logo

Highly efficient and thermal stable guanidinium-based two-dimensional perovskite solar cells via partial substitution with hydrophobic ammonium

More info
  • ReceivedDec 17, 2018
  • AcceptedJan 30, 2019
  • PublishedMar 18, 2019

Abstract

Layered two-dimensional (2D) perovskite solar cells (PVSCs) with a chemical formula of C(NH2)3(CH3NH3)3Pb3I10 (n=3) have been fabricated through additive engineering, wherein stoichiometrically equivalent guanidinium (GA+) and methylammonium (MA+) serve as spacer cations. The crystallinity of the perovskite films is dramatically enhanced with proper amount of methylammonium thiocyanate (MASCN) added into the precursor solution. In addition, we substitute a small amount of MA+ with hydrophobic phenylethylammonium (PEA+), which can passivate trap states of the perovskite films. As a result, the open circuit voltage increases to 1.1 V and the best power conversion efficiency (PCE) of 10.12% is yielded. Furthermore, superior thermal stability and balanced moisture stability of the PEA-substituted GA-based PVSCs are demonstrated, compared to the popular 3D MAPbI3 and 2D PEA-based PVSCs. They retain approximately 80% of the original PCE after 30 d at 20% relative humidity (RH), and 50% of the original PCE after 3200 min at 85 °C without any encapsulation. This work suggests a new route to achieve both heat and humidity stable PVSCs by simply mixing different spacer cations.


Funded by

the National Natural Science Foundation of China(Grant,Nos.,51620105006,61721005)

Zhejiang Province Natural Science Foundation(Grant,No.,LR15E030001)

the International Science and Technology Cooperation Program of China(ISTCP)

and Zhejiang Province Science and Technology Plan(No.,2018C01047)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (51620105006, 61721005), Zhejiang Province Natural Science Foundation (LR15E030001), the International Science and Technology Cooperation Program of China (2016YFE0102900), and Zhejiang Province Science and Technology Plan (2018C01047).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050-6051 CrossRef PubMed Google Scholar

[2] Yang ZS, Yang LG, Wu G, Wang M, Chen HZ. Acta Chim Sinica, 2011, 69: 627–632 (in Chinese). Google Scholar

[3] Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG. Sci Rep, 2012, 2: 591 CrossRef PubMed ADS Google Scholar

[4] Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Science, 2012, 338: 643-647 CrossRef PubMed ADS Google Scholar

[5] Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M. Nature, 2013, 499: 316-319 CrossRef PubMed ADS Google Scholar

[6] Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345: 542-546 CrossRef PubMed ADS Google Scholar

[7] Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M, Han L. Science, 2015, 350: 944-948 CrossRef PubMed Google Scholar

[8] Zuo L, Gu Z, Ye T, Fu W, Wu G, Li H, Chen H. J Am Chem Soc, 2015, 137: 2674-2679 CrossRef PubMed Google Scholar

[9] Li Y. Sci China Chem, 2015, 58: 830. Google Scholar

[10] Huang C, Fu W, Li CZ, Zhang Z, Qiu W, Shi M, Heremans P, Jen AKY, Chen H. J Am Chem Soc, 2016, 138: 2528-2531 CrossRef PubMed Google Scholar

[11] Yang WS, Park BW, Jung EH, Jeon NJ, Kim YC, Lee DU, Shin SS, Seo J, Kim EK, Noh JH, Seok SI. Science, 2017, 356: 1376-1379 CrossRef PubMed ADS Google Scholar

[12] Zuo L, Guo H, deQuilettes DW, Jariwala S, De Marco N, Dong S, DeBlock R, Ginger DS, Dunn B, Wang M, Yang Y. Sci Adv, 2017, 3: e1700106 CrossRef PubMed ADS Google Scholar

[13] Liu D, Zhou W, Tang H, Fu P, Ning Z. Sci China Chem, 2018, 61: 1278-1284 CrossRef Google Scholar

[14] Xu G, Bi P, Wang S, Xue R, Zhang J, Chen H, Chen W, Hao X, Li Y, Li Y. Adv Funct Mater, 2018, 28: 1804427 CrossRef Google Scholar

[15] Xu G, Xue R, Chen W, Zhang J, Zhang M, Chen H, Cui C, Li H, Li Y, Li Y. Adv Energy Mater, 2018, 8: 1703054 CrossRef Google Scholar

[16] Jeon NJ, Na H, Jung EH, Yang TY, Lee YG, Kim G, Shin HW, Il Seok S, Lee J, Seo J. Nat Energy, 2018, 3: 682-689 CrossRef ADS Google Scholar

[17] Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D’Haen J, D’Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, Angelis FD, Boyen HG. Adv Energy Mater, 2015, 5: 1500477 CrossRef Google Scholar

[18] Yan J, Qiu W, Wu G, Heremans P, Chen H. J Mater Chem A, 2018, 6: 11063-11077 CrossRef Google Scholar

[19] Smith IC, Hoke ET, Solis-Ibarra D, McGehee MD, Karunadasa HI. Angew Chem Int Ed, 2014, 53: 11232-11235 CrossRef PubMed Google Scholar

[20] Cao DH, Stoumpos CC, Farha OK, Hupp JT, Kanatzidis MG. J Am Chem Soc, 2015, 137: 7843-7850 CrossRef PubMed Google Scholar

[21] Yan J, Fu W, Zhang X, Chen J, Yang W, Qiu W, Wu G, Liu F, Heremans P, Chen H. Mater Chem Front, 2018, 2: 121-128 CrossRef Google Scholar

[22] Zhang X, Wu G, Fu W, Qin M, Yang W, Yan J, Zhang Z, Lu X, Chen H. Adv Energy Mater, 2018, 8: 1702498 CrossRef Google Scholar

[23] Qing J, Liu XK, Li M, Liu F, Yuan Z, Tiukalova E, Yan Z, Duchamp M, Chen S, Wang Y, Bai S, Liu JM, Snaith HJ, Lee CS, Sum TC, Gao F. Adv Energy Mater, 2018, 8: 1800185 CrossRef Google Scholar

[24] Lai H, Kan B, Liu T, Zheng N, Xie Z, Zhou T, Wan X, Zhang X, Liu Y, Chen Y. J Am Chem Soc, 2018, 140: 11639--11646. Google Scholar

[25] Soe CMM, Stoumpos CC, Kepenekian M, Traoré B, Tsai H, Nie W, Wang B, Katan C, Seshadri R, Mohite AD, Even J, Marks TJ, Kanatzidis MG. J Am Chem Soc, 2017, 139: 16297-16309 CrossRef PubMed Google Scholar

[26] Xing G, Wu B, Wu X, Li M, Du B, Wei Q, Guo J, Yeow EKL, Sum TC, Huang W. Nat Commun, 2017, 8: 14558 CrossRef PubMed ADS Google Scholar

[27] Zhang Q, Chu L, Zhou F, Ji W, Eda G. Adv Mater, 2018, 30: 1704055 CrossRef PubMed Google Scholar

[28] Zou W, Li R, Zhang S, Liu Y, Wang N, Cao Y, Miao Y, Xu M, Guo Q, Di D, Zhang L, Yi C, Gao F, Friend RH, Wang J, Huang W. Nat Commun, 2018, 9: 608 CrossRef PubMed ADS Google Scholar

[29] Ma C, Lo MF, Lee CS. J Mater Chem A, 2018, 6: 18871-18876 CrossRef Google Scholar

[30] Tsai H, Nie W, Blancon JC, Stoumpos CC, Asadpour R, Harutyunyan B, Neukirch AJ, Verduzco R, Crochet JJ, Tretiak S, Pedesseau L, Even J, Alam MA, Gupta G, Lou J, Ajayan PM, Bedzyk MJ, Kanatzidis MG, Mohite AD. Nature, 2016, 536: 312-316 CrossRef PubMed ADS Google Scholar

[31] Chen J, Lian X, Zhang Y, Yang W, Li J, Qin M, Lu X, Wu G, Chen H. J Mater Chem A, 2018, 6: 18010-18017 CrossRef Google Scholar

[32] Chen J, Zuo L, Zhang Y, Lian X, Fu W, Yan J, Li J, Wu G, Li CZ, Chen H. Adv Energy Mater, 2018, 8: 1800438 CrossRef Google Scholar

[33] Ke W, Xiao C, Wang C, Saparov B, Duan HS, Zhao D, Xiao Z, Schulz P, Harvey SP, Liao W, Meng W, Yu Y, Cimaroli AJ, Jiang CS, Zhu K, Al-Jassim M, Fang G, Mitzi DB, Yan Y. Adv Mater, 2016, 28: 5214-5221 CrossRef PubMed Google Scholar

[34] Zhang X, Wu G, Yang S, Fu W, Zhang Z, Chen C, Liu W, Yan J, Yang W, Chen H. Small, 2017, 13: 1700611 CrossRef PubMed Google Scholar

[35] Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI. Science, 2015, 348: 1234-1237 CrossRef PubMed ADS Google Scholar

[36] Zhang X, Ren X, Liu B, Munir R, Zhu X, Yang D, Li J, Liu Y, Smilgies DM, Li R, Yang Z, Niu T, Wang X, Amassian A, Zhao K, Liu SF. Energy Environ Sci, 2017, 10: 2095-2102 CrossRef Google Scholar

[37] Lian X, Chen J, Zhang Y, Qin M, Li J, Tian S, Yang W, Lu X, Wu G, Chen H. Adv Funct Mater, 2019, 29: 1807024 CrossRef Google Scholar

[38] Byun J, Cho H, Wolf C, Jang M, Sadhanala A, Friend RH, Yang H, Lee TW. Adv Mater, 2016, 28: 7515-7520 CrossRef PubMed Google Scholar

[39] Proppe AH, Quintero-Bermudez R, Tan H, Voznyy O, Kelley SO, Sargent EH. J Am Chem Soc, 2018, 140: 2890-2896 CrossRef PubMed Google Scholar

[40] Ball JM, Lee MM, Hey A, Snaith HJ. Energy Environ Sci, 2013, 6: 1739-1743 CrossRef Google Scholar

[41] Chen Q, Zhou H, Song TB, Luo S, Hong Z, Duan HS, Dou L, Liu Y, Yang Y. Nano Lett, 2014, 14: 4158-4163 CrossRef PubMed ADS Google Scholar

[42] Zuo L, Chen Q, De Marco N, Hsieh YT, Chen H, Sun P, Chang SY, Zhao H, Dong S, Yang Y. Nano Lett, 2016, 17: 269-275 CrossRef PubMed ADS Google Scholar

[43] Qin PL, Yang G, Ren ZW, Cheung SH, So SK, Chen L, Hao J, Hou J, Li G. Adv Mater, 2018, 30: 1706126 CrossRef PubMed Google Scholar

[44] Li N, Zhu Z, Chueh CC, Liu H, Peng B, Petrone A, Li X, Wang L, Jen AKY. Adv Energy Mater, 2016, 7: 1601307 CrossRef Google Scholar

[45] Jiang Y, Yuan J, Ni Y, Yang J, Wang Y, Jiu T, Yuan M, Chen J. Joule, 2018, 2: 1356-1368 CrossRef Google Scholar

[46] Lee JW, Dai Z, Han TH, Choi C, Chang SY, Lee SJ, De Marco N, Zhao H, Sun P, Huang Y, Yang Y. Nat Commun, 2018, 9: 3021 CrossRef PubMed ADS Google Scholar

[47] Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Science, 2015, 347: 967-970 CrossRef PubMed ADS Google Scholar

[48] Niu T, Lu J, Munir R, Li J, Barrit D, Zhang X, Hu H, Yang Z, Amassian A, Zhao K, Liu SF. Adv Mater, 2018, 30: 1706576 CrossRef PubMed Google Scholar

[49] Pham ND, Zhang C, Tiong VT, Zhang S, Will G, Bou A, Bisquert J, Shaw PE, Du A, Wilson GJ, Wang H. Adv Funct Mater, 2019, 29: 1806479 CrossRef Google Scholar

[50] Kubicki DJ, Prochowicz D, Hofstetter A, Saski M, Yadav P, Bi D, Pellet N, Lewiński J, Zakeeruddin SM, Grätzel M, Emsley L. J Am Chem Soc, 2018, 140: 3345-3351 CrossRef PubMed Google Scholar

[51] Jodlowski AD, Roldán-Carmona C, Grancini G, Salado M, Ralaiarisoa M, Ahmad S, Koch N, Camacho L, de Miguel G, Nazeeruddin MK. Nat Energy, 2017, 2: 972-979 CrossRef ADS Google Scholar

  • Figure 1

    Top view SEM images of (GAMA)MA2Pb3I10 perovskite films with additive amounts of 0, 0.15, 0.3, 0.5 MASCN (molar ratio relative to PbI2). The scale bar is 1 μm.

  • Figure 2

    (a) XRD patterns of the (GAMA)MA2Pb3I10 perovskite films with different additive amounts on ITO/PEDOT:PSS substrate; (b) the diffraction peak intensity and FWHM of corresponding perovskite films with increasing amounts of MASCN; (c) UV-Vis absorption spectra of (GAMA)MA2Pb3I10 films with various amounts of MASCN; (d) J-V curves of photovoltaic devices based on (GAMA)MA2Pb3I10 perovskite films with various amounts of MASCN (color online).

  • Figure 3

    (a) J-V characteristics of PVSCs based on (GAPEAxMA1x)MA2Pb3I10 with various amounts of PEA substitution; (b) PCE histogram of 30 devices with and without 0.2 PEA substitution; (c) steady-state photoluminescence spectra and (d) time-resolved photoluminescence measurements of the corresponding perovskite films measured on glass substrates (color online).

  • Figure 4

    Two plausible schematic illustration of how PEA cations are incorporated into GAMA3Pb3I10: (a) grain boundary passivation; (b) replacement of MA cations in the interlayer space (color online).

  • Figure 5

    (a) Moisture stability measurements of PVSCs at 30 °C and 20% RH without encapsulation; (b) thermal stability measurements of PVSCs at 85 °C on hot plates in a glovebox; photos of (c) MAPbI3, and (d) GAPEA0.2MA2.8Pb3I10 perovskite films stored in the ambient environment (color online).

  • Table 1   The photovoltaic parameters of PVSCs with various amounts of PEA substitution (the average PCE were obtained from 16 devices)

    Voc (V)

    Jsc(mA cm−2)

    FF

    PCEmax/avg (%)

    Rs(Ω cm2)

    0 PEA

    1.02

    12.44

    0.70

    9.05/8.24

    203.31

    0.1 PEA

    1.06

    12.53

    0.71

    9.62/8.77

    209.78

    0.2 PEA

    1.10

    12.51

    0.73

    10.12/9.54

    221.97

    0.4 PEA

    1.12

    11.39

    0.67

    8.63/8.10

    263.22

    1 PEA

    1.15

    8.54

    0.56

    5.62/4.94

    442.18

  • Table 2   The charge carrier mobility and trap density of 0, 0.2 PEA films measured by SCLC method

    μa)(cm2 V−1 s−1)

    nt b) (cm−3)

    0 PEA

    μe

    6.1×10−4

    ne

    2.2×1016

    μh

    4.9×10−4

    nh

    2.6×1016

    0.2 PEA

    μe

    5.1×10−4

    ne

    1.5×1016

    μh

    5.0×10−4

    nh

    1.6×1016

    μe is the electron mobility, μh is the hole mobility; b) ne is the electron trap density, nh is the hole trap density.

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号