logo

SCIENCE CHINA Chemistry, Volume 61, Issue 12: 1486-1493(2018) https://doi.org/10.1007/s11426-018-9396-3

Basic ionic liquids promoted chemical transformation of CO2 to organic carbonates

More info
  • ReceivedNov 27, 2018
  • AcceptedNov 28, 2018
  • PublishedDec 6, 2018

Abstract

Ionic liquids (ILs), especially basic ILs with unique physicochemical properties, have wide application in catalysis. Using basic ILs as catalysts for the conversion of cheap, abundant, nontoxic, and renewable CO2 into value-added organic carbonates is highly significant in view of environmental and economic issues. This review aims at giving a detailed overview on the recent advances on basic ILs promoted chemical transformation of CO2 to cyclic and linear carbonates. The structures of various basic ILs, as well as the basic ILs promoted reactions for the transformation of CO2 to organic carbonates are discussed in detail, including the reaction conditions, the yields of target products, the catalytic activities of basic ILs and the reaction mechanism.


Funded by

the National Key Research and Development Program of China(2018YFB0605801)

and the National Natural Science Foundation of China(21733011,21533011)


Acknowledgment

This work was supported by the National Key Research and Development Program of China (2018YFB0605801), and the National Natural Science Foundation of China (21733011, 21533011).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] He M, Han B, Wang J, Xi J, Xia Q, Liu X, Wang Y. Sci China Chem, 2017, 60: 837-838 CrossRef Google Scholar

[2] Huber GW, Iborra S, Corma A, Zada B, Chen M, Chen C, Yan L, Xu Q, Li W, Guo Q, Fu Y, An Y, Lin T, Yu F, Yang Y, Zhong L, Wu M, Sun Y. Chem Rev, 2006, 106: 4044-4098 CrossRef PubMed Google Scholar

[3] Qu Z, Li Y, Huang S, Chen P, Ma X, Ding J, Xu H, Wu H, Wu P. Sci China Chem, 2017, 60: 912-919 CrossRef Google Scholar

[4] Maeda C, Miyazaki Y, Ema T. Catal Sci Technol, 2014, 4: 1482-1497b CrossRef Google Scholar

[5] Luo R, Yang Z, Zhang W, Zhou X, Ji H, Pramudita RA, Motokura K, Yang ZZ, He LN, Gao J, Liu AH, Yu B. Sci China Chem, 2017, 60: 979-989 CrossRef Google Scholar

[6] Li X, He X, Liu X, He LN, He Z, Liu H, Qian Q, Lu L, Guo W, Zhang L, Han B. Sci China Chem, 2017, 60: 841-852 CrossRef Google Scholar

[7] Zhou H, Lu X, Lan DH, Fan N, Wang Y, Gao X, Zhang P, Chen L, Au CT, Yin SF, Cokoja M, Wilhelm ME, Anthofer MH, Herrmann WA, Kühn FE. Sci China Chem, 2017, 60: 904-911 CrossRef Google Scholar

[8] Riduan SN, Zhang Y, Yu D, Zhang Y. Dalton Trans, 2010, 39: 3347-3357b CrossRef PubMed Google Scholar

[9] Jessop PG, Ikariya T, Noyori R. Chem Rev, 1995, 95: 259-272 CrossRef Google Scholar

[10] Yi Z, Lan D, Wang Y, Chen L, Au C, Yin S, Hu J, Ma J, Zhu Q, Qian Q, Han H, Mei Q, Han B. Sci China Chem, 2017, 60: 990-996 CrossRef Google Scholar

[11] Clarke CJ, Tu WC, Levers O, Bröhl A, Hallett JP. Chem Rev, 2018, 118: 747-800 CrossRef PubMed Google Scholar

[12] Vekariya RL, Kang X, Sun X, Han B, Hallett JP, Welton T. J Mol Liquids, 2017, 227: 44-60 CrossRef Google Scholar

[13] Yang ZZ, Zhao YN, He LN, Cui G, Wang J, Zhang S, Chaugule AA, Tamboli AH, Kim H, Zeng S, Zhang X, Bai L, Zhang X, Wang H, Wang J, Bao D, Li M, Liu X, Zhang S. RSC Adv, 2011, 1: 545-567 CrossRef Google Scholar

[14] Zhao H, Lu B, Li X, Zhang W, Zhao J, Cai Q. J CO Util, 2015, 12: 49-53 CrossRef Google Scholar

[15] Kimura T, Kamata K, Mizuno N. Angew Chem Int Ed, 2012, 51: 6700-6703 CrossRef PubMed Google Scholar

[16] Chen A, Chen C, Xiu Y, Liu X, Chen J, Guo L, Zhang R, Hou Z. Green Chem, 2015, 17: 1842-1852 CrossRef Google Scholar

[17] Lee JK, Kim YJ, Choi YS, Lee H, Lee JS, Hong J, Jeong EK, Kim HS, Cheong M. Appl Catal B-Environ, 2012, 111-112: 621-627 CrossRef Google Scholar

[18] Lu W, Ma J, Hu J, Song J, Zhang Z, Yang G, Han B. Green Chem, 2014, 16: 221-225 CrossRef Google Scholar

[19] Zhu X, Wang Y, Li H. Phys Chem Chem Phys, 2011, 13: 17445-17448 CrossRef PubMed ADS Google Scholar

[20] Wu W, Han B, Gao H, Liu Z, Jiang T, Huang J. Angew Chem Int Ed, 2004, 43: 2415-2417 CrossRef PubMed Google Scholar

[21] Wu F, Dou XY, He LN, Miao CX. Lett Org Chem, 2010, 7: 73–78. Google Scholar

[22] Cui G, Zheng J, Luo X, Lin W, Ding F, Li H, Wang C. Angew Chem Int Ed, 2013, 52: 10620-10624 CrossRef PubMed Google Scholar

[23] Wang C, Luo H, Jiang D, Li H, Dai S. Angew Chem Int Ed, 2010, 49: 5978-5981 CrossRef PubMed Google Scholar

[24] Zhao Y, Yu B, Yang Z, Zhang H, Hao L, Gao X, Liu Z. Angew Chem Int Ed, 2014, 53: 5922-5925 CrossRef PubMed Google Scholar

[25] Bordwell FG, Algrim D. J Org Chem, 1976, 41: 2507-2508 CrossRef Google Scholar

[26] Bordwell FG, McCallum RJ, Olmstead WN. J Org Chem, 1984, 49: 1424-1427 CrossRef Google Scholar

[27] Bordwell FG. Acc Chem Res, 1988, 21: 456-463 CrossRef Google Scholar

[28] Hu J, Ma J, Zhang Z, Zhu Q, Zhou H, Lu W, Han B. Green Chem, 2015, 17: 1219-1225 CrossRef Google Scholar

[29] Cui G, Lin W, Ding F, Luo X, He X, Li H, Wang C. Green Chem, 2014, 16: 1211-1216 CrossRef Google Scholar

[30] Hu J, Ma J, Zhu Q, Zhang Z, Wu C, Han B. Angew Chem Int Ed, 2015, 54: 5399-5403 CrossRef PubMed Google Scholar

[31] Huang Y, Cui G, Zhao Y, Wang H, Li Z, Dai S, Wang J. Angew Chem Int Ed, 2017, 56: 13293-13297 CrossRef PubMed Google Scholar

[32] Wang C, Luo X, Zhu X, Cui G, Jiang D, Deng D, Li H, Dai S. RSC Adv, 2013, 3: 15518-15527 CrossRef Google Scholar

[33] Li W, Cheng W, Yang X, Su Q, Dong L, Zhang P, Yi Y, Li B, Zhang S. Chin J Chem, 2018, 36: 293-298 CrossRef Google Scholar

[34] Yue C, Su D, Zhang X, Wu W, Xiao L. Catal Lett, 2014, 144: 1313-1321 CrossRef Google Scholar

[35] Yang ZZ, Zhao YN, He LN, Gao J, Yin ZS. Green Chem, 2012, 14: 519-527 CrossRef Google Scholar

[36] Sadeghzadeh SM. Catal Commun, 2015, 72: 91-96 CrossRef Google Scholar

[37] Yang H, Wang X, Ma Y, Wang L, Zhang J. Catal Sci Technol, 2016, 6: 7773-7782 CrossRef Google Scholar

[38] Schäffner B, Schäffner F, Verevkin SP, Börner A, Xu K. Chem Rev, 2010, 110: 4554-4581 CrossRef PubMed Google Scholar

[39] Yang C, Liu M, Zhang J, Wang X, Jiang Y, Sun J. Mol Catal, 2018, 450: 39-45 CrossRef Google Scholar

[40] Galvan M, Selva M, Perosa A, Noè M. Asian J Org Chem, 2014, 3: 504-513 CrossRef Google Scholar

[41] Tsutsumi Y, Yamakawa K, Yoshida M, Ema T, Sakai T. Org Lett, 2010, 12: 5728-5731 CrossRef PubMed Google Scholar

[42] Liu M, Liang L, Li X, Gao X, Sun J. Green Chem, 2016, 18: 2851-2863 CrossRef Google Scholar

[43] Kumar P, Varyani M, Khatri PK, Paul S, Jain SL. J Ind Eng Chem, 2017, 49: 152-157 CrossRef Google Scholar

[44] Yue S, Hao XJ, Wang PP, Li J. Mol Catal, 2017, 433: 420-429 CrossRef Google Scholar

[45] Yuan G, Zhao Y, Wu Y, Li R, Chen Y, Xu D, Liu Z. Sci China Chem, 2017, 60: 958-963 CrossRef Google Scholar

[46] Roshan KR, Jose T, Kim D, Cherian KA, Park DW. Catal Sci Technol, 2014, 4: 963-970 CrossRef Google Scholar

[47] Dai WL, Jin B, Luo SL, Luo XB, Tu XM, Au CT. J Mol Catal A-Chem, 2013, 378: 326-332 CrossRef Google Scholar

[48] Zhang Z, Fan F, Xing H, Yang Q, Bao Z, Ren Q. ACS Sustain Chem Eng, 2017, 5: 2841-2846 CrossRef Google Scholar

[49] Chen C, Ma Y, Zheng D, Wang L, Li J, Zhang J, He H, Zhang S. J CO Util, 2017, 18: 156-163 CrossRef Google Scholar

[50] Yue S, Wang P, Hao X, Zang S. J CO Util, 2017, 21: 238-246 CrossRef Google Scholar

[51] Hu J, Ma J, Liu H, Qian Q, Xie C, Han B. Green Chem, 2018, 20: 2990-2994 CrossRef Google Scholar

[52] Hajipour AR, Heidari Y, Kozehgary G. RSC Adv, 2015, 5: 22373-22379 CrossRef Google Scholar

[53] Dai WL, Chen L, Yin SF, Li WH, Zhang YY, Luo SL, Au CT. Catal Lett, 2010, 137: 74-80 CrossRef Google Scholar

[54] Liu M, Lan J, Liang L, Sun J, Arai M. J Catal, 2017, 347: 138-147 CrossRef Google Scholar

[55] Gu Y, Shi F, Deng Y, Kayaki Y, Yamamoto M, Ikariya T. J Org Chem, 2004, 69: 391-394 CrossRef PubMed Google Scholar

[56] Yamada W, Sugawara Y, Cheng HM, Ikeno T, Yamada T. Eur J Org Chem, 2007, 2007(16): 2604-2607 CrossRef Google Scholar

[57] Hu J, Ma J, Lu L, Qian Q, Zhang Z, Xie C, Han B. ChemSusChem, 2017, 10: 1292-1297 CrossRef PubMed Google Scholar

[58] Chen K, Shi G, Dao R, Mei K, Zhou X, Li H, Wang C. Chem Commun, 2016, 52: 7830-7833 CrossRef PubMed Google Scholar

[59] Qiu J, Zhao Y, Li Z, Wang H, Fan M, Wang J. ChemSusChem, 2017, 10: 1120-1127 CrossRef PubMed Google Scholar

[60] Zhao Y, Wu Y, Yuan G, Hao L, Gao X, Yang Z, Yu B, Zhang H, Liu Z. Chem Asian J, 2016, 11: 2735-2740 CrossRef PubMed Google Scholar

[61] Wu Y, Zhao Y, Li R, Yu B, Chen Y, Liu X, Wu C, Luo X, Liu Z. ACS Catal, 2017, 7: 6251-6255 CrossRef Google Scholar

[62] Huang S, Yan B, Wang S, Ma X. Chem Soc Rev, 2015, 44: 3079-3116 CrossRef PubMed Google Scholar

[63] Sun J, Lu B, Wang X, Li X, Zhao J, Cai Q. Fuel Process Technol, 2013, 115: 233-237 CrossRef Google Scholar

[64] Zhang Q, Zhao H, Lu B, Zhao J, Cai Q. J Mol Catal A-Chem, 2016, 421: 117-121 CrossRef Google Scholar

[65] Eta V, Mäki-Arvela P, Salminen E, Salmi T, Murzin DY, Mikkola JP. Catal Lett, 2011, 141: 1254-1261 CrossRef Google Scholar

[66] Li J, Wang L, Shi F, Liu S, He Y, Lu L, Ma X, Deng Y. Catal Lett, 2011, 141: 339-346 CrossRef Google Scholar

[67] Goodrich P, Gunaratne HQN, Jin L, Lei Y, Seddon KR. Aust J Chem, 2018, 71: 181-185 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1