logo

Research activities on perovskite solar cells in China

More info
  • ReceivedJan 23, 2019
  • AcceptedMar 7, 2019
  • PublishedApr 2, 2019

Abstract

Perovskite solar cells (PSCs) have attracted much attention because of their high efficiencies and low costs for production. Although academic research started late in China, compared to that in Europe and Korea, the majority of active PSC research is now conducted in China; furthermore, Chinese research groups currently hold the certified highest efficiency record for both an individual PSC and a PSC module. China is also the world’s largest supplier of solar modules, making it a promising country in which to realize the commercialization of PSCs. Herein, we review PSC research activities undertaken in China (both academic and industrial) and discuss significant remaining challenges to overcome for early commercialization of PSCs. We propose that research activities shift away from material and device structure development toward improving PSC stability and developing methods for large-area module fabrication. In addition, we suggest that a recognized certification center is urgently needed in China to further accelerate PSC research.


Funded by

the National Natural Science Foundation of China(11574199,11674219)


Acknowledgment

We thank Dr. D. Cui and Dr. Z. Dai from Shanghai Jiao Tong University (China) for collecting part of the data discussed in this review. This work was supported by the National Natural Science Foundation of China (11574199, 11674219).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050-6051 CrossRef PubMed Google Scholar

[2] Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Science, 2012, 338: 643-647 CrossRef PubMed ADS Google Scholar

[3] Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG. Sci Rep, 2012, 2: 591 CrossRef PubMed ADS Google Scholar

[4] Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M. Nature, 2013, 499: 316-319 CrossRef PubMed ADS Google Scholar

[5] Liu M, Johnston MB, Snaith HJ. Nature, 2013, 501: 395-398 CrossRef PubMed ADS Google Scholar

[6] Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI. Nat Mater, 2014, 13: 897-903 CrossRef PubMed ADS Google Scholar

[7] Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345: 542-546 CrossRef PubMed ADS Google Scholar

[8] Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, Ho-Baillie AWY. Prog Photovolt Res Appl, 2019, 27: 3-12 CrossRef Google Scholar

[9] Cai ML, Wu YZ, Chen H, Yang XD, Qiang YH, Han LY. Adv Sci, 2017, 4: 1600269. Google Scholar

[10] Wang Y, Yue Y, Yang X, Han L. Adv Energy Mater, 2018, 8: 1800249. Google Scholar

[11] Yang D, Yang R, Zhang J, Yang Z, (Frank) Liu S, Li C. Energy Environ Sci, 2015, 8: 3208-3214 CrossRef Google Scholar

[12] Ke W, Fang G, Wang J, Qin P, Tao H, Lei H, Liu Q, Dai X, Zhao X. ACS Appl Mater Interfaces, 2014, 6: 15959-15965 CrossRef PubMed Google Scholar

[13] Wu YZ, Yang XD, Chen H, Zhang K, Qin CJ, Liu J, Peng WQ, Islam A, Bi EB, Ye F, Yin MS, Zhang P, Han LY. Appl Phys Express, 2014, 7: 052301. Google Scholar

[14] Yang D, Zhou X, Yang R, Yang Z, Yu W, Wang X, Li C, Liu SF, Chang RPH. Energy Environ Sci, 2016, 9: 3071-3078 CrossRef Google Scholar

[15] Ito S, Tanaka S, Manabe K, Nishino H. J Phys Chem C, 2014, 118: 16995-17000 CrossRef Google Scholar

[16] Ke W, Fang G, Liu Q, Xiong L, Qin P, Tao H, Wang J, Lei H, Li B, Wan J, Yang G, Yan Y. J Am Chem Soc, 2015, 137: 6730-6733 CrossRef PubMed Google Scholar

[17] Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J. Nat Energy, 2017, 2: 1-7 CrossRef ADS Google Scholar

[18] Jiang Q, Chu ZN, Wang PY, Yang XL, Liu H, Wang Y, Yin ZG, Wu JL, Zhang XW, You JB. Adv Mater, 2017, 29: 1703852. Google Scholar

[19] Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu SF. Nat Commun, 2018, 9: 3239 CrossRef PubMed ADS Google Scholar

[20] Chen H, Pan X, Liu W, Cai M, Kou D, Huo Z, Fang X, Dai S. Chem Commun, 2013, 49: 7277-7279 CrossRef PubMed Google Scholar

[21] Jeng JY, Chiang YF, Lee MH, Peng SR, Guo TF, Chen P, Wen TC. Adv Mater, 2013, 25: 3727-3732 CrossRef PubMed Google Scholar

[22] Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M, Han L. Science, 2015, 350: 944-948 CrossRef PubMed Google Scholar

[23] Sessolo M, Bolink HJ. Science, 2015, 350: 917 CrossRef PubMed Google Scholar

[24] Wu Y, Yang X, Chen W, Yue Y, Cai M, Xie F, Bi E, Islam A, Han L. Nat Energy, 2016, 1: 16148 CrossRef ADS Google Scholar

[25] Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade GF, Watts JF, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend RH, Gong Q, Snaith HJ, Zhu R. Science, 2018, 360: 1442-1446 CrossRef PubMed ADS Google Scholar

[26] Liu Y, Ren X, Zhang J, Yang Z, Yang D, Yu F, Sun J, Zhao C, Yao Z, Wang B, Wei Q, Xiao F, Fan H, Deng H, Deng L, Liu SF. Sci China Chem, 2017, 60: 1367-1376 CrossRef Google Scholar

[27] Fröbius AC, Funch P. Nat Commun, 2017, 8: 9 CrossRef PubMed ADS Google Scholar

[28] Liu YC, Yang Z, Liu SZ. Adv Sci, 2018, 5: 1700471. Google Scholar

[29] Lal NN, White TP, Catchpole KR. IEEE J Photovoltaics, 2014, 4: 1380-1386 CrossRef Google Scholar

[30] Zhu S, Hou F, Huang W, Yao X, Shi B, Ren Q, Chen J, Yan L, An S, Zhou Z, Ren H, Wei C, Huang Q, Li Y, Hou G, Chen X, Ding Y, Wang G, Li B, Zhao Y, Zhang X. Sol RRL, 2018, 2: 1800176 CrossRef Google Scholar

[31] Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ. Energy Environ Sci, 2014, 7: 982-988 CrossRef Google Scholar

[32] Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI. Nature, 2015, 517: 476-480 CrossRef PubMed ADS Google Scholar

[33] Xie F, Chen CC, Wu Y, Li X, Cai M, Liu X, Yang X, Han L. Energy Environ Sci, 2017, 10: 1942-1949 CrossRef Google Scholar

[34] Wu YZ, Xie FX, Chen H, Yang XD, Su HM, Cai ML, Zhou ZM, Noda T, Han LY. Adv Mater, 2017, 29: 1701073. Google Scholar

[35] Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J. Nat Commun, 2018, 9: 2225 CrossRef PubMed ADS Google Scholar

[36] Wang Y, Zhang T, Kan M, Zhao Y. J Am Chem Soc, 2018, 140: 12345-12348 CrossRef PubMed Google Scholar

[37] Hu Y, Zhang Z, Mei A, Jiang Y, Hou X, Wang Q, Du K, Rong Y, Zhou Y, Xu G, Han H. Adv Mater, 2018, 30: 1705786 CrossRef PubMed Google Scholar

[38] Hu Y, Si S, Mei A, Rong Y, Liu H, Li X, Han H. Sol RRL, 2017, 1: 1600019 CrossRef Google Scholar

[39] Rong Y, Hu Y, Mei A, Tan H, Saidaminov MI, Seok SI, McGehee MD, Sargent EH, Han H. Science, 2018, 361: eaat8235 CrossRef PubMed Google Scholar

[40] Liu J, Wu Y, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Chen W, Han L. Energy Environ Sci, 2014, 7: 2963-2967 CrossRef Google Scholar

[41] Jiang X, Yu Z, Li HB, Zhao Y, Qu J, Lai J, Ma W, Wang D, Yang X, Sun L. J Mater Chem A, 2017, 5: 17862-17866 CrossRef Google Scholar

[42] Zhang J, Xu B, Yang L, Ruan C, Wang L, Liu P, Zhang W, Vlachopoulos N, Kloo L, Boschloo G, Sun L, Hagfeldt A, Johansson EMJ. Adv Energy Mater, 2018, 8: 1701209 CrossRef Google Scholar

[43] Hua Y, Xu B, Liu P, Chen H, Tian H, Cheng M, Kloo L, Sun L. Chem Sci, 2016, 7: 2633-2638 CrossRef PubMed Google Scholar

[44] Cheng M, Chen C, Xu B, Hua Y, Zhang F, Kloo L, Sun L. J Energy Chem, 2015, 24: 698-706 CrossRef Google Scholar

[45] Funnell T, Tasaki S, Oloumi A, Araki S, Kong E, Yap D, Nakayama Y, Hughes CS, Cheng SWG, Tozaki H, Iwatani M, Sasaki S, Ohashi T, Miyazaki T, Morishita N, Morishita D, Ogasawara-Shimizu M, Ohori M, Nakao S, Karashima M, Sano M, Murai A, Nomura T, Uchiyama N, Kawamoto T, Hara R, Nakanishi O, Shumansky K, Rosner J, Wan A, McKinney S, Morin GB, Nakanishi A, Shah S, Toyoshiba H, Aparicio S. Nat Commun, 2017, 8: 7 CrossRef PubMed ADS Google Scholar

[46] Li JW, Dong QS, Li N, Wang LD. Adv Energy Mater, 2017, 7: 8. Google Scholar

[47] Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H. Science, 2014, 345: 295-298 CrossRef PubMed ADS Google Scholar

[48] Li X, Tschumi M, Han H, Babkair SS, Alzubaydi RA, Ansari AA, Habib SS, Nazeeruddin MK, Zakeeruddin SM, Grätzel M. Energy Tech, 2015, 3: 551-555 CrossRef Google Scholar

[49] Cai M, Ishida N, Li X, Yang X, Noda T, Wu Y, Xie F, Naito H, Fujita D, Han L. Joule, 2018, 2: 296-306 CrossRef Google Scholar

[50] Park NG, Grätzel M, Miyasaka T, Zhu K, Emery K. Nat Energy, 2016, 1: 16152 CrossRef ADS Google Scholar

[51] Hacke P, Terwilliger K, Glick S, Trudell D, Bosco N, Johnston S, Kurtz S. Test-to-failure of crystalline silicon modules. In: 2010 35th IEEE Photovoltaic Specialists Conference. Honolulu, HI: IEEE, 2010. Google Scholar

[52] Ye F, Chen H, Xie F, Tang W, Yin M, He J, Bi E, Wang Y, Yang X, Han L. Energy Environ Sci, 2016, 9: 2295-2301 CrossRef Google Scholar

[53] Ye F, Tang WT, Xie FX, Yin MS, He JJ, Wang YB, Chen H, Qiang YH, Yang XD, Han LY. Adv Mater, 2017, 29: 1701440. Google Scholar

[54] Deng Y, Peng E, Shao Y, Xiao Z, Dong Q, Huang J. Energy Environ Sci, 2015, 8: 1544-1550 CrossRef Google Scholar

[55] Qin T, Huang W, Kim JE, Vak D, Forsyth C, McNeill CR, Cheng YB. Nano Energy, 2017, 31: 210-217 CrossRef Google Scholar

[56] Wang Y, Liu X, Zhou Z, Ru P, Chen H, Yang X, Han L. Adv Mater, 2019: e1803231. Google Scholar

[57] Yin MS, Xie F X, Li X, Wu YZ, Yang XD, Ye F, Wang YB, He JJ, Tang WT, Bi EB, Chen H, Han LY. Appl Phys Express, 2017, 10: 076601. Google Scholar

  • Figure 1

    (a) Efficiencies of perovskite solar cells obtained by research groups in China and by the rest of the world. List of abbreviations: Toin University of Yokohama (Toin U), Sungkyunkwan University (SKKU), Swiss Federal Institute of Technology (EPFL), Korea Research Institute of Chemical Technology (KRICT), and Institute of Semiconductors of the Chinese Academy of Sciences (ISCAS). (b) Numbers of publications from research groups in China and the world (color online).

  • Figure 2

    Possible structures for PSCs [10]. (a) Normal mesoporous structure; (b) normal planar structure; (c) inverted planar structure. List of abbreviations: hole-transport material (HTM), electron-transport material, fluorine-doped tin oxide (FTO) (color online).

  • Figure 3

    (a) Schematic structure of a SnO2-based normal-structured PSC; (b) energy level diagram of the structure shown in (a) [16]. List of abbreviations: 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluoren (Spiro-MeOTAD), methylammonium lead iodide (MAPbI3) (color online).

  • Figure 4

    Time-resolved photoluminescence of the perovskite film with and without excess PbI2 [17] (color online).

  • Figure 5

    (a) Schematic configuration of an inverted perovskite solar cell containing doped charge-transporting materials. The composition of Ti(Nb)Ox and the crystal structure of Li+-doped NixMg1–xO are also shown [22]; (b) schematic drawing of an inverted PSC containing a graded heterojunction [24]. List of abbreviations: hole-extracting layer (HEL), electron-extracting layer (EEL), graded heterojunction (GHJ), phenyl-C61-butyric acid methyl ester (PCBM) (color online).

  • Figure 6

    Current density-voltage curves for an inverted perovskite solar cell produced with or without using the solution-processed secondary growth process. Inset: schematic diagram of the cell [25]. List of abbreviations: bathocuproine (BCP), buckminsterfullerene (C60), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine) (PTA), indium tin oxide (ITO) (color online).

  • Figure 7

    (a) Formulation of the PbI2-MAI precursor solution in dimethylformamide (DMF) with MAAc and TSc additives; (b) schematic diagram of the additive-assisted one-step deposition of perovskite thin films [34] (color online).

  • Figure 8

    Schematic drawing of the ion diffusion inhibition by the carbon nanostructured layer [45]. List of abbreviations: colloidal quantum dots (CQDs), methylammonium iodide (MAI) (color online).

  • Figure 9

    Schematic cross-section of a fully printable mesoscopic perovskite solar cell [47] (color online).

  • Figure 10

    Certified efficiencies of PSC mini-modules developed by Chinese companies (color online).

  • Figure 11

    Pie chart showing the percentage of patents for PSC technologies held in China vs. the rest of the world (color online).

  • Figure 12

    Kelvin probe force microscopy measurements disclosing the position of the p-n junction in both a meso-structured PSC and a planar PSC [49] (color online).

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号