logo

Origin of enhanced stability in thiocyanate substituted α-FAPbI3 analogues

More info
  • ReceivedDec 20, 2018
  • AcceptedApr 18, 2019
  • PublishedApr 30, 2019

Abstract

In the past few years, hybrid perovskites have emerged as the most promising photovoltaic materials due to their excellent optoelectronic properties, and easy fabrication methods. However, the long-term stability is still the main obstacle for their commercial applications. Recently, thiocyanate-doped hybrid perovskites have shown enhanced stability and impressive efficiency, but the reason is still unknown. Herein, we discussed the enhanced stability of SCN-substituted pseudocubic FABX3 (B=Pb2+, Sn2+; X=I, Br, and Cl) based on the density functional theory. Through a series of calculations of Bader charge transfer, vacancy formation energies of different kinds of vacancies, decomposition enthalpy, phonon density of states, and ab initio molecular dynamics simulation, we conclude that the incorporation of SCN can stabilize pseudocubic FABX3, and attribute the enhanced stability mainly to two factors: (1) the strong interaction between Pb2+/Sn2+ and SCN, as well as the strong hydrogen bonding between FA+ and X/SCN, and (2) the structural tilting induced by the incorporation of SCN. These findings provide alternative method for tuning the poor stability of pseudocubic FABX3, as well as for obtaining high-performance solar cells.


Funded by

the National Key Research and Development Program of China(2017YFA0204800/2016YFA0202403)

the Fundamental Research Funds for the Central Universities(2018CBLZ006)

the National Natural Science Foundation of China(61604091,61674098)

the 111 Project(B14041)

the Changjiang Scholar and Innovative Research Team(IRT_14R33)

the Chinese National 1000 Talents Plan program(1110010341)

the China Postdoctoral Science foundation(2018M633455)

School of Chemistry and Chemical Engineering

Shaanxi Normal University.


Acknowledgment

This work was supported by the National Key Research and Development Program of China (2017YFA0204800/2016YFA0202403), the Fundamental Research Funds for the Central Universities (2018CBLZ006), the National Natural Science Foundation of China (61604091, 61674098), the 111 Project (B14041), the Changjiang Scholar and Innovative Research Team (IRT_14R33) and the Chinese National 1000 Talents Plan program (1110010341), and the China Postdoctoral Science foundation (2018M633455). All calculations are supported by the Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University.


Interest statement

The authors declare that they have no conflict of interest.


Supplement

Supporting Information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050-6051 CrossRef PubMed Google Scholar

[2] Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Science, 2012, 338: 643-647 CrossRef PubMed ADS Google Scholar

[3] Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M. Nature, 2013, 499: 316-319 CrossRef PubMed ADS Google Scholar

[4] Liu M, Johnston MB, Snaith HJ. Nature, 2013, 501: 395-398 CrossRef PubMed ADS Google Scholar

[5] Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu SF. Nat Commun, 2018, 9: 3239 CrossRef PubMed ADS Google Scholar

[6] Li D, Sun C, Li H, Shi H, Shai X, Sun Q, Han J, Shen Y, Yip HL, Huang F, Wang M. Chem Sci, 2017, 8: 4587-4594 CrossRef PubMed Google Scholar

[7] Liu Y, Yang Z, Liu SF. Adv Sci, 2018, 5: 1700471 CrossRef PubMed Google Scholar

[8] Kim YH, Cho H, Heo JH, Kim TS, Myoung NS, Lee CL, Im SH, Lee TW. Adv Mater, 2015, 27: 1248-1254 CrossRef PubMed Google Scholar

[9] Zhang Y, Liu Y, Li Y, Yang Z, Liu SF. J Mater Chem C, 2016, 4: 9172-9178 CrossRef Google Scholar

[10] D’Innocenzo V, Grancini G, Alcocer MJP, Kandada ARS, Stranks SD, Lee MM, Lanzani G, Snaith HJ, Petrozza A. Nat Commun, 2014, 5: 3586 CrossRef PubMed ADS Google Scholar

[11] Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Nat Commun, 2014, 5: 5784 CrossRef PubMed ADS Google Scholar

[12] Wehrenfennig C, Eperon GE, Johnston MB, Snaith HJ, Herz LM. Adv Mater, 2014, 26: 1584-1589 CrossRef Google Scholar

[13] Liu Y, Zhang Y, Zhao K, Yang Z, Feng J, Zhang X, Wang K, Meng L, Ye H, Liu M, Liu SF. Adv Mater, 2018, 30: 1707314 CrossRef PubMed Google Scholar

[14] Saidaminov MI, Adinolfi V, Comin R, Abdelhady AL, Peng W, Dursun I, Yuan M, Hoogland S, Sargent EH, Bakr OM. Nat Commun, 2015, 6: 8724 CrossRef PubMed ADS Google Scholar

[15] NREL. Efficiency chart. 2018. https://www.nrel.gov/pv/assets/images/efficiency-chart-20180716.jpg. Google Scholar

[16] Tan ZK, Moghaddam RS, Lai ML, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos LM, Credgington D, Hanusch F, Bein T, Snaith HJ, Friend RH. Nat Nanotech, 2014, 9: 687-692 CrossRef PubMed ADS Google Scholar

[17] Li G, Tan ZK, Di D, Lai ML, Jiang L, Lim JHW, Friend RH, Greenham NC. Nano Lett, 2015, 15: 2640-2644 CrossRef PubMed ADS Google Scholar

[18] Liu Y, Zhang Y, Yang Z, Yang D, Ren X, Pang L, Liu SF. Adv Mater, 2016, 28: 9204-9209 CrossRef PubMed Google Scholar

[19] Xing G, Mathews N, Lim SS, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum TC. Nat Mater, 2014, 13: 476-480 CrossRef PubMed ADS Google Scholar

[20] Liu Y, Ren X, Zhang J, Yang Z, Yang D, Yu F, Sun J, Zhao C, Yao Z, Wang B, Wei Q, Xiao F, Fan H, Deng H, Deng L, Liu SF. Sci China Chem, 2017, 60: 1367-1376 CrossRef Google Scholar

[21] Wang L, Xiao H, Cheng T, Li Y, Goddard Iii WA. J Am Chem Soc, 2018, 140: 1994-1997 CrossRef PubMed Google Scholar

[22] Liu Y, Sun J, Yang Z, Yang D, Ren X, Xu H, Yang Z, Liu SF. Adv Opt Mater, 2016, 4: 1829-1837 CrossRef Google Scholar

[23] Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ. Energy Environ Sci, 2014, 7: 982-988 CrossRef Google Scholar

[24] Zhumekenov AA, Saidaminov MI, Haque MA, Alarousu E, Sarmah SP, Murali B, Dursun I, Miao XH, Abdelhady AL, Wu T, Mohammed OF, Bakr OM. ACS Energy Lett, 2016, 1: 32-37 CrossRef Google Scholar

[25] Saidaminov MI, Abdelhady AL, Maculan G, Bakr OM. Chem Commun, 2015, 51: 17658-17661 CrossRef PubMed Google Scholar

[26] Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI. Nature, 2015, 517: 476-480 CrossRef PubMed ADS Google Scholar

[27] Zhou Y, Yang M, Pang S, Zhu K, Padture NP. J Am Chem Soc, 2016, 138: 5535-5538 CrossRef PubMed Google Scholar

[28] Halder A, Chulliyil R, Subbiah AS, Khan T, Chattoraj S, Chowdhury A, Sarkar SK. J Phys Chem Lett, 2015, 6: 3483-3489 CrossRef PubMed Google Scholar

[29] Jiang Q, Rebollar D, Gong J, Piacentino EL, Zheng C, Xu T. Angew Chem Int Ed, 2015, 54: 7617-7620 CrossRef PubMed Google Scholar

[30] Tai Q, You P, Sang H, Liu Z, Hu C, Chan HLW, Yan F. Nat Commun, 2016, 7: 11105 CrossRef PubMed ADS Google Scholar

[31] Xiao Z, Meng W, Saparov B, Duan HS, Wang C, Feng C, Liao W, Ke W, Zhao D, Wang J, Mitzi DB, Yan Y. J Phys Chem Lett, 2016, 7: 1213-1218 CrossRef PubMed Google Scholar

[32] Liu X, Cao Z, Huang H, Liu X, Tan Y, Chen H, Pei Y, Tan S. J Power Sources, 2014, 248: 400-406 CrossRef ADS Google Scholar

[33] Chen Y, Li B, Huang W, Gao D, Liang Z. Chem Commun, 2015, 51: 11997-11999 CrossRef PubMed Google Scholar

[34] Zhang Z, Zhou Y, Cai Y, Liu H, Qin Q, Lu X, Gao X, Shui L, Wu S, Liu JM. J Power Sources, 2018, 377: 52-58 CrossRef ADS Google Scholar

[35] Yang S, Liu W, Zuo L, Zhang X, Ye T, Chen J, Li CZ, Wu G, Chen H. J Mater Chem A, 2016, 4: 9430-9436 CrossRef Google Scholar

[36] Kresse G, Furthmüller J. Comput Mater Sci, 1996, 6: 15-50 CrossRef Google Scholar

[37] Kohn W, Sham LJ. Phys Rev, 1965, 140: A1133-A1138 CrossRef ADS Google Scholar

[38] Blöchl PE. Phys Rev B, 1994, 50: 17953-17979 CrossRef ADS Google Scholar

[39] Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865-3868 CrossRef PubMed ADS Google Scholar

[40] Grimme S, Antony J, Ehrlich S, Krieg H. J Chem Phys, 2010, 132: 154104 CrossRef PubMed ADS Google Scholar

[41] Grimme S, Ehrlich S, Goerigk L. J Comput Chem, 2011, 32: 1456-1465 CrossRef PubMed Google Scholar

[42] Togo A, Chaput L, Tanaka I, Hug G. Phys Rev B, 2010, 81: 17430144 CrossRef ADS Google Scholar

[43] Skelton JM, Parker SC, Togo A, Tanaka I, Walsh A. Phys Rev B, 2014, 89: 20520345 CrossRef ADS arXiv Google Scholar

[44] Togo A, Chaput L, Tanaka I. Phys Rev B, 2015, 91: 09430646 CrossRef ADS arXiv Google Scholar

[45] Baroni S, de Gironcoli S, dal Corso A, Giannozzi P. Rev Mod Phys, 2001, 73: 515-562 CrossRef ADS Google Scholar

[46] Maintz S, Deringer VL, Tchougréeff AL, Dronskowski R. J Comput Chem, 2016, 37: 1030-1035 CrossRef PubMed Google Scholar

[47] Deringer VL, Tchougréeff AL, Dronskowski R. J Phys Chem A, 2011, 115: 5461-5466 CrossRef PubMed ADS Google Scholar

[48] Tang G, Yang C, Stroppa A, Fang D, Hong J. J Chem Phys, 2017, 146: 224702 CrossRef PubMed ADS Google Scholar

[49] Liu Y, Yang Z, Cui D, Ren X, Sun J, Liu X, Zhang J, Wei Q, Fan H, Yu F, Zhang X, Zhao C, Liu SF. Adv Mater, 2015, 27: 5176-5183 CrossRef PubMed Google Scholar

[50] Levchuk I, Osvet A, Tang X, Brandl M, Perea JD, Hoegl F, Matt GJ, Hock R, Batentschuk M, Brabec CJ. Nano Lett, 2017, 17: 2765-2770 CrossRef PubMed ADS Google Scholar

[51] Charles B, Dillon J, Weber OJ, Islam MS, Weller MT. J Mater Chem A, 2017, 5: 22495-22499 CrossRef Google Scholar

[52] Li Z, Yang M, Park JS, Wei SH, Berry JJ, Zhu K. Chem Mater, 2016, 28: 284-292 CrossRef Google Scholar

[53] Brivio F, Frost JM, Skelton JM, Jackson AJ, Weber OJ, Weller MT, Goñi AR, Leguy AMA, Barnes PRF, Walsh A. Phys Rev B, 2015, 92: 144308 CrossRef ADS arXiv Google Scholar

[54] Weller MT, Weber OJ, Frost JM, Walsh A. J Phys Chem Lett, 2015, 6: 3209-3212 CrossRef Google Scholar

  • Figure 1

    Structural configurations of (a) FAPbI2(SCN), (b) FAPbBr2(SCN), (c) FAPbCl2(SCN), (d) FASnI2(SCN), (e) FASnBr2(SCN), and (f) FASnCl2-(SCN) (color online).

  • Figure 2

    Calculated phonon density of states of pseudocubic FABX3 and partially-SCN-substituted FABX2(SCN) (color online).

  • Figure 3

    Energy fluctuations with different rotations of the FA cation in the perovskites cavity.

  • Figure 4

    Energy fluctuations with time step in the AIMD simulation of FABX3 and FABX2(SCN).

  • Figure 5

    Structural configurations of SCN substituted FAPbI3 with the ratio of SCN to I numbers of (a) 1/24 (~4%) and (b) 1/12 (~8%) (color online).

  • Table 1   Calculated Bader charge transfer (e) of FABX and FABX(SCN)

    FA

    B

    3X

    FA

    B

    2X

    SCN

    FAPbCl3

    −0.82

    −1.24

    +2.06

    FAPbCl2(SCN)

    −0.80

    −1.19

    +1.31

    +0.69

    FAPbBr3

    −0.79

    −1.08

    +1.87

    FAPbBr2(SCN)

    −0.77

    −1.12

    +1.21

    +0.68

    FAPbI3

    −0.76

    −0.80

    +1.56

    FAPbI2(SCN)

    −0.78

    −0.99

    +1.07

    +0.70

    FASnCl3

    −0.82

    −1.29

    +2.11

    FASnCl2(SCN)

    −0.79

    −1.25

    +1.33

    +0.71

    FASnBr3

    −0.79

    −1.02

    +1.81

    FASnBr2(SCN)

    −0.77

    −1.14

    +1.21

    +0.70

    FASnI3

    −0.75

    −0.88

    +1.63

    FASnI2(SCN)

    −0.78

    −0.99

    +1.06

    +0.71

    Plus and minus signs indicate the gained and lost electrons, respectively.

  • Table 2   The integrated crystal orbital Hamilton population (ICOHP) analysis of FABX and FABX(SCN)

    B–X

    FA–X

    B–X/SCN

    FA–X/SCN

    FAPbCl3

    −10.624

    −1.224

    FAPbCl2(SCN)

    −10.127

    −2.077

    FAPbBr3

    −10.450

    −1.057

    FAPbBr2(SCN)

    −10.223

    −1.697

    FAPbI3

    −10.059

    −0.866

    FAPbI2(SCN)

    −10.193

    −1.432

    FASnCl3

    −10.816

    −1.250

    FASnCl2(SCN)

    −10.837

    −2.317

    FASnBr3

    −10.517

    −1.147

    FASnBr2(SCN)

    −10.433

    −1.813

    FASnI3

    −10.143

    −0.969

    FASnI2(SCN)

    −10.838

    −1.444

  • Table 3   Calculated formation energies (eV) of the defects in FABX and FABXSCN

    VB

    VX

    VFA

    VB

    VX

    VSCN

    VFA

    FAPbCl3

    7.99

    4.78

    5.08

    FAPbCl2(SCN)

    7.97

    4.99

    4.56

    5.63

    FAPbBr3

    7.21

    4.25

    4.97

    FAPbBr2(SCN)

    7.44

    4.53

    4.51

    5.47

    FAPbI3

    6.29

    3.67

    4.79

    FAPbI2(SCN)

    6.54

    3.87

    4.39

    5.18

    FASnCl3

    7.00

    4.59

    4.47

    FASnCl2(SCN)

    7.09

    4.76

    4.34

    5.17

    FASnBr3

    6.15

    4.11

    4.34

    FASnBr2(SCN)

    6.95

    4.41

    4.27

    5.06

    FASnI3

    5.45

    3.59

    4.25

    FASnI2(SCN)

    5.60

    3.80

    4.25

    4.50

  • Table 4   The calculated enthalpy of decomposition, Δ, of the phase-separation reactions of the pseudocubic FABX and partially SCN substituted FABX(SCN)

    Phase separation

    ΔdH (eV)

    FAPbI3→FAI+PbI2

    −0.271

    FAPbBr3→FABr+PbBr2

    −0.182

    FAPbCl3→FACl+PbCl2

    −0.262

    FASnI3→FAI+SnI2

    −0.130

    FASnBr3→FABr+SnBr2

    −0.104

    FASnCl3→FACl+SnCl2

    −0.173

    FAPbI2(SCN)→FAI+PbI2+Pb(SCN)2

    −0.229

    FAPbBr2(SCN)→FABr+PbBr2+Pb(SCN)2

    −0.107

    FAPbCl2(SCN)→FACl+PbCl2+Pb(SCN)2

    −0.043

    FASnI2(SCN)→FAI+SnI2+Sn(SCN)2

    −0.038

    FASnBr2(SCN)→FABr+SnBr2+Sn(SCN)2

    0.245

    FASnCl2(SCN)→FACl+SnCl2+Sn(SCN)2

    0.248

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号