logo

Two-dimensional perovskite capping layer for stable and efficient tin-lead perovskite solar cells

More info
  • ReceivedNov 1, 2018
  • AcceptedFeb 8, 2019
  • PublishedMar 7, 2019

Abstract

Mixed tin-lead iodide perovskites exhibit the characteristics of low toxicity and improved light harvesting ability up to near-infrared (NIR) spectral region, making them as an attractive alternative for traditional lead based perovskites. However, the performance of lead-based perovskites solar cells is still far inferior to their lead analogues owing to the unavoidable oxidation of Sn2+ to Sn4+. Here we introduced two-dimensional (2D) perovskite on the top of three dimensional (3D) perovskite film as a capping layer to reduce the self-oxidation, and thus improved the device stability. 2D capping layer was then confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. The existence of the 2D protecting thin layer significantly reduce the spontaneous Sn2+ oxidation, thus improve the device performance and reduce the hysteresis. The phenomena could be ascribed to the improved charge extraction efficiency causing by prohibited nonradiative recombination. On top of this, the photovoltaic devices based on conventional-structure configuration were fabricated. Taking advantage of the 2D capping layer, 2D/3D hybrid perovskite photovoltaic devices achieve a open-circuit voltage (Voc) of 0.77 V with short circuit current density (Jsc) of 26.60 mA cm−2, delivering the best-performing power conversion efficiency of 15.5%. Moreover, the 2D/3D perovskite devices maintained 60% its initial efficiency after 40 h exposed in air (humidity around 30%, temperature 22 °C), while 3D perovskite-based devices completely failed.


Funded by

the National Natural Science Foundation of China(21771114)

MOE 111(B12015)

the Natural Science Foundation of Tianjin(17JCYBJC40900,18YFZCGX00580)

the Fundamental Research Funds for the Central Universities

and the financial support from “Thousand Youth Talents Plan of China”.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21771114), MOE 111 (B12015), the Natural Science Foundation of Tianjin (17JCYBJC40900, 18YFZCGX00580), and the Fundamental Research Funds for the Central Universities. M. Yuan thanks to the financial support from “Thousand Youth Talents Plan of China”.


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Zhang W, Eperon GE, Snaith HJ. Nat Energy, 2016, 1: 16048 CrossRef ADS Google Scholar

[2] Yang WS, Park BW, Jung EH, Jeon NJ, Kim YC, Lee DU, Shin SS, Seo J, Kim EK, Noh JH, Seok SI. Science, 2017, 356: 1376-1379 CrossRef PubMed ADS Google Scholar

[3] Hu Y, Zhang Z, Mei A, Jiang Y, Hou X, Wang Q, Du K, Rong Y, Zhou Y, Xu G, Han H. Adv Mater, 2018, 30: 1705786 CrossRef PubMed Google Scholar

[4] Arora N, Dar MI, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin SM, Grätzel M. Science, 2017, 358: 768-771 CrossRef PubMed ADS Google Scholar

[5] Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050-6051 CrossRef PubMed Google Scholar

[6] Jeon NJ, Na H, Jung EH, Yang TY, Lee YG, Kim G, Shin HW, Il Seok S, Lee J, Seo J. Nat Energy, 2018, 3: 682-689 CrossRef ADS Google Scholar

[7] Hao F, Stoumpos CC, Cao DH, Chang RPH, Kanatzidis MG. Nat Photon, 2017, 8: 489-494 CrossRef ADS Google Scholar

[8] Stoumpos CC, Frazer L, Clark DJ, Kim YS, Rhim SH, Freeman AJ, Ketterson JB, Jang JI, Kanatzidis MG. J Am Chem Soc, 2015, 137: 6804-6819 CrossRef PubMed Google Scholar

[9] Slavney AH, Hu T, Lindenberg AM, Karunadasa HI. J Am Chem Soc, 2016, 138: 2138-2141 CrossRef PubMed Google Scholar

[10] Saparov B, Hong F, Sun JP, Duan HS, Meng W, Cameron S, Hill IG, Yan Y, Mitzi DB. Chem Mater, 2015, 27: 5622-5632 CrossRef Google Scholar

[11] Cortecchia D, Dewi HA, Yin J, Bruno A, Chen S, Baikie T, Boix PP, Grätzel M, Mhaisalkar S, Soci C, Mathews N. Inorg Chem, 2016, 55: 1044-1052 CrossRef PubMed Google Scholar

[12] Ju MG, Chen M, Zhou Y, Garces HF, Dai J, Ma L, Padture NP, Zeng XC. ACS Energy Lett, 2018, 3: 297-304 CrossRef Google Scholar

[13] Liao W, Zhao D, Yu Y, Shrestha N, Ghimire K, Grice CR, Wang C, Xiao Y, Cimaroli AJ, Ellingson RJ, Podraza NJ, Zhu K, Xiong RG, Yan Y. J Am Chem Soc, 2016, 138: 12360-12363 CrossRef PubMed Google Scholar

[14] Hao F, Stoumpos CC, Chang RPH, Kanatzidis MG. J Am Chem Soc, 2015, 45: 8094–8099. Google Scholar

[15] Li Y, Sun W, Yan W, Ye S, Rao H, Peng H, Zhao Z, Bian Z, Liu Z, Zhou H, Huang C. Adv Energy Mater, 2016, 6: 1601353 CrossRef Google Scholar

[16] Zhao D, Yu Y, Wang C, Liao W, Shrestha N, Grice CR, Cimaroli AJ, Guan L, Ellingson RJ, Zhu K, Zhao X, Xiong RG, Yan Y. Nat Energy, 2017, 2: 17018 CrossRef ADS Google Scholar

[17] Koh TM, Krishnamoorthy T, Yantara N, Shi C, Leong WL, Boix PP, Grimsdale AC, Mhaisalkar SG, Mathews N. J Mater Chem A, 2015, 3: 14996-15000 CrossRef Google Scholar

[18] Song TB, Yokoyama T, Stoumpos CC, Logsdon J, Cao DH, Wasielewski MR, Aramaki S, Kanatzidis MG. J Am Chem Soc, 2017, 139: 836-842 CrossRef PubMed Google Scholar

[19] Shao S, Liu J, Portale G, Fang HH, Blake GR, ten Brink GH, Koster LJA, Loi MA. Adv Energy Mater, 2018, 8: 1702019 CrossRef Google Scholar

[20] Wang N, Zhou Y, Ju MG, Garces HF, Ding T, Pang S, Zeng XC, Padture NP, Sun XW. Adv Energy Mater, 2016, 6: 1601130 CrossRef Google Scholar

[21] Liao W, Zhao D, Yu Y, Grice CR, Wang C, Cimaroli AJ, Schulz P, Meng W, Zhu K, Xiong RG, Yan Y. Adv Mater, 2016, 28: 9333-9340 CrossRef PubMed Google Scholar

[22] Hao F, Stoumpos CC, Guo P, Zhou N, Marks TJ, Chang RPH, Kanatzidis MG. J Am Chem Soc, 2015, 137: 11445-11452 CrossRef PubMed Google Scholar

[23] Lee SJ, Shin SS, Kim YC, Kim D, Ahn TK, Noh JH, Seo J, Seok SI. J Am Chem Soc, 2016, 138: 3974-3977 CrossRef PubMed Google Scholar

[24] Stoumpos CC, Malliakas CD, Kanatzidis MG. Inorg Chem, 2013, 52: 9019-9038 CrossRef PubMed Google Scholar

[25] Kayesh ME, Chowdhury TH, Matsuishi K, Kaneko R, Kazaoui S, Lee JJ, Noda T, Islam A. ACS Energy Lett, 2018, 3: 1584-1589 CrossRef Google Scholar

[26] Ke W, Stoumpos CC, Logsdon JL, Wasielewski MR, Yan Y, Fang G, Kanatzidis MG. J Am Chem Soc, 2016, 138: 14998-15003 CrossRef PubMed Google Scholar

[27] Ke W, Priyanka P, Vegiraju S, Stoumpos CC, Spanopoulos I, Soe CMM, Marks TJ, Chen MC, Kanatzidis MG. J Am Chem Soc, 2018, 140: 388-393 CrossRef PubMed Google Scholar

[28] Kapil G, Ripolles TS, Hamada K, Ogomi Y, Bessho T, Kinoshita T, Chantana J, Yoshino K, Shen Q, Toyoda T, Minemoto T, Murakami TN, Segawa H, Hayase S. Nano Lett, 2018, 18: 3600-3607 CrossRef PubMed ADS Google Scholar

[29] Ran C, Xi J, Gao W, Yuan F, Lei T, Jiao B, Hou X, Wu Z. ACS Energy Lett, 2018, 3: 713-721 CrossRef Google Scholar

[30] Xu G, Bi P, Wang S, Xue R, Zhang J, Chen H, Chen W, Hao X, Li Y, Li Y. Adv Funct Mater, 2018, 28: 1804427 CrossRef Google Scholar

[31] Li C, Song Z, Zhao D, Xiao C, Subedi B, Shrestha N, Junda MM, Wang C, Jiang CS, Al-Jassim M, Ellingson RJ, Podraza NJ, Zhu K, Yan Y. Adv Energy Mater, 2019, 9: 1803135 CrossRef Google Scholar

[32] Jiang Y, Yuan J, Ni Y, Yang J, Wang Y, Jiu T, Yuan M, Chen J. Joule, 2018, 2: 1356-1368 CrossRef Google Scholar

[33] Quan LN, Yuan M, Comin R, Voznyy O, Beauregard EM, Hoogland S, Buin A, Kirmani AR, Zhao K, Amassian A, Kim DH, Sargent EH. J Am Chem Soc, 2016, 138: 2649-2655 CrossRef PubMed Google Scholar

[34] Zhang X, Ren X, Liu B, Munir R, Zhu X, Yang D, Li J, Liu Y, Smilgies DM, Li R, Yang Z, Niu T, Wang X, Amassian A, Zhao K, Liu SF. Energy Environ Sci, 2017, 10: 2095-2102 CrossRef Google Scholar

[35] Yang R, Li R, Cao Y, Wei Y, Miao Y, Tan WL, Jiao X, Chen H, Zhang L, Chen Q, Zhang H, Zou W, Wang Y, Yang M, Yi C, Wang N, Gao F, McNeill CR, Qin T, Wang J, Huang W. Adv Mater, 2018, 30: 1804771 CrossRef PubMed Google Scholar

[36] Zhang T, Dar MI, Li G, Xu F, Guo N, Grätzel M, Zhao Y. Sci Adv, 2017, 3: e1700841 CrossRef PubMed ADS Google Scholar

[37] Wang Z, Lin Q, Chmiel FP, Sakai N, Herz LM, Snaith HJ. Nat Energy, 2017, 2: 17135 CrossRef ADS Google Scholar

[38] Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin MK. Nat Commun, 2017, 8: 15684 CrossRef PubMed ADS Google Scholar

[39] Chen P, Bai Y, Wang S, Lyu M, Yun JH, Wang L. Adv Funct Mater, 2018, 28: 1706923 CrossRef Google Scholar

[40] Chen J, Seo JY, Park NG. Adv Energy Mater, 2018, 8: 1702714 CrossRef Google Scholar

[41] Hu Y, Qiu T, Bai F, Ruan W, Zhang S. Adv Energy Mater, 2018, 8: 1703620 CrossRef Google Scholar

[42] Cao DH, Stoumpos CC, Farha OK, Hupp JT, Kanatzidis MG. J Am Chem Soc, 2015, 137: 7843-7850 CrossRef PubMed Google Scholar

[43] Liao Y, Liu H, Zhou W, Yang D, Shang Y, Shi Z, Li B, Jiang X, Zhang L, Quan LN, Quintero-Bermudez R, Sutherland BR, Mi Q, Sargent EH, Ning Z. J Am Chem Soc, 2017, 139: 6693-6699 CrossRef PubMed Google Scholar

[44] Chen Z, Liu M, Li Z, Shi T, Yang Y, Yip HL, Cao Y. iScience, 2018, 9: 337-346 CrossRef PubMed Google Scholar

[45] Ramirez D, Schutt K, Wang Z, Pearson AJ, Ruggeri E, Snaith HJ, Stranks SD, Jaramillo F. ACS Energy Lett, 2018, 3: 2246-2251 CrossRef Google Scholar

[46] Wang F, Jiang X, Chen H, Shang Y, Liu H, Wei J, Zhou W, He H, Liu W, Ning Z. Joule, 2018, 2: 2732-2743 CrossRef Google Scholar

[47] Tan H, Jain A, Voznyy O, Lan X, García de Arquer FP, Fan JZ, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan LN, Zhao Y, Lu ZH, Yang Z, Hoogland S, Sargent EH. Science, 2017, 355: 722-726 CrossRef PubMed ADS Google Scholar

[48] Lin Y, Bai Y, Fang Y, Chen Z, Yang S, Zheng X, Tang S, Liu Y, Zhao J, Huang J. J Phys Chem Lett, 2018, 9: 654-658 CrossRef PubMed Google Scholar

[49] Chen Y, Yu S, Sun Y, Liang Z. J Phys Chem Lett, 2018, 9: 2627-2631 CrossRef PubMed Google Scholar

[50] Zhou Z, Wang Z, Zhou Y, Pang S, Wang D, Xu H, Liu Z, Padture NP, Cui G. Angew Chem Int Ed, 2015, 54: 9705-9709 CrossRef PubMed Google Scholar

[51] Park M, Kim JY, Son HJ, Lee CH, Jang SS, Ko MJ. Nano Energy, 2016, 26: 208-215 CrossRef Google Scholar

[52] Yang Z, Rajagopal A, Chueh CC, Jo SB, Liu B, Zhao T, Jen AKY. Adv Mater, 2016, 28: 8990-8997 CrossRef PubMed Google Scholar

[53] Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Nat Commun, 2014, 5: 5784 CrossRef PubMed ADS Google Scholar

[54] Fang Y, Bi C, Wang D, Huang J. ACS Energy Lett, 2017, 2: 782-794 CrossRef Google Scholar

[55] Li P, Zhang Y, Liang C, Xing G, Liu X, Li F, Liu X, Hu X, Shao G, Song Y. Adv Mater, 2018, 30: 1805323 CrossRef PubMed Google Scholar

  • Figure 1

    (a) X-ray diffraction pattern of 2D/3D perovskite with different concentrations of PEAI solutions, 0.8, 1, 3, 6 and 10 mg mL−1; (b) the conventional device structure (n-i-p) used in the present work; (c) cross-sectional SEM image of 2D/3D devices; top-view SEM images of (d) the 3D perovskite film and (e) the 2D/3D perovskite film and (f) the 2D perovskite film on TiO2 substrate (color online).

  • Figure 2

    XPS spectra of (a) C1s and (d) N1s of 3D perovskite film; XPS spectra of (b) C1s and (e) N1s of 2D perovskite film; XPS spectra of (c) C1s and (f) N1s of 2D/3D perovskite film (the concentration of PEAI is 1 mg mL−1) (color online).

  • Figure 3

    UPS spectra of 3D and 2D/3D perovskite film. (a) The work function (Wf) of 3D and 2D/3D perovskite films; (b) EFEV binding energy of 3D and 2D/3D perovskite films; (c) the energy-level diagram of device; (d) steady-state PL spectra of glass/3D and 2D/3D perovskite films; (e) the time-resolved PL decay curves of the glass/3D and 2D/3D perovskite films; (f) the time-resolved PL decay curves of the glass/3D perovskite/HTM and 2D/3D perovskite/HTM (color online).

  • Figure 4

    J-V curves of (a) 2D/3D perovskite solar cells using PEAI solutions with concentrations of 0.5, 0.8, 1, 3 and 6 mg mL−1 under reverse scans, (b) 3D perovskite solar cell and (c) 2D/3D champion perovskite solar cell; (d) the corresponding EQE spectra of 3D and 2D/3D PSCs under AM 1.5G 1 sun illumination and the integrated J of the fabricated 3D PSCs and 2D/3D PSCs; (e) stabilized photocurrent measurement at the maximum power point (0.58 V) of 2D/3D PSCs; (f) the long-term stability of normalized PCE of the fabricated 3D and 2D/3D PSCs storing in the ambient condition with RH 30%±10% (color online).

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号