logo

Similar or different: the same Spiro-core but different alkyl chains with apparently improved device performance of perovskite solar cells

More info
  • ReceivedNov 7, 2018
  • AcceptedJan 28, 2019
  • PublishedFeb 25, 2019

Abstract

By intelligently utilizing the odd-even effect existing in the melting points of alkanes as presented in the basic textbook of Organic Chemistry, different alkoxy groups were introduced to modify the structure of commercial Spiro-OMeTAD to give new Spiro derivatives of Spiro-OEtTAD, Spiro-OPrTAD, Spiro-OiPrTAD and Spiro-OBuTAD, with the aim to adjust the molecular packing status in perovskite solar cells as hole transporting compounds. Excitedly, with the introduction of ethoxy groups instead of the methoxy ones in Spiro-OMeTAD, Spiro-OEtTAD-based perovskite solar cells demonstrated the highest device performance of 20.16%, higher than that of Spiro-OMeTAD (18.64%).


Funded by

the National Natural Science Foundation of China(21734007,51573140,51673151)

the Natural Science Foundation of Hubei Province(2017CFA002)

and the Fundamental Research Funds for the Central Universities(2042017kf0247,2042018kf0014)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21734007, 51573140, 51673151, 21773045), the Natural Science Foundation of Hubei Province (2017CFA002), and the Fundamental Research Funds for the Central Universities (2042017kf0247, 2042018kf0014).


Interest statement

The authors declare that they have no conflict of interest.


Contributions statement

These authors contributed equally to this work.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] https://www.nrel.gov/pv/assets/images/efficiency-chart-20180716.jpg. Google Scholar

[2] Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y, Bi D, Yi C, Luo J, Décoppet JD, Zhang F, Zakeeruddin SM, Li X, Hagfeldt A, Grätzel M, Bai L, Wang Z, Han Y, Zuo Z, Liu B, Yu M, Zhang H, Lin J, Xia Y, Yin C, Xie L, Chen Y, Lin Z, Wang J, Huang W, Liu X, Huang P, Dong Q, Wang Z, Zhang K, Yu H, Lei M, Zhou Y, Song B, Li Y, Liu D, Zhou W, Tang H, Fu P, Ning Z. Science, 2014, 345: 542-546 CrossRef PubMed ADS Google Scholar

[3] Teh CH, Daik R, Lim EL, Yap CC, Ibrahim MA, Ludin NA, Sopian K, Mat Teridi MA, Krishna A, Grimsdale AC, Zhou W, Wen Z, Gao P, Jiang X, Yu Z, Lai J, Zhang Y, Lei N, Wang D, Sun L. J Mater Chem A, 2016, 4: 15788-15822 CrossRef Google Scholar

[4] Yu Z, Sun L, Zimmermann I, Urieta-Mora J, Gratia P, Aragó J, Grancini G, Molina-Ontoria A, Ortí E, Martín N, Nazeeruddin MK, Fuentes Pineda R, Troughton J, Planells M, Sanchez-Molina Santos I, Muhith F, Nichol GS, Haque S, Watson T, Robertson N, Hawash Z, Ono LK, Qi Y. Adv Energy Mater, 2015, 5: 1500213 CrossRef Google Scholar

[5] Christians JA, Fung RCM, Kamat PV, Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin MK, Grätzel M, Arora N, Dar MI, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin SM, Grätzel M, Zuo C, Ding L. J Am Chem Soc, 2014, 136: 758-764 CrossRef PubMed Google Scholar

[6] Zhu Z, Bai Y, Lee HKH, Mu C, Zhang T, Zhang L, Wang J, Yan H, So SK, Yang S, Wu F, Ji Y, Zhong C, Liu Y, Tan L, Zhu L, Liu F, Li Q, Li Z. Adv Funct Mater, 2014, 24: 7357-7365 CrossRef Google Scholar

[7] Yang WS, Park BW, Jung EH, Jeon NJ, Kim YC, Lee DU, Shin SS, Seo J, Kim EK, Noh JH, Seok SI. Science, 2017, 356: 1376-1379 CrossRef PubMed ADS Google Scholar

[8] Li Q, Li Z, Liu F, Tu J, Wang X, Wang J, Gong Y, Han M, Dang X, Liao Q, Peng Q, Li Q, Li Z, Gong Y, Chang K, Chen C, Han M, Zhan X, Min J, Jiao X, Li Q, Li Z, Wang C, Yu Y, Chai Z, He F, Wu C, Gong Y, Han M, Li Q, Li Z. Adv Sci, 2017, 4: 1600484 CrossRef PubMed Google Scholar

[9] Rakstys K, Saliba M, Gao P, Gratia P, Kamarauskas E, Paek S, Jankauskas V, Nazeeruddin MK. Angew Chem, 2016, 128: 7590-7594 CrossRef Google Scholar

[10] Paek S, Zimmermann I, Gao P, Gratia P, Rakstys K, Grancini G, Nazeeruddin MK, Rub MA, Kosa SA, Alamry KA, Asiri AM. Chem Sci, 2016, 7: 6068-6075 CrossRef PubMed Google Scholar

[11] Zhang H, Wu Y, Zhang W, Li E, Shen C, Jiang H, Tian H, Zhu WH. Chem Sci, 2018, 9: 5919-5928 CrossRef PubMed Google Scholar

[12] Jeon NJ, Na H, Jung EH, Yang TY, Lee YG, Kim G, Shin HW, Il Seok S, Lee J, Seo J. Nat Energy, 2018, 3: 682-689 CrossRef ADS Google Scholar

[13] Gao K, Xu B, Hon C, Shi X, Liu H, Li X, Xie L, Jen AK-Y. Adv Energy Mater, 2018, 8: 18008. Google Scholar

[14] Ge QQ, Shao JY, Ding J, Deng LY, Zhou WK, Chen YX, Ma JY, Wan LJ, Yao J, Hu JS, Zhong YW. Angew Chem Int Ed, 2018, 57: 10959-10965 CrossRef PubMed Google Scholar

[15] Zhang J, Xu B, Yang L, Ruan C, Wang L, Liu P, Zhang W, Vlachopoulos N, Kloo L, Boschloo G, Sun L, Hagfeldt A, Johansson EMJ. Adv Energy Mater, 2018, 8: 1701209 CrossRef Google Scholar

[16] Xu B, Zhang J, Hua Y, Liu P, Wang L, Ruan C, Li Y, Boschloo G, Johansson EMJ, Kloo L, Hagfeldt A, Jen AK.-Y, Sun L. Chem, 2017, 2: 676–687. Google Scholar

[17] Zhang F, Wang Z, Zhu H, Pellet N, Luo J, Yi C, Liu X, Liu H, Wang S, Li X, Xiao Y, Zakeeruddin SM, Bi D, Grätzel M. Nano Energy, 2017, 41: 469-475 CrossRef Google Scholar

[18] Bi D, Tress W, Dar MI, Gao P, Luo J, Renevier C, Schenk K, Abate A, Giordano F, Correa Baena JP, Decoppet JD, Zakeeruddin SM, Nazeeruddin MK, Grätzel M, Hagfeldt A. Sci Adv, 2016, 2: e1501170 CrossRef PubMed ADS Google Scholar

[19] Saliba M, Orlandi S, Matsui T, Aghazada S, Cavazzini M, Correa-Baena JP, Gao P, Scopelliti R, Mosconi E, Dahmen KH, de Angelis F, Abate A, Hagfeldt A, Pozzi G, Grätzel M, Nazeeruddin MK. Nat Energy, 2016, 1: 15017-15023 CrossRef ADS Google Scholar

[20] Zhan X, Zhang J, Gong Y, Tang S, Tu J, Xie Y, Peng Q, Yu G, Li Z, Xie Y, Ge Y, Peng Q, Li C, Li Q, Li Z, Lei T, Dou JH, Pei J, Mei J, Diao Y, Appleton AL, Fang L, Bao Z, Yang J, Li L, Yu Y, Ren Z, Peng Q, Ye S, Li Q, Li Z, Chen P, Li Z, Li Q, Tang Y, Hu W, Li Z. Mater Chem Front, 2017, 1: 2341-2348 CrossRef Google Scholar

[21] Hu Z, Fu W, Yan L, Miao J, Yu H, He Y, Goto O, Meng H, Chen H, Huang W. Chem Sci, 2016, 7: 5007-5012 CrossRef PubMed Google Scholar

  • Figure 1

    The molecular design idea and molecular structures of target HTMs (color online).

  • Figure 2

    (a) UV-vis absorption spectra of the Spiro-HTMs in CH2Cl2 solutions. (b) Cyclic voltammograms of Spiro-HTMs in CH2Cl2 solutions. (c) Thermogravimetric analysis curves of Spiro-HTMs under nitrogen at 10 °C min−1 of heating rate. (d) Differential scanning calorimetry of Spiro-HTMs under nitrogen at heating rate of 20 °C min−1 (color online).

  • Figure 3

    The HOMO/LUMO distribution of the Spiro-HTMs (color online).

  • Figure 4

    GIWAXS patterns and the corresponding in-plane and out-of-plane profiles (inset) for pure films of (a) Spiro-OMeTAD. (b) Spiro-OEtTAD. (c) Spiro-OPrTAD. (d) Spiro-OiPrTAD. (e) Spiro-OBuTAD and (f) in-plane line cuts of the Spiro-derivatives (color online).

  • Figure 5

    Device structure of the planar PSCs (a) and energy level diagram of the Spiro-derivatives (b) used in this study (color online).

  • Figure 6

    (a) J-V characteristics of the PSC devices employing Spiro-derivatives as HTMs; (b) IPCE spectra of the PSC devices based on different HTMs; (c) J-V characteristics of Spiro-OEtTAD-based PSCs under different scan conditions (color online).

  • Figure 7

    (a) The J-V curves measured by SCLC characteristic based on single carrier devices. (b) Steady state PL spectra of the perovskite films with or without the capping HTMs. (c) The unencapsulated devices stability test of the devices in ambient (room temperature, 30% RH) (color online).

  • Table 1   The electrochemical, photophysical data of the HTMs and photovoltaic parameters for the PSCs devices based on Spiro-derivatives

    HTM

    Eg (eV) a)

    EHOMO b)/ELOMO c) (eV)

    λabs,max (nm) d)

    Td (°C) e)

    Tm (°C) f)

    Tg (°C) g)

    Tc (°C) h)

    Spiro-OMeTAD

    2.95

    −5.20/−2.25

    387

    388

    248

    167

    177

    Spiro-OEtTAD

    2.96

    −5.09/−2.13

    387

    306

    239

    229

    232

    Spiro-OPrTAD

    2.95

    −5.06/−2.11

    387

    362

    268

    226

    Spiro-OiPrTAD

    2.94

    −5.13/−2.19

    387

    354

    322

    Spiro-OBuTAD

    2.95

    −5.17/−2.12

    388

    292

    233

    188

    Band gaps estimated from the optical absorption band edge of the solution. b) Calculated from the onset oxidation potentials of the compounds. c) Estimated using the empirical equation ELUMO=EHOMO+Eg. d) Values derived from absorption spectra in dilute CH2Cl2 solution. e) 5% weight loss temperature measured by TGA under N2. f) Melting temperature measured by DSC under N2. g) Glass transition temperature measured by DSC under N2. h) Crystallization temperature measured by DSC under N2.

  • Table 2   The electrochemical, photophysical data of the HTMs and photovoltaic parameters for the PSCs devices based on Spiro-derivatives

    HTM

    Jsc (mA cm−2)

    Voc (V)

    FF (%)

    PCE (%)

    Calculated Jsc (mA cm−2) a)

    Spiro-OMeTAD

    22.53

    1.10

    75.04

    18.64 b) (18.08±0.52) c)

    21.58

    Spiro-OEtTAD

    23.93

    1.11

    75.65

    20.16 (19.75±0.42)

    22.35

    Spiro-OPrTAD

    22.98

    1.06

    69.27

    16.86 (16.73±0.53)

    21.67

    Spiro-OiPrTAD

    22.57

    1.05

    70.14

    16.59 (16.50±0.66)

    21.29

    Spiro-OBuTAD

    23.01

    1.09

    75.77

    19.04 (19.47±0.71)

    21.56

    The integrated current density from the IPCE spectra. b) The best PCE values of the devices. c) The statistical data of the device performance with 20 individual cells.

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号