logo

Stability improvement under high efficiency—next stage development of perovskite solar cells

More info
  • ReceivedJan 8, 2019
  • AcceptedFeb 25, 2019
  • PublishedApr 4, 2019

Abstract

With efficiency of perovskite solar cells (PSCs) overpassing 23%, to realize their commercialization, the biggest challenge now is to boost the stability to the same level as conventional solar cells. Thus, tremendous effort has been directed over the past few years toward improving the stability of these cells. Various methods were used to improve the stability of bulk perovskites, including compositional engineering, interface adjustment, dimensional manipulation, crystal engineering, and grain boundary decoration. Diverse device configurations, carrier transporting layers, and counter electrodes are investigated. To compare the stability of PSCs and clarify the degradation mechanism, diverse characterization methods were developed. Overall stability of PSCs has become one central topic for the development of PSCs. In this review, we summarize the state-of-the-art progress on the improvement of device stability and discuss the directions for future research, hoping it provides an overview of the current status of the research on the stability of PSCs and guidelines for future research.


Funded by

the Ministry of Science and Technology of the People’s Republic of China(2015AA034601,2016YFA0204000)

the National Natural Sciences Foundation of China(21571129,21702069,91733301,91433203,61474049,51502141,51761145042,51627803,91433205,51421002,11874402)

ShanghaiTech Start-up Funding

the Fundamental Research Funds for the Central Universities

the Program for HUST Academic Frontier Youth Team

the Science and Technology Department of Hubei Province(2017AAA190)

the Double first-class research funding of China-EU Institute for Clean and Renewable Energy(RP-2018-SOLAR-001,RP-2018-SOLAR-002)

and the International Partnership Program of Chinese Academy of Sciences(112111KYSB20170089)

Chinese Academy of Sciences.


Acknowledgment

This work was supported by the the National Key Research and Development Program of China (2015AA034601, 2016YFA0204000), the National Natural Sciences Foundation of China (21571129, 21702069, 91733301, 91433203, 61474049, 51502141, 51761145042, 51627803, 91433205, 51421002, 11874402), ShanghaiTech Start-up Funding, the Fundamental Research Funds for the Central Universities, the Program for HUST Academic Frontier Youth Team, the Science and Technology Department of Hubei Province (2017AAA190) and the Double first-class research funding of China-EU Institute for Clean and Renewable Energy (RP-2018-SOLAR-001, RP-2018-SOLAR-002), and the International Partnership Program of Chinese Academy of Sciences (112111KYSB20170089). J. Shi and Q. Meng appreciate the valuable help from Mr. Jionghua Wu and Ms. Yiming Li of Institute of Physics, Chinese Academy of Sciences.


Interest statement

The authors declare that they have no conflict of interest.


Contributions statement

These authors contributed equally to this work.


References

[1] Rong Y, Hu Y, Mei A, Tan H, Saidaminov MI, Seok SI, McGehee MD, Sargent EH, Han H. Science, 2018, 361: eaat8235 CrossRef PubMed Google Scholar

[2] Qin X, Zhao Z, Wang Y, Wu J, Jiang Q, You J. J Semicond, 2017, 38: 011002 CrossRef ADS Google Scholar

[3] Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ. Energy Environ Sci, 2014, 7: 982-988 CrossRef Google Scholar

[4] Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI. Nature, 2015, 517: 476-480 CrossRef PubMed ADS Google Scholar

[5] Liu D, Zhou W, Tang H, Fu P, Ning Z. Sci China Chem, 2018, 61: 1278-1284 CrossRef Google Scholar

[6] Saliba M, Matsui T, Seo JY, Domanski K, Correa-Baena JP, Nazeeruddin MK, Zakeeruddin SM, Tress W, Abate A, Hagfeldt A, Grätzel M. Energy Environ Sci, 2016, 9: 1989-1997 CrossRef PubMed Google Scholar

[7] Saliba M, Matsui T, Domanski K, Seo JY, Ummadisingu A, Zakeeruddin SM, Correa-Baena JP, Tress WR, Abate A, Hagfeldt A, Grätzel M. Science, 2016, 354: 206-209 CrossRef PubMed ADS Google Scholar

[8] Duong T, Wu YL, Shen H, Peng J, Zhao S, Wu N, Lockrey M, White T, Weber K, Catchpole K. Sol Energy Mater Sol Cells, 2018, 188: 27-36 CrossRef Google Scholar

[9] Turren-Cruz SH, Hagfeldt A, Saliba M. Science, 2018, 362: 449-453 CrossRef PubMed ADS Google Scholar

[10] Jodlowski AD, Roldán-Carmona C, Grancini G, Salado M, Ralaiarisoa M, Ahmad S, Koch N, Camacho L, de Miguel G, Nazeeruddin MK. Nat Energy, 2017, 2: 972-979 CrossRef ADS Google Scholar

[11] Shi Z, Zhang Y, Cui C, Li B, Zhou W, Ning Z, Mi Q. Adv Mater, 2017, 29: 1701656 CrossRef PubMed Google Scholar

[12] Saidaminov MI, Kim J, Jain A, Quintero-Bermudez R, Tan H, Long G, Tan F, Johnston A, Zhao Y, Voznyy O, Sargent EH. Nat Energy, 2018, 3: 648-654 CrossRef ADS Google Scholar

[13] Yan L, Xue Q, Liu M, Zhu Z, Tian J, Li Z, Chen Z, Chen Z, Yan H, Yip HL, Cao Y. Adv Mater, 2018, 30: 1802509 CrossRef PubMed Google Scholar

[14] Zeng Z, Zhang J, Gan X, Sun H, Shang M, Hou D, Lu C, Chen R, Zhu Y, Han L. Adv Energy Mater, 2018, 8: 1801050 CrossRef Google Scholar

[15] Chen W, Zhang J, Xu G, Xue R, Li Y, Zhou Y, Hou J, Li Y. Adv Mater, 2018, 30: 1800855 CrossRef PubMed Google Scholar

[16] Liu C, Li W, Zhang C, Ma Y, Fan J, Mai Y. J Am Chem Soc, 2018, 140: 3825-3828 CrossRef PubMed Google Scholar

[17] Chen W, Chen H, Xu G, Xue R, Wang S, Li Y, Li Y. Joule, 2019, 3: 191-204 CrossRef Google Scholar

[18] Zhang T, Dar MI, Li G, Xu F, Guo N, Grätzel M, Zhao Y. Sci Adv, 2017, 3: e1700841 CrossRef PubMed ADS Google Scholar

[19] Jiang Y, Yuan J, Ni Y, Yang J, Wang Y, Jiu T, Yuan M, Chen J. Joule, 2018, 2: 1356-1368 CrossRef Google Scholar

[20] Wang K, Jin Z, Liang L, Bian H, Bai D, Wang H, Zhang J, Wang Q, Liu S. Nat Commun, 2018, 9: 4544 CrossRef PubMed ADS Google Scholar

[21] Zhao B, Jin SF, Huang S, Liu N, Ma JY, Xue DJ, Han Q, Ding J, Ge QQ, Feng Y, Hu JS. J Am Chem Soc, 2018, 140: 11716-11725 CrossRef PubMed Google Scholar

[22] Ke W, Spanopoulos I, Stoumpos CC, Kanatzidis MG. Nat Commun, 2018, 9: 4785 CrossRef PubMed ADS Google Scholar

[23] Cao DH, Stoumpos CC, Farha OK, Hupp JT, Kanatzidis MG. J Am Chem Soc, 2015, 137: 7843-7850 CrossRef PubMed Google Scholar

[24] Smith IC, Hoke ET, Solis-Ibarra D, McGehee MD, Karunadasa HI. Angew Chem Int Ed, 2014, 53: 11232-11235 CrossRef PubMed Google Scholar

[25] Liao Y, Liu H, Zhou W, Yang D, Shang Y, Shi Z, Li B, Jiang X, Zhang L, Quan LN, Quintero-Bermudez R, Sutherland BR, Mi Q, Sargent EH, Ning Z. J Am Chem Soc, 2017, 139: 6693-6699 CrossRef PubMed Google Scholar

[26] Tsai H, Nie W, Blancon JC, Stoumpos CC, Asadpour R, Harutyunyan B, Neukirch AJ, Verduzco R, Crochet JJ, Tretiak S, Pedesseau L, Even J, Alam MA, Gupta G, Lou J, Ajayan PM, Bedzyk MJ, Kanatzidis MG, Mohite AD. Nature, 2016, 536: 312-316 CrossRef PubMed ADS Google Scholar

[27] Zhang X, Ren X, Liu B, Munir R, Zhu X, Yang D, Li J, Liu Y, Smilgies DM, Li R, Yang Z, Niu T, Wang X, Amassian A, Zhao K, Liu SF. Energy Environ Sci, 2017, 10: 2095-2102 CrossRef Google Scholar

[28] Wang Z, Lin Q, Chmiel FP, Sakai N, Herz LM, Snaith HJ. Nat Energy, 2017, 2: 17135 CrossRef ADS Google Scholar

[29] Lai H, Kan B, Liu T, Zheng N, Xie Z, Zhou T, Wan X, Zhang X, Liu Y, Chen Y. J Am Chem Soc, 2018, 140: 11639-11646 CrossRef Google Scholar

[30] Shao S, Liu J, Portale G, Fang HH, Blake GR, ten Brink GH, Koster LJA, Loi MA. Adv Energy Mater, 2018, 8: 1702019 CrossRef Google Scholar

[31] Bai Y, Xiao S, Hu C, Zhang T, Meng X, Lin H, Yang Y, Yang S. Adv Energy Mater, 2017, 7: 1701038 CrossRef Google Scholar

[32] Cho KT, Grancini G, Lee Y, Oveisi E, Ryu J, Almora O, Tschumi M, Schouwink PA, Seo G, Heo S, Park J, Jang J, Paek S, Garcia-Belmonte G, Nazeeruddin MK. Energy Environ Sci, 2018, 11: 952-959 CrossRef Google Scholar

[33] Wang Y, Zhang T, Kan M, Li Y, Wang T, Zhao Y. Joule, 2018, 2: 2065-2075 CrossRef Google Scholar

[34] Cho Y, Soufiani AM, Yun JS, Kim J, Lee DS, Seidel J, Deng X, Green MA, Huang S, Ho-Baillie AWY. Adv Energy Mater, 2018, 8: 1703392 CrossRef Google Scholar

[35] Wang F, Jiang X, Chen H, Shang Y, Liu H, Wei J, Zhou W, He H, Liu W, Ning Z. Joule, 2018, 2: 2732-2743 CrossRef Google Scholar

[36] Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI. Nat Mater, 2014, 13: 897-903 CrossRef PubMed ADS Google Scholar

[37] Li X, Bi D, Yi C, Décoppet JD, Luo J, Zakeeruddin SM, Hagfeldt A, Grätzel M. Science, 2016, 353: 58-62 CrossRef PubMed ADS Google Scholar

[38] Gao LL, Li CX, Li CJ, Yang GJ. J Mater Chem A, 2017, 5: 1548-1557 CrossRef Google Scholar

[39] Xie FX, Zhang D, Su H, Ren X, Wong KS, Grätzel M, Choy WCH. ACS Nano, 2015, 9: 639-646 CrossRef PubMed Google Scholar

[40] Wu Y, Xie F, Chen H, Yang X, Su H, Cai M, Zhou Z, Noda T, Han L. Adv Mater, 2017, 29: 1701073 CrossRef PubMed Google Scholar

[41] Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y, Huang J. Adv Mater, 2014, 26: 6503-6509 CrossRef PubMed Google Scholar

[42] Zhou Z, Wang Z, Zhou Y, Pang S, Wang D, Xu H, Liu Z, Padture NP, Cui G. Angew Chem Int Ed, 2015, 54: 9705-9709 CrossRef PubMed Google Scholar

[43] Dong H, Wu Z, Xi J, Xu X, Zuo L, Lei T, Zhao X, Zhang L, Hou X, Jen AKY. Adv Funct Mater, 2018, 28: 1704836 CrossRef Google Scholar

[44] Xie F, Chen CC, Wu Y, Li X, Cai M, Liu X, Yang X, Han L. Energy Environ Sci, 2017, 10: 1942-1949 CrossRef Google Scholar

[45] Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H. Science, 2014, 345: 295-298 CrossRef PubMed ADS Google Scholar

[46] Li X, Ibrahim Dar M, Yi C, Luo J, Tschumi M, Zakeeruddin SM, Nazeeruddin MK, Han H, Grätzel M. Nat Chem, 2015, 7: 703-711 CrossRef PubMed ADS Google Scholar

[47] Hu Y, Zhang Z, Mei A, Jiang Y, Hou X, Wang Q, Du K, Rong Y, Zhou Y, Xu G, Han H. Adv Mater, 2018, 30: 1705786 CrossRef PubMed Google Scholar

[48] Wu Z, Raga SR, Juarez-Perez EJ, Yao X, Jiang Y, Ono LK, Ning Z, Tian H, Qi Y. Adv Mater, 2018, 30: 1703670 CrossRef PubMed Google Scholar

[49] Zhang T, Cao Z, Shang Y, Cui C, Fu P, Jiang X, Wang F, Xu K, Yin D, Qu D, Ning Z. J Photochem Photobiol A-Chem, 2018, 355: 42-47 CrossRef Google Scholar

[50] Bi D, Li X, Milić JV, Kubicki DJ, Pellet N, Luo J, LaGrange T, Mettraux P, Emsley L, Zakeeruddin SM, Grätzel M. Nat Commun, 2018, 9: 4482 CrossRef PubMed ADS Google Scholar

[51] Zuo L, Guo H, deQuilettes DW, Jariwala S, De Marco N, Dong S, DeBlock R, Ginger DS, Dunn B, Wang M, Yang Y. Sci Adv, 2017, 3: e1700106 CrossRef PubMed ADS Google Scholar

[52] Zong Y, Zhou Y, Zhang Y, Li Z, Zhang L, Ju MG, Chen M, Pang S, Zeng XC, Padture NP. Chem, 2018, 4: 1404-1415 CrossRef Google Scholar

[53] Li X, Zhang W, Wang YC, Zhang W, Wang HQ, Fang J. Nat Commun, 2018, 9: 3806 CrossRef PubMed ADS Google Scholar

[54] Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X, You J. Adv Mater, 2017, 29: 1703852 CrossRef PubMed Google Scholar

[55] Jacobsson TJ, Correa-Baena JP, Halvani Anaraki E, Philippe B, Stranks SD, Bouduban MEF, Tress W, Schenk K, Teuscher J, Moser JE, Rensmo H, Hagfeldt A. J Am Chem Soc, 2016, 138: 10331-10343 CrossRef PubMed Google Scholar

[56] Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A, Shield J, Huang J. Energy Environ Sci, 2016, 9: 1752-1759 CrossRef Google Scholar

[57] Liu L, Huang S, Lu Y, Liu P, Zhao Y, Shi C, Zhang S, Wu J, Zhong H, Sui M, Zhou H, Jin H, Li Y, Chen Q. Adv Mater, 2018, 30: 1800544 CrossRef PubMed Google Scholar

[58] Xu J, Buin A, Ip AH, Li W, Voznyy O, Comin R, Yuan M, Jeon S, Ning Z, McDowell JJ, Kanjanaboos P, Sun JP, Lan X, Quan LN, Kim DH, Hill IG, Maksymovych P, Sargent EH. Nat Commun, 2015, 6: 7081 CrossRef PubMed ADS Google Scholar

[59] Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Nat Commun, 2014, 5: 5784 CrossRef PubMed ADS Google Scholar

[60] Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter JM, Alsari M, Booker EP, Hutter EM, Pearson AJ, Lilliu S, Savenije TJ, Rensmo H, Divitini G, Ducati C, Friend RH, Stranks SD. Nature, 2018, 555: 497-501 CrossRef PubMed ADS Google Scholar

[61] Tang Z, Bessho T, Awai F, Kinoshita T, Maitani MM, Jono R, Murakami TN, Wang H, Kubo T, Uchida S, Segawa H. Sci Rep, 2017, 7: 12183 CrossRef PubMed ADS Google Scholar

[62] Noel NK, Abate A, Stranks SD, Parrott ES, Burlakov VM, Goriely A, Snaith HJ. ACS Nano, 2014, 8: 9815-9821 CrossRef PubMed Google Scholar

[63] deQuilettes DW, Koch S, Burke S, Paranji RK, Shropshire AJ, Ziffer ME, Ginger DS. ACS Energy Lett, 2016, 1: 438-444 CrossRef Google Scholar

[64] Niu T, Lu J, Munir R, Li J, Barrit D, Zhang X, Hu H, Yang Z, Amassian A, Zhao K, Liu SF. Adv Mater, 2018, 30: 1706576 CrossRef PubMed Google Scholar

[65] Zhang F, Bi D, Pellet N, Xiao C, Li Z, Berry JJ, Zakeeruddin SM, Zhu K, Grätzel M. Energy Environ Sci, 2018, 11: 3480-3490 CrossRef Google Scholar

[66] Tan H, Jain A, Voznyy O, Lan X, García de Arquer FP, Fan JZ, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan LN, Zhao Y, Lu ZH, Yang Z, Hoogland S, Sargent EH. Science, 2017, 355: 722-726 CrossRef PubMed ADS Google Scholar

[67] Li Y, Zhao Y, Chen Q, Yang YM, Liu Y, Hong Z, Liu Z, Hsieh YT, Meng L, Li Y, Yang Y. J Am Chem Soc, 2015, 137: 15540-15547 CrossRef PubMed Google Scholar

[68] Calió L, Kazim S, Grätzel M, Ahmad S. Angew Chem Int Ed, 2016, 55: 14522-14545 CrossRef PubMed Google Scholar

[69] Tai Q, You P, Sang H, Liu Z, Hu C, Chan HLW, Yan F. Nat Commun, 2016, 7: 11105 CrossRef PubMed ADS Google Scholar

[70] Shin SS, Yeom EJ, Yang WS, Hur S, Kim MG, Im J, Seo J, Noh JH, Seok SI. Science, 2017, 356: 167-171 CrossRef PubMed ADS Google Scholar

[71] Arora N, Dar MI, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin SM, Grätzel M. Science, 2017, 358: 768-771 CrossRef PubMed ADS Google Scholar

[72] Yao K, Li F, He Q, Wang X, Jiang Y, Huang H, Jen AKY. Nano Energy, 2017, 40: 155-162 CrossRef Google Scholar

[73] Wang Z, McMeekin DP, Sakai N, van Reenen S, Wojciechowski K, Patel JB, Johnston MB, Snaith HJ. Adv Mater, 2017, 29: 1604186 CrossRef PubMed Google Scholar

[74] Kim GW, Kang G, Kim J, Lee GY, Kim HI, Pyeon L, Lee J, Park T. Energy Environ Sci, 2016, 9: 2326-2333 CrossRef Google Scholar

[75] Koushik D, Verhees WJH, Kuang Y, Veenstra S, Zhang D, Verheijen MA, Creatore M, Schropp REI. Energy Environ Sci, 2017, 10: 91-100 CrossRef Google Scholar

[76] Stolterfoht M, Wolff CM, Amir Y, Paulke A, Perdigón-Toro L, Caprioglio P, Neher D. Energy Environ Sci, 2017, 10: 1530-1539 CrossRef Google Scholar

[77] Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M, Han L. Science, 2015, 350: 944-948 CrossRef PubMed Google Scholar

[78] Brinkmann KO, Zhao J, Pourdavoud N, Becker T, Hu T, Olthof S, Meerholz K, Hoffmann L, Gahlmann T, Heiderhoff R, Oszajca MF, Luechinger NA, Rogalla D, Chen Y, Cheng B, Riedl T. Nat Commun, 2017, 8: 13938 CrossRef PubMed ADS Google Scholar

[79] You J, Meng L, Song TB, Guo TF, Yang YM, Chang WH, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y. Nat Nanotech, 2016, 11: 75-81 CrossRef PubMed ADS Google Scholar

[80] Li X, Tschumi M, Han H, Babkair SS, Alzubaydi RA, Ansari AA, Habib SS, Nazeeruddin MK, Zakeeruddin SM, Grätzel M. Energy Tech, 2015, 3: 551-555 CrossRef Google Scholar

[81] Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin MK. Nat Commun, 2017, 8: 15684 CrossRef PubMed ADS Google Scholar

[82] Hu Y, Si S, Mei A, Rong Y, Liu H, Li X, Han H. Sol RRL, 2017, 1: 1600019 CrossRef Google Scholar

[83] Baranwal AK, Kanaya S, Peiris TAN, Mizuta G, Nishina T, Kanda H, Miyasaka T, Segawa H, Ito S. ChemSusChem, 2016, 9: 2604-2608 CrossRef PubMed Google Scholar

[84] Leijtens T, Eperon GE, Pathak S, Abate A, Lee MM, Snaith HJ. Nat Commun, 2013, 4: 2885 CrossRef PubMed ADS Google Scholar

[85] Ito S, Tanaka S, Manabe K, Nishino H. J Phys Chem C, 2014, 118: 16995-17000 CrossRef Google Scholar

[86] Chander N, Khan AF, Chandrasekhar PS, Thouti E, Swami SK, Dutta V, Komarala VK. Appl Phys Lett, 2014, 105: 033904 CrossRef ADS Google Scholar

[87] Bella F, Griffini G, Correa-Baena JP, Saracco G, Grätzel M, Hagfeldt A, Turri S, Gerbaldi C. Science, 2016, 354: 203-206 CrossRef PubMed ADS Google Scholar

[88] Pathak SK, Abate A, Ruckdeschel P, Roose B, Gödel KC, Vaynzof Y, Santhala A, Watanabe SI, Hollman DJ, Noel N, Sepe A, Wiesner U, Friend R, Snaith HJ, Steiner U. Adv Funct Mater, 2014, 24: 6046-6055 CrossRef Google Scholar

[89] Li W, Zhang W, Van Reenen S, Sutton RJ, Fan J, Haghighirad AA, Johnston MB, Wang L, Snaith HJ. Energy Environ Sci, 2016, 9: 490-498 CrossRef Google Scholar

[90] Christians JA, Schulz P, Tinkham JS, Schloemer TH, Harvey SP, Tremolet de Villers BJ, Sellinger A, Berry JJ, Luther JM. Nat Energy, 2018, 3: 68-74 CrossRef ADS Google Scholar

[91] Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG. Sci Rep, 2012, 2: 591 CrossRef PubMed ADS Google Scholar

[92] Hawash Z, Ono LK, Raga SR, Lee MV, Qi Y. Chem Mater, 2015, 27: 562-569 CrossRef Google Scholar

[93] Li W, Dong H, Wang L, Li N, Guo X, Li J, Qiu Y. J Mater Chem A, 2014, 2: 13587-13592 CrossRef Google Scholar

[94] Niu G, Guo X, Wang L. J Mater Chem A, 2015, 3: 8970-8980 CrossRef Google Scholar

[95] Liu J, Wu Y, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Chen W, Han L. Energy Environ Sci, 2014, 7: 2963-2967 CrossRef Google Scholar

[96] Li Z’, Zhu Z, Chueh CC, Jo SB, Luo J, Jang SH, Jen AKY. J Am Chem Soc, 2016, 138: 11833-11839 CrossRef PubMed Google Scholar

[97] Im K, Heo JH, Im SH, Kim J. Chem Eng J, 2017, 330: 698-705 CrossRef Google Scholar

[98] Niu G, Li W, Meng F, Wang L, Dong H, Qiu Y. J Mater Chem A, 2014, 2: 705-710 CrossRef Google Scholar

[99] Guarnera S, Abate A, Zhang W, Foster JM, Richardson G, Petrozza A, Snaith HJ. J Phys Chem Lett, 2015, 6: 432-437 CrossRef PubMed Google Scholar

[100] Li Q, Zhao Y, Fu R, Zhou W, Zhao Y, Lin F, Liu S, Yu D, Zhao Q. J Mater Chem A, 2017, 5: 14881-14886 CrossRef Google Scholar

[101] Kato Y, Ono LK, Lee MV, Wang S, Raga SR, Qi Y. Adv Mater Interfaces, 2015, 2: 1500195 CrossRef Google Scholar

[102] Back H, Kim G, Kim J, Kong J, Kim TK, Kang H, Kim H, Lee J, Lee S, Lee K. Energy Environ Sci, 2016, 9: 1258-1263 CrossRef Google Scholar

[103] Domanski K, Correa-Baena JP, Mine N, Nazeeruddin MK, Abate A, Saliba M, Tress W, Hagfeldt A, Grätzel M. ACS Nano, 2016, 10: 6306-6314 CrossRef Google Scholar

[104] Abdelmageed G, Jewell L, Hellier K, Seymour L, Luo B, Bridges F, Zhang JZ, Carter S. Appl Phys Lett, 2016, 109: 233905 CrossRef ADS Google Scholar

[105] Bryant D, Aristidou N, Pont S, Sanchez-Molina I, Chotchunangatchaval T, Wheeler S, Durrant JR, Haque SA. Energy Environ Sci, 2016, 9: 1655-1660 CrossRef Google Scholar

[106] Huang J, Tan S, Lund PD, Zhou H. Energy Environ Sci, 2017, 10: 2284-2311 CrossRef Google Scholar

[107] Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345: 542-546 CrossRef PubMed ADS Google Scholar

[108] Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J. Nat Mater, 2014, 14: 193-198 CrossRef PubMed ADS Google Scholar

[109] Zhao Y, Zhou W, Ma W, Meng S, Li H, Wei J, Fu R, Liu K, Yu D, Zhao Q. ACS Energy Lett, 2016, 1: 266-272 CrossRef Google Scholar

[110] Tsai H, Asadpour R, Blancon JC, Stoumpos CC, Durand O, Strzalka JW, Chen B, Verduzco R, Ajayan PM, Tretiak S, Even J, Alam MA, Kanatzidis MG, Nie W, Mohite AD. Science, 2018, 360: 67-70 CrossRef PubMed ADS Google Scholar

[111] Zhao Y, Tan H, Yuan H, Yang Z, Fan JZ, Kim J, Voznyy O, Gong X, Quan LN, Tan CS, Hofkens J, Yu D, Zhao Q, Sargent EH. Nat Commun, 2018, 9: 1607 CrossRef PubMed ADS Google Scholar

[112] Nie W, Blancon JC, Neukirch AJ, Appavoo K, Tsai H, Chhowalla M, Alam MA, Sfeir MY, Katan C, Even J, Tretiak S, Crochet JJ, Gupta G, Mohite AD. Nat Commun, 2016, 7: 11574 CrossRef PubMed ADS Google Scholar

[113] Gong J, Guo P, Benjamin SE, van Patten PG, Schaller RD, Xu T. J Energy Chem, 2018, 27: 1017-1039 CrossRef Google Scholar

[114] Ono LK, Qi Y, Liu SF. Joule, 2018, 2: 1961-1990 CrossRef Google Scholar

[115] Dunbar RB, Duck BC, Moriarty T, Anderson KF, Duffy NW, Fell CJ, Kim J, Ho-Baillie A, Vak D, Duong T, Wu YL, Weber K, Pascoe A, Cheng YB, Lin Q, Burn PL, Bhattacharjee R, Wang H, Wilson GJ. J Mater Chem A, 2017, 5: 22542-22558 CrossRef Google Scholar

[116] Bardizza G, Pavanello D, Galleano R, Sample T, Müllejans H. Sol Energy Mater Sol Cells, 2017, 160: 418-424 CrossRef Google Scholar

[117] Domanski K, Alharbi EA, Hagfeldt A, Grätzel M, Tress W. Nat Energy, 2018, 3: 61-67 CrossRef ADS Google Scholar

[118] Chen B, Li T, Dong Q, Mosconi E, Song J, Chen Z, Deng Y, Liu Y, Ducharme S, Gruverman A, Angelis FD, Huang J. Nat Mater, 2018, 17: 1020-1026 CrossRef PubMed ADS Google Scholar

[119] Zhao J, Deng Y, Wei H, Zheng X, Yu Z, Shao Y, Shield JE, Huang J. Sci Adv, 2017, 3: eaao5616 CrossRef PubMed ADS Google Scholar

[120] Malinkiewicz O, Yella A, Lee YH, Espallargas GM, Graetzel M, Nazeeruddin MK, Bolink HJ. Nat Photon, 2013, 8: 128-132 CrossRef ADS Google Scholar

[121] Jung HJ, Kim D, Kim S, Park J, Dravid VP, Shin B. Adv Mater, 2018, 30: 1802769 CrossRef PubMed Google Scholar

[122] Ahn N, Kwak K, Jang MS, Yoon H, Lee BY, Lee JK, Pikhitsa PV, Byun J, Choi M. Nat Commun, 2016, 7: 13422 CrossRef PubMed ADS arXiv Google Scholar

[123] Edri E, Kirmayer S, Mukhopadhyay S, Gartsman K, Hodes G, Cahen D. Nat Commun, 2014, 5: 3461 CrossRef PubMed ADS Google Scholar

[124] Klein-Kedem N, Cahen D, Hodes G. Acc Chem Res, 2016, 49: 347-354 CrossRef PubMed Google Scholar

[125] Lin WC, Chang HY, Abbasi K, Shyue JJ, Burda C. Adv Mater Interfaces, 2017, 4: 1600673 CrossRef Google Scholar

[126] Zhang H, Shi J, Zhu L, Luo Y, Li D, Wu H, Meng Q. Nano Energy, 2018, 43: 383-392 CrossRef Google Scholar

[127] Rocks C, Svrcek V, Velusamy T, Macias-Montero M, Maguire P, Mariotti D. Nano Energy, 2018, 50: 245-255 CrossRef Google Scholar

[128] Shi J, Xu X, Li D, Meng Q. Small, 2015, 11: 2472-2486 CrossRef PubMed Google Scholar

[129] Khadka DB, Shirai Y, Yanagida M, Miyano K. J Mater Chem C, 2018, 6: 162-170 CrossRef Google Scholar

[130] Heath JT, Cohen JD, Shafarman WN. J Appl Phys, 2004, 95: 1000-1010 CrossRef ADS Google Scholar

[131] Walter T, Herberholz R, Müller C, Schock HW. J Appl Phys, 1996, 80: 4411-4420 CrossRef ADS Google Scholar

[132] Shi J, Li D, Luo Y, Wu H, Meng Q. Rev Sci Instrum, 2016, 87: 123107 CrossRef PubMed ADS arXiv Google Scholar

[133] Li Y, Li Y, Shi J, Li H, Zhang H, Wu J, Li D, Luo Y, Wu H, Meng Q. Appl Phys Lett, 2018, 112: 053904 CrossRef ADS Google Scholar

  • Figure 1

    Performance of a non-MA perovskite. (a) J-V curve with the MPP of a Rb5Cs10FAPbI3 device displaying a stabilized PCE output of 20.35%; (b) corresponding external quantum efficiency (EQE); (c) stability of the Rb5Cs10FAPbI3 device without polymer layers and with polymer modification aged at room temperature after 1,000 h of continuous MPP tracking in a nitrogen atmosphere [9] (color online).

  • Figure 2

    (A) Dependence of the crystal structure and color of lead triiodides (APbI3) on the size of cation A+. (a) Structural models for APbI3 containing a cation A+ (blue) that is too small (left), suitable (center), or too large (right) in size. (b) Ball-and-stick models of MA+, EA+, and DMA+. (c) A volcano plot of color versus the volume per formula unit (V/Z) for various APbI3 materials. Only those with a V/Z of (252±3) Å3 have a cubic perovskite structure and absorb light at the longest wavelength. (B) Stability tests of perovskite materials and metal-perovskite photodiodes. (a–c) Photographs of perovskites in contact with aqueous HI in 25-mm-diameter vials at room temperature. (a) MAPbI3 after 3 h; (b) MA0.85EA0.15PbI3 (MEPI), after 30 d; and (c) MA0.89DMA0.11PbI3 (MDPI) after 30 d. Most of the black MAPbI3 crystals in (a) were transformed into yellow needles, which were presumably MA4PbI6•4H2O. (d) Performance degradation of unencapsulated metal-perovskite photodiodes under 80% RH at room temperature with exponential fittings (dashed lines) [11] (color online).

  • Figure 3

    (A) Crystal structure of Ruddlesden-Popper (BA)2(MA)2Pb3I10 and (BA)2(MA)3Pb4I13 layered perovskites, depicted as n polyhedral blocks, where n refers to the number of layers; the BA spacer layers are depicted as space-fill models to illustrate the termination of the perovskite layers. (B) Schematic of a 2D perovskite crystal, in which the crystal domains are oriented with their (101) planes parallel to the substrate. (C) Stability measurements on planar solar cells. (a, c) Photostability tests under constant AM 1.5G illumination for 2D ((BA)2(MA)3Pb4I13) and 3D (MAPbI3) perovskite devices without (a) and with (c) encapsulation; (b, d) humidity stability tests under 65% RH in a humidity chamber for 2D ((BA)2(MA)3Pb4I13) and 3D (MAPbI3) perovskite devices without (b) and with (d) encapsulation. PCE, power conversion efficiency; a.u., arbitrary units [26] (color online).

  • Figure 4

    Schematic of (a) normal structure and (b) 2D-quasi-2D-3D hierarchical structure of tin PSCs. (c) J-V curves of a champion 2D-quasi-2D-3D device measured in both forward and reverse scan mode. (d) Normalized PCE of a device stored in a N2 atmosphere glovebox. (e) GIWAXS images of the surface structure (incident angle of 0.2°). (f) GIWAXS images of the deep part of the structure (incident angle of 2°) [35] (color online).

  • Figure 5

    (a) Additive engineering by combining an ionic additive of MAAc and a molecular additive of TSC in a stoichiometric PbI2-MAI precursor solution with N,N-dimethylformamide (DMF) as the solvent. (b) Schematic of the additive-assisted one-step deposition of perovskite thin films. (c) J-V curves of large-area devices (1.025 cm2). (d) Stability data of devices aged under continuous AM 1.5 light soaking (short circuit, at ~25 °C, and RH <25%) or in a dark oven at 85 °C (RH <25%) [40].

  • Figure 6

    Schematic of molecules used for surface passivation. (a) 5-Ammoniumvaleric acid (5-AVA) iodide; (b) butylphosphonic acid 4-ammonium chloride (4-ABPACl); (c) 4-(aminomethyl) benzoic acid hydroiodide (AB); (d) 2-(6-bromo-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)ethan-1-ammonium iodide (2-NAM); (e) 4-ethylamine phenylphosphate disodium salt (EAPP); (f) 3-(5-mercapto-1H-tetrazol-1-yl)benzenaminium iodide (SN).

  • Figure 7

    (A) Schematic of the in situ cross-linked organic/perovskite films. (a) Chemical structure of TMTA with marked carbonyl (blue) and alkenyl (red) groups. (b) Cross-linking polymerization of TMTA under thermal conditions. (c) Working mechanism of TMTA in PSCs: TMTA chemically anchors to the GBs of MAPbI3 and then in situ cross-links to a continuous network polymer. (B) Long-term stability. (a) Air stability of non-encapsulated PSCs based on cross-linked MAPbI3-TMTA and the control MAPbI3. The devices were kept in air (RH: 45%–60%) and measured regularly in a glovebox filled with N2. (b) Thermal stability of PSCs based on cross-linked MAPbI3-TMTA and the control MAPbI3. The devices were kept on a hotplate (85 °C) in a glovebox and measured regularly. (c) Operational stability of non-encapsulated MAPbI3-TMTA (after cross-linking) and the control MAPbI3-based PSCs [53] (color online).

  • Figure 8

    (a) Selective interactions between Lewis acid or base functional groups and the MAPbI3 crystal facets. (b) Environmental stability of the corresponding PSCs exposed to ambient environment with 50% humidity in the dark at room temperature without encapsulation. (c) Thermal stability of the corresponding PSCs under heating stress (80 °C) in an inert atmosphere [64] (color onilne).

  • Figure 9

    Device configurations of PSCs. (a) Mesoscopic formal; (b) mesoscopic inverted; (c) planar formal; (d) planar inverted; and (e) triple mesoscopic (color online).

  • Figure 10

    Summary of the stability of PSCs with a mesoscopic architecture. (a–c) A mesoscopic formal structure [7,69,70]; (d, e) a mesoscopic inverted structure [71,72] (color online).

  • Figure 11

    Summary of the stability of PSCs with planar architecture. (a–c) Planar formal structure [66,73,74]; (d–f) planar inverted structure [76,77,79] (color online).

  • Figure 12

    Summary of the stability of PSCs with a triple mesoscopic architecture [45,8083] (color online).

  • Figure 13

    Solutions for enhanced stability regarding the ETL [66,70,8589] (color online).

  • Figure 14

    Organic and inorganic HTMs for PSCs with high stability [72,74,77,95,96] (color online).

  • Figure 15

    Schematic of the photovoltaic performance evolutions of the cell when stored or operated under light illumination, humidity, and electrical bias conditions. Time-dependent changes in the perovskite lattice and composition, device/interface structure, defect, and charge dynamics are the underlying causes (color online).

  • Figure 16

    (a, b) Interplays between the lattice strain and defects of a perovskite [12,118]. (c) Influence of the film internal strain on the perovskite phase stability [119]. (d) Schematic for out-of-plane and in-plane X-ray diffraction (grazing-incidence XRD) of the perovskite film for lattice strain characterization [119]. (e) GIWAXS map (left) and the line cut of the GIWAXS maps (right) for FA0.7MA0.25Cs0.05PbI3 (cubic phase) thin films under various illumination times and the recovery spectra [110] (color online).

  • Figure 17

    (a) Scanning electron microscope characterization of the interfacial stability of the cell [122]. (b) Cross-sectional EBIC mapping images of the stability of a perovskite under electron beams [124]. (c) 3D reconstructed ToF-SIMS mappings that show the composition redistribution within the cell after aging [125]. (d) N1s XPS spectra of a (FA, MA)Pb(I, Br)3 film without and with a polystyrene (PS) covering layer before (0 min) and after (60 min) heat aging [126]. (e) The influence of heat aging on perovskite phase separation illustrated by time-dependent photoluminescence spectra [126] (color online).

  • Figure 18

    (a) I-V curves and (b) the derived charge transfer properties of the cell after aging for different times. (c) Mott-Schottky curves, (d) charge density, and (e, f) Arrhenius curves of the cell before and after aging to illustrate the changes in the defect properties [129]. (g) Time-dependent transient photovoltage of a cell under an electrical bias and (h) the derived influence of the bias on the bulk and interfacial charge recombination [133] (color online).

  • Table 1   Stability of PSCs containing different perovskite layers

    Perovskite

    PCE (%)

    Efficiency decay(percentage of initialefficiency)

    MPP orshelf stability

    Tracking conditions

    Ref.

    Cs0.05(MA0.17FA0.83)0.95Pb-(I0.83Br0.17)3

    21.1

    85

    MPP

    Held at room temperature under full illumination in a N2 atmosphere for 250 h.

    [6]

    RbCsMAFA

    20.6

    95

    MPP

    At 85 °C for 500 h under full illumination in a N2 atmosphere.

    [7]

    Rb5Cs10FAPbI3

    20.35

    98

    MPP

    After 1,000 h of aging at room temperature in a N2 atmosphere.

    [9]

    CsPbI2Br

    16.07

    95

    Shelf stability

    After 1,000 h of storage in air with 30% relative humidity (RH) at room temperature.

    [17]

    CsPbl3·0.025EDAPbI4

    11.8

    10

    Shelf stability

    After being stored in a dark dry box for 1 month without any encapsulation.

    [18]

    γ-CsPbI3

    11.3

    100

    MPP

    After continuous operation under 1-sun illumination for >7,000 s.

    [21]

    FA0.83Cs0.17Pb(IyBr1−y)3

    19.5

    80

    Shelf stability

    Post burn-in for 1,000 h in air without encapsulation and ~4,000 h when encapsulated.

    [28]

    (ThMA)2(MA)n−1PbnI3n+1

    15.42

    90

    Shelf stability

    After storing in air in the dark with 30%±10% RH for ~1,000 h without encapsulation.

    [29]

    FASnI3

    9

    59

    Shelf stability

    After 76 h of exposure to air without any encapsulation in ~20% RH ambient environment.

    [30]

    MAPbI3-PEA2Pb2I4

    19.89

    >60

    Shelf stability

    30 d of storage without encapsulation in 20%–30% RH ambient environment.

    [31]

    Cs0.1FA0.74MA0.13PbI2.48Br0.39

    20.1

    92

    Shelf stability

    Stored in a dry box with 200 h of continuous illumination at ~50 °C without encapsulation.

    [33]

    (FAPbI3)0.85(MAPbBr3)0.15

    21.7

    >87

    Shelf stability

    After 38 d of storage without encapsulation in 75%±20% RH ambient environment.

    [34]

    MAPbI3

    19.19

    >80

    Shelf stability

    After 1,000 h of light soaking or 500 h of thermal aging at 85 °C.

    [40]

    (5-AVA)x(MA)1−xPbI3

    12.8

    100

    MPP

    1,000 h in ambient air under full sunlight irradiation.

    [45]

    4-ABPACl modifiedCH3NH3PbX3

    16.7

    >80

    Shelf stability

    After being encapsulated and exposed to a high temperature of 85 °C for 350 h in the dark.

    [46]

    AB-MAPbI3

    15.6

    90

    MPP

    Under 1-sun illumination for 100 h without encapsulation.

    [47]

    FA0.83MA0.17PbI2.51Br0.49

    19.1

    65

    Shelf stability

    Without encapsulation under constant light soaking without a UV filter and with a 60% RH for 4 d

    [48]

    P123 functionalized MAPbI3

    19.4

    92

    Shelf stability

    After 480 h of 1-sun illumination without encapsulation under a dry N2 atmosphere.

    [52]

    TMTA-based MAPbI3

    19.26

    80

    MPP

    Without encapsulation for 400 h under full-sun AM 1.5 G illumination without any UV filter.

    [53]

    MMI treated MAPbI3

    20.1

    94

    Shelf stability

    Stored in N2 without encapsulation in dark condition for over 3 months.

    [57]

    DR3T treated MAPbI3

    19.3

    87

    Shelf stability

    40 d of exposure in 50% RH at room temperature without encapsulation.

    [64]

    BrPh-ThR and bis-PCBM based (FAI)0.81(PbI2)0.85-(MABr)0.15(PbBr2)0.15

    21.7

    90

    MPP

    After 1,500 h under continuous operation at 1-sun illumination and 55 °C in N2.

    [65]

  • Table 2   Stability of PSCs with different device configurations

    Device configurations

    PCE (%)

    Efficiency decay(percentage of initialefficiency)

    MPP or shelf stability

    Tracking conditions

    Ref.

    FTO/c-TiO2/m-TiO2/Perovskite/Spiro-MeOTAD/Au

    21.6

    95

    MPP

    At 85 °C under full illumination.

    [7]

    ITO/TiO2-Cl/Perovskite/Spiro-MeOTAD/Au

    20.1

    90

    MPP

    500 h under 1-sun illumination without encapsulation and with a 420-nm cut-off UV filter.

    [66]

    FTO/c-TiO2/m-TiO2/Perovskite/Spiro-MeOTAD/Au

    15.12

    87

    Shelf stability

    In open air with 70% RH for over 500 h without encapsulation.

    [69]

    FTO/LBSO/MAPbI3/PTAA/Au

    21.2

    93

    Shelf stability

    1,000 h of full-sun illumination (including UV radiation, AM 1.5G, 100 mW/cm2).

    [70]

    FTO/TiO2/Perovskite/CuSCN/rGO/Au

    20.6

    >95

    MPP

    Aged for 1,000 h under full-light illumination at 60 °C without encapsulation in N2 atmosphere.

    [71]

    FTO/bl-Cu:NiOx/mp-Cu:NiOx/MAPbI3/PC61BM/bis-C60/Ag

    18.1

    94

    Shelf stability

    After 1,000 h of dark storage without encapsulation at 25 °C and with <30% RH.

    [72]

    FTO/C60/Perovskite/Spiro-OMeTAD/Au

    18.3

    80

    Shelf stability

    After 650 h of aging under full-sun illumination without encapsulation.

    [73]

    FTO/SnO2/CH3NH3PbI3/RCP/Au

    17.3

    100

    Shelf stability

    Over 1,400 h at 75% humidity without encapsulation.

    [74]

    ITO/c-TiO2/Perovskite/Spiro-MeOTAD/Au

    18

    60–70

    Shelf stability

    After 70 d in humidity conditions (from 40% to 50%–70%) without encapsulation.

    [75]

    ITO/PTAA/Perovskite/C60/Cu

    20.4

    100

    MPP

    Under 1 Sun equivalent white LED irradiation in a glovebox.

    [76]

    FTO/NiMgLiO/Perovskite/PCBM/Ti(Nb)Ox/Ag

    16.2

    >90

    Shelf stability

    1,000 h in short-circuit conditions to full sunlight.

    [77]

    ITO/NiOx/Perovskite/ZnO/Al

    16.1

    90

    Shelf stability

    Stored in air at room temperature for 60 d.

    [79]

    FTO/TiO2(perovskite)/ZrO2(perovskite)/Carbon(perovskite)

    11.2

    100

    Shelf stability

    Encapsulated, after 10,000 h under 1 sun AM 1.5G conditions at 55 °C and at short-circuit conditions.

    [81]

    FTO/TiO2(perovskite)/ZrO2(perovskite)/Carbon(perovskite)

    10.4

    100

    Shelf stability

    Encapsulated and on the shelf in the dark for over 1 year.

    [82]

    FTO/TiO2/Sb2S3/CH3NH3PbI3/CuSCN/Au

    5.24

    65

    Shelf stability

    Without encapsulation after 12 h.

    [85]

    FTO/c-TiO2/m-TiO2/Perovskite/Spiro-MeOTAD/Au

    8.7

    >50

    Shelf stability

    After 12 h of AM 1.5G illumination using a down-shifting (DS) YVO4:Eu3+ nano-phosphor layer.

    [86]

    FTO/TiO2/CsBr/Perovskite/Spiro-OMeTAD/Au

    16.3

    >70

    Shelf stability

    After 20 min of UV irradiation in air without encapsulation.

    [89]

    ITO/SnO2/Perovskite/EH44/MoOx/Al

    16.62

    94

    MPP

    After 1,000 h of continuous, unencapsulated ambient operation.

    [90]

    FTO/c-TiO2/m-TiO2/Perovskite/TTF-1/Ag

    11.03

    80

    Shelf stability

    After 360 h in air at a RH of ~40% without encapsulation.

    [95]

    FTO/TiO2/Perovskite/Al2O3/HTM/Au

    13.07

    95

    Shelf stability

    Under AM 1.5G illumination with encapsulation. for 350 h.

    [99]

    FTO/TiO2/Perovskite/CuSCN/Spiro-OMeTAD/Au

    12.5

    90

    MPP

    Under AM 1.5G irradiation with encapsulation.

    [100]

    FTO/TiO2/Perovskite/Spiro-OMeTAD/Cr/Au

    20.6

    83

    MPP

    Under 1-sun illumination at 75 °C and a flow of N2.

    [103]

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号