    18.4

    1.05

    17.6

    QA-TMPAEK-20

    1.51

    1.34

    44.4

    26.2

    5.6

    0.09

    62.6

    Nafion N212

    N/A

    N/A

    18.4

    8.9

    74.4

    5.36

    13.9

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1