logo

SCIENCE CHINA Chemistry, Volume 62, Issue 4: 491-499(2019) https://doi.org/10.1007/s11426-018-9415-8

Halogen effects on phenylethynyl palladium(II) complexes for living polymerization of isocyanides: a combined experimental and computational investigation

More info
  • ReceivedDec 15, 2018
  • AcceptedJan 10, 2019
  • PublishedFeb 22, 2019

Abstract

Phenylethynyl palladium(II) complexes have proven to be effective catalysts for coordination polymerization of isocyanides. In this work, two new phenylethynyl palladium(II) initiators bearing bromide (1b) and iodide (1c) were synthesized and applied for living polymerization of aryl and alkyl isocyanides. The coordinated halogen anions can significantly influence the kinetics of polymerization, with the observed order of reaction rates being 1c (I)>1b (Br)>1a (Cl). Impressively, 1c not only accelerates the reaction rate in both the initiation stage and propagation stage, but also can polymerize less active monomers that cannot be reacted by 1a. DFT calculations were then employed to understand the detailed mechanism and the halogen effects in this insertion polymerization process.


Funded by

the National Natural Science Foundation of China(21771049,21622402)

the Fundamental Research Funds for the Central Universities

the National Thousand Young Talents Program

the Jiangsu Specially-Appointed Professor Plan

and the Natural Science Foundation of Jiangsu Province(BK20170631)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21771049, 21622402), the Fundamental Research Funds for the Central Universities, the National Thousand Young Talents Program, the Jiangsu Specially-Appointed Professor Plan, and the Natural Science Foundation of Jiangsu Province (BK20170631).


Interest statement

The authors declare that they have no conflict of interest.


Contributions statement

These authors contributed equally to this work.


Supplement

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Nakano T, Okamoto Y. Chem Rev, 2001, 101: 4013-4038 CrossRef Google Scholar

[2] Cornelissen JJLM, Rowan AE, Nolte RJM, Sommerdijk NAJM. Chem Rev, 2001, 101: 4039-4070 CrossRef Google Scholar

[3] Elemans JAAW, Rowan AE, Nolte RJM. J Mater Chem, 2003, 13: 2661-2670 CrossRef Google Scholar

[4] de Witte PAJ, Castriciano M, Cornelissen JJLM, Monsù Scolaro L, Nolte RJM, Rowan AE. Chem Eur J, 2003, 9: 1775-1781 CrossRef PubMed Google Scholar

[5] Yashima E, Maeda K, Furusho Y. Acc Chem Res, 2008, 41: 1166-1180 CrossRef PubMed Google Scholar

[6] Yashima E, Maeda K, Iida H, Furusho Y, Nagai K. Chem Rev, 2009, 109: 6102-6211 CrossRef PubMed Google Scholar

[7] Le Gac S, Schwartz E, Koepf M, Cornelissen JJLM, Rowan AE, Nolte RJM. Chem Eur J, 2010, 16: 6176-6186 CrossRef PubMed Google Scholar

[8] Schwartz E, Koepf M, Kitto HJ, Nolte RJM, Rowan AE. Polym Chem, 2011, 2: 33-47 CrossRef Google Scholar

[9] Yamamoto T, Murakami R, Suginome M. J Am Chem Soc, 2017, 139: 2557-2560 CrossRef PubMed Google Scholar

[10] Nagata Y, Kuroda T, Takagi K, Suginome M. Chem Sci, 2014, 5: 4953-4956 CrossRef Google Scholar

[11] Miyabe T, Iida H, Ohnishi A, Yashima E. Chem Sci, 2012, 3: 863-867 CrossRef Google Scholar

[12] Foster S, Finlayson CE, Keivanidis PE, Huang YS, Hwang I, Friend RH, Otten MBJ, Lu LP, Schwartz E, Nolte RJM, Rowan AE. Macromolecules, 2009, 42: 2023-2030 CrossRef ADS Google Scholar

[13] Miyabe T, Iida H, Banno M, Yamaguchi T, Yashima E. Macromolecules, 2011, 44: 8687-8692 CrossRef ADS Google Scholar

[14] Hu G, Li W, Hu Y, Xu A, Yan J, Liu L, Zhang X, Liu K, Zhang A. Macromolecules, 2013, 46: 1124-1132 CrossRef ADS Google Scholar

[15] Nishikawa T, Nagata Y, Suginome M. ACS Macro Lett, 2017, 6: 431-435 CrossRef Google Scholar

[16] van Buul AM, Schwartz E, Brocorens P, Koepf M, Beljonne D, Maan JC, Christianen PCM, Kouwer PHJ, Nolte RJM, Engelkamp H, Blank K, Rowan AE. Chem Sci, 2013, 4: 2357-2363 CrossRef Google Scholar

[17] Cahoon CR, Bielawski CW. Coord Chem Rev, 2018, 374: 261-278 CrossRef Google Scholar

[18] Drenth W, Nolte RJM. Acc Chem Res, 1979, 12: 30-35 CrossRef Google Scholar

[19] Kamer PCJ, Nolte RJM, Drenth W. J Am Chem Soc, 1988, 110: 6818-6825 CrossRef Google Scholar

[20] Deming TJ, Novak BM. Macromolecules, 1991, 24: 6043-6045 CrossRef ADS Google Scholar

[21] Deming TJ, Novak BM. J Am Chem Soc, 1993, 115: 9101-9111 CrossRef Google Scholar

[22] Asaoka S, Joza A, Minagawa S, Song L, Suzuki Y, Iyoda T. ACS Macro Lett, 2013, 2: 906-911 CrossRef Google Scholar

[23] Wu ZQ, Ono RJ, Chen Z, Bielawski CW. J Am Chem Soc, 2010, 132: 14000-14001 CrossRef PubMed Google Scholar

[24] Wu ZQ, Radcliffe JD, Ono RJ, Chen Z, Li Z, Bielawski CW. Polym Chem, 2012, 3: 874-881 CrossRef Google Scholar

[25] Wu ZQ, Qi CG, Liu N, Wang Y, Yin J, Zhu YY, Qiu LZ, Lu HB. J Polym Sci Part A-Polym Chem, 2013, 51: 2939-2947 CrossRef ADS Google Scholar

[26] Liu N, Qi CG, Wang Y, Liu DF, Yin J, Zhu YY, Wu ZQ. Macromolecules, 2013, 46: 7753-7758 CrossRef ADS Google Scholar

[27] Wu ZQ, Liu DF, Wang Y, Liu N, Yin J, Zhu YY, Qiu LZ, Ding YS. Polym Chem, 2013, 4: 4588-4595 CrossRef Google Scholar

[28] Yu ZP, Liu N, Yang L, Jiang ZQ, Wu ZQ. Macromolecules, 2017, 50: 3204-3214 CrossRef ADS Google Scholar

[29] Onitsuka K, Mori T, Yamamoto M, Takei F, Takahashi S. Macromolecules, 2006, 39: 7224-7231 CrossRef ADS Google Scholar

[30] Onitsuka K, Yamamoto M, Mori T, Takei F, Takahashi S. Organometallics, 2006, 25: 1270-1278 CrossRef Google Scholar

[31] Onitsuka K, Joh T, Takahashi S. Angew Chem Int Ed Engl, 1992, 31: 851-852 CrossRef Google Scholar

[32] Onitsuka K, Yanai K, Takei F, Joh T, Takahashi S. Organometallics, 1994, 13: 3862-3867 CrossRef Google Scholar

[33] Takei F, Yanai K, Onitsuka K, Takahashi S. Chem Eur J, 2000, 6: 983-993 CrossRef Google Scholar

[34] Xue YX, Zhu YY, Gao LM, He XY, Liu N, Zhang WY, Yin J, Ding Y, Zhou H, Wu ZQ. J Am Chem Soc, 2014, 136: 4706-4713 CrossRef PubMed Google Scholar

[35] Xue YX, Chen JL, Jiang ZQ, Yu Z, Liu N, Yin J, Zhu YY, Wu ZQ. Polym Chem, 2014, 5: 6435-6438 CrossRef Google Scholar

[36] Chen JL, Su M, Jiang ZQ, Liu N, Yin J, Zhu YY, Wu ZQ. Polym Chem, 2015, 6: 4784-4793 CrossRef Google Scholar

[37] Su M, Liu N, Wang Q, Wang H, Yin J, Wu ZQ. Macromolecules, 2016, 49: 110-119 CrossRef ADS Google Scholar

[38] Chen Y, Zhang ZH, Han X, Yin J, Wu ZQ. Macromolecules, 2016, 49: 7718-7727 CrossRef ADS Google Scholar

[39] Jiang ZQ, Xue YX, Chen JL, Yu ZP, Liu N, Yin J, Zhu YY, Wu ZQ. Macromolecules, 2015, 48: 81-89 CrossRef ADS Google Scholar

[40] Liu C, Mi YX, Wang RH, Jiang ZQ, Zhang XY, Liu N, Yin J, Wu ZQ. Polym Chem, 2016, 7: 2447-2451 CrossRef Google Scholar

[41] He YG, Shi SY, Liu N, Ding YS, Yin J, Wu ZQ. Macromolecules, 2016, 49: 48-58 CrossRef ADS Google Scholar

[42] Liu N, Ma CH, Sun RW, Huang J, Li C, Wu ZQ. Polym Chem, 2017, 8: 2152-2163 CrossRef Google Scholar

[43] Yang L, Tang Y, Liu N, Liu CH, Ding Y, Wu ZQ. Macromolecules, 2016, 49: 7692-7702 CrossRef ADS Google Scholar

[44] Xiao Y, Wang HQ, Zhang H, Jiang ZQ, Wang YQ, Li H, Yin J, Zhu YY, Wu ZQ. J Polym Sci Part A-Polym Chem, 2017, 55: 2092-2103 CrossRef ADS Google Scholar

[45] Huang T, Meng Y, Venkatraman S, Wang D, Li CJ. J Am Chem Soc, 2001, 123: 7451-7452 CrossRef Google Scholar

[46] Kuniyasu H, Yamashita F, Terao J, Kambe N. Angew Chem Int Ed, 2007, 46: 5929-5933 CrossRef PubMed Google Scholar

[47] Plougastel L, Koniev O, Specklin S, Decuypere E, Créminon C, Buisson DA, Wagner A, Kolodych S, Taran F. Chem Commun, 2014, 50: 9376-9378 CrossRef PubMed Google Scholar

[48] Tao H, Liu F, Zeng R, Shao Z, Zou L, Cao Y, Murphy JM, Houk KN, Liang Y. Chem Commun, 2018, 54: 5082-5085 CrossRef PubMed Google Scholar

[49] Saegusa T, Kobayashi S, Yamada A. Makromol Chem, 1976, 177: 2271-2283 CrossRef Google Scholar

[50] Wang JS, Matyjaszewski K. Macromolecules, 1995, 28: 7901-7910 CrossRef ADS Google Scholar

[51] Ando T, Kamigaito M, Sawamoto M. Macromolecules, 2000, 33: 2819-2824 CrossRef ADS Google Scholar

[52] Lanzalaco S, Fantin M, Scialdone O, Galia A, Isse AA, Gennaro A, Matyjaszewski K. Macromolecules, 2017, 50: 192-202 CrossRef ADS Google Scholar

[53] Matyjaszewski K, Wang JL, Grimaud T, Shipp DA. Macromolecules, 1998, 31: 1527-1534 CrossRef ADS Google Scholar

[54] Pan X, Fang C, Fantin M, Malhotra N, So WY, Peteanu LA, Isse AA, Gennaro A, Liu P, Matyjaszewski K. J Am Chem Soc, 2016, 138: 2411-2425 CrossRef PubMed Google Scholar

[55] Michalak A, Ziegler T. Organometallics, 2003, 22: 2069-2079 CrossRef Google Scholar

[56] del Rosal I, Brignou P, Guillaume SM, Carpentier JF, Maron L. Polym Chem, 2015, 6: 3336-3352 CrossRef Google Scholar

[57] Wei J, Riffel MN, Diaconescu PL. Macromolecules, 2017, 50: 1847-1861 CrossRef ADS Google Scholar

[58] Ilker MF, Coughlin EB. Macromolecules, 2002, 35: 54-58 CrossRef ADS Google Scholar

[59] Tan L, Parker KA, Sampson NS. Macromolecules, 2014, 47: 6572-6579 CrossRef PubMed ADS Google Scholar

[60] Geometries of minima and transition-state structures are optimized at the M06/6-31G(d)[SDD, for Pd and I] level. Solvent effects in THF were evaluated on the gas-phase optimized structures using the CPCM model at the M06/6-311+G(d,p)[SDD, for Pd and I] level. Computational details are provided in the Supporting Information online. Google Scholar

[61] Appleton TG, Clark HC, Manzer LE. Coord Chem Rev, 1973, 10: 335-422 CrossRef Google Scholar

  • Figure 1

    Single crystal X-ray structures of palladium(II) initiators 1a (a), 1b (b) and 1c (c) (color online).

  • Scheme 1

    Polymerization of aryl isocyanide m1 with initiator 1a1c in THF at 55 °C (color online).

  • Scheme 2

    Polymerization of aryl isocyanide m1 with initiator 1c in toluene at 70 °C and block copolymerization of m2 with poly-1c-m150 as macroinitiator, and the SEC chromatograms of poly-1c-m150 and the resulting block copolymer poly-1c-m150-b-m250 (color online).

  • Figure 2

    (a) Time-dependent 1H NMR spectra for 1c-initiated polymerization samples of m1 in THF at 55 °C with dimethyl terephthalate as an internal standard ([m1]0=0.2 M, [m1]0/[1c]0=60; 1H NMR condition: CDCl3, 600 MHz, 25 °C). (b) SEC chromatograms of poly-1c-m1n with different conversions. (c) Plot of Mn and Mw/Mn values as a function of 1c-initiated conversion of m1. (d) First-order kinetics plots for polymerizations of m1 initiated by 1a1c (color online).

  • Figure 3

    Favorable reaction pathways for the successive insertions of five isocyanides involving two typical Pd(II) initiators 1a (X=Cl) and 1c (X=I). Gibbs free energies are shown under each structure in kcal mol−1 (black for iodide and blue for chloride) (color online).

  • Figure 4

    Favorable (black) and unfavorable (red) reaction pathways for the insertions of the second isocyanide involving two Pd(II) species with different halogens. Gibbs free energies are shown under each structure in kcal mol−1 (black for iodide and blue for chloride) (color online).

  • Figure 5

    The analysis of Pd−C bond lengths in key structures (color online).

  • Figure 6

    The analysis of natural charges on the fragments Int4p_X from Int4_X with one PEt3 ligand removed (color online).

  • Table 1   Polymerization results of isocyanides − with and as initiator

    Entry

    Monomer

    Initiator a)

    [M]0/[cat]0 b)

    Solvent

    T (°C)

    Polymer

    Mn (kDa) c)

    Mw/Mn c)

    Yield (%) d)

    1

    m1

    1a

    100

    THF

    40

    N.D.

    /

    /

    /

    2

    m1

    1c

    100

    THF

    40

    poly-m1100

    22.6

    1.06

    85

    3

    m2

    1a

    100

    Toluene

    70

    N.D.

    /

    /

    /

    4

    m2

    1c

    100

    Toluene

    70

    poly-m2100

    20.1

    1.22

    99

    5

    m3

    1a

    100

    Toluene

    75

    N.D.

    /

    /

    /

    6

    m3

    1c

    100

    Toluene

    75

    poly-m3100

    8.5

    1.15

    99

    7

    m1, m2

    1c

    50, 50

    Toluene

    70

    poly-m150-b-m250

    24.1

    1.13

    84

    8

    m2, m1

    1c

    50, 50

    Toluene

    70

    poly-m250-b-m150

    20.1

    1.17

    82

    The polymers were synthesized according to the standard procedure; b) the initial feed ratio of monomer to initiator; c) the Mn and Mw/Mn were determined by SEC and reported as equivalent to PSt; d) isolated yield.

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1