Vacuum-free fabrication of high-performance semitransparent perovskite solar cells via e-glue assisted lamination process

More info
  • ReceivedMar 2, 2019
  • AcceptedApr 23, 2019
  • PublishedMay 6, 2019


From a base material of conductive polymer (poly-(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS), a flexible and high-conductivity (as low as 45 Ω/sq) transparent electrode was fabricated on polydimethylsiloxane elastomer by an acid treatment and transfer process. Combined with the D-sorbitol-doped PEDOT:PSS electric glue, we successfully demonstrated a vacuum-free and ambient lamination fabrication process for semi-transparent perovskite solar cells using triple cation Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 perovskite. By this manufacturing-friendly lamination process, we fabricated semitransparent perovskite solar cell devices with power conversion efficiencies up to 16.4% and variable transparencies.

Funded by

Shenzhen Science and Technology Innovation Commission(JCYJ20170413154602102)

Research Grants Council(RGC)

the Project of Strategic Importance provided by the Hong Kong Polytechnic University(1-ZE29)

the Hong Kong Scholars Program(XJ2017046,Wei,Yu)

Hong Kong RGC CRF(C5015-15G)


This work was supported by Shenzhen Science and Technology Innovation Commission (JCYJ20170413154602102), Research Grants Council (RGC) of Hong Kong (15246816, 15218517), the Project of Strategic Importance provided by the Hong Kong Polytechnic University (1-ZE29), the Hong Kong Scholars Program (XJ2017046, Wei Yu), Hong Kong RGC CRF (C5015-15G).

Interest statement

The authors declare that they have no conflict of interest.


The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Best Research-Cell Efficiencies. https://www.nrel.gov/pv/cell-efficiency.html, accessed on 2019-03-01. Google Scholar

[2] Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter JM, Alsari M, Booker EP, Hutter EM, Pearson AJ, Lilliu S, Savenije TJ, Rensmo H, Divitini G, Ducati C, Friend RH, Stranks SD. Nature, 2018, 555: 497-501 CrossRef PubMed ADS Google Scholar

[3] Yang G, Chen C, Yao F, Chen Z, Zhang Q, Zheng X, Ma J, Lei H, Qin P, Xiong L, Ke W, Li G, Yan Y, Fang G, Yang G, Qin P, Fang G, Li G. Adv Mater, 2018, 30: 1706023 CrossRef PubMed Google Scholar

[4] Della Gaspera E, Peng Y, Hou Q, Spiccia L, Bach U, Jasieniak JJ, Cheng YB. Nano Energy, 2015, 13: 249-257 CrossRef Google Scholar

[5] Eperon GE, Burlakov VM, Goriely A, Snaith HJ. ACS Nano, 2014, 8: 591-598 CrossRef PubMed Google Scholar

[6] Kim BJ, Kim DH, Lee YY, Shin HW, Han GS, Hong JS, Mahmood K, Ahn TK, Joo YC, Hong KS, Park NG, Lee S, Jung HS. Energy Environ Sci, 2015, 8: 916-921 CrossRef Google Scholar

[7] Li Y, Meng L, Yang YM, Xu G, Hong Z, Chen Q, You J, Li G, Yang Y, Li Y. Nat Commun, 2016, 7: 10214 CrossRef PubMed ADS Google Scholar

[8] Qin PL, Yang G, Ren ZW, Cheung SH, So SK, Chen L, Hao J, Hou J, Li G. Adv Mater, 2018, 30: 1–12. Google Scholar

[9] Makha M, Fernandes SL, Jenatsch S, Offermans T, Schleuniger J, Tisserant JN, Véron AC, Hany R. Sci Tech Adv Mater, 2016, 17: 260-266 CrossRef PubMed Google Scholar

[10] Catrysse PB, Fan S. Nano Lett, 2010, 10: 2944-2949 CrossRef PubMed ADS Google Scholar

[11] Geim AK, Novoselov KS. Nat Mater, 2007, 6: 183-191 CrossRef PubMed ADS Google Scholar

[12] Tung VC, Kim J, Cote LJ, Huang J. J Am Chem Soc, 2011, 133: 9262-9265 CrossRef PubMed Google Scholar

[13] Xu F, Zhu Y. Adv Mater, 2012, 24: 5117-5122 CrossRef PubMed Google Scholar

[14] Zhu R, Chung CH, Cha KC, Yang W, Zheng YB, Zhou H, Song TB, Chen CC, Weiss PS, Li G, Yang Y. ACS Nano, 2011, 5: 9877-9882 CrossRef PubMed Google Scholar

[15] Kang MG, Joon Park H, Hyun Ahn S, Jay Guo L. Sol Energy Mater Sol Cells, 2010, 94: 1179-1184 CrossRef Google Scholar

[16] Jiang X, Wong FL, Fung MK, Lee ST. Appl Phys Lett, 2003, 83: 1875-1877 CrossRef ADS Google Scholar

[17] Lee JY, Connor ST, Cui Y, Peumans P. Nano Lett, 2008, 8: 689-692 CrossRef PubMed ADS Google Scholar

[18] Fan X, Xu B, Liu S, Cui C, Wang J, Yan F. ACS Appl Mater Interfaces, 2016, 8: 14029-14036 CrossRef Google Scholar

[19] Sze PW, Lee KW, Huang PC, Chou DW, Kao BS, Huang CJ. Energies, 2017, 10: 716 CrossRef Google Scholar

[20] Kim N, Kang H, Lee JH, Kee S, Lee SH, Lee K. Adv Mater, 2015, 27: 2317-2323 CrossRef PubMed Google Scholar

[21] Chen Y, Zhang L, Zhang Y, Gao H, Yan H. RSC Adv, 2018, 8: 10489-10508 CrossRef Google Scholar

[22] Abdollahi Nejand B, Gharibzadeh S, Ahmadi V, Shahverdi HR. J Phys Chem C, 2016, 120: 2520-2528 CrossRef Google Scholar

[23] Jiang Y, Luo B, Jiang F, Jiang F, Fuentes-Hernandez C, Liu T, Mao L, Xiong S, Li Z, Wang T, Kippelen B, Zhou Y. Nano Lett, 2016, 16: 7829-7835 CrossRef PubMed ADS Google Scholar

[24] Xiao S, Chen H, Jiang F, Bai Y, Zhu Z, Zhang T, Zheng X, Qian G, Hu C, Zhou Y, Qu Y, Yang S. Adv Mater Interfaces, 2016, 3: 1600484 CrossRef Google Scholar

[25] Zhang Y, Wu Z, Li P, Ono LK, Qi Y, Zhou J, Shen H, Surya C, Zheng Z. Adv Energy Mater, 2018, 8: 1–10. Google Scholar

[26] Ouyang J, Yang Y, Huang J, Li G, Yang Y. Adv Mater, 2006, 18: 2141-2144 CrossRef Google Scholar

[27] He T, Ding H, Peor N, Lu M, Corley DA, Chen B, Ofir Y, Gao Y, Yitzchaik S, Tour JM. J Am Chem Soc, 2008, 130: 1699-1710 CrossRef PubMed Google Scholar

[28] Zhang Y, Wu Z, Li P, Ono LK, Qi Y, Zhou J, Shen H, Surya C, Zheng Z. Adv Energy Mater, 2018, 8: 1701569 CrossRef Google Scholar

[29] You P, Liu Z, Tai Q, Liu S, Yan F. Adv Mater, 2015, 27: 3632-3638 CrossRef PubMed Google Scholar

[30] Tee BCK, Ouyang J. Adv Mater, 2018, 30: 1802560 CrossRef PubMed Google Scholar

[31] Bryant D, Greenwood P, Troughton J, Wijdekop M, Carnie M, Davies M, Wojciechowski K, Snaith HJ, Watson T, Worsley D. Adv Mater, 2014, 26: 7499-7504 CrossRef PubMed Google Scholar

[32] Shao Y, Wang Q, Dong Q, Yuan Y, Huang J. Nano Energy, 2015, 16: 47-53 CrossRef Google Scholar

  • Figure 1

    (a) Schematic of a transparent perovskite solar cell; (b) optical image of the HC-Tape; (c) comparison of squared resistances of PEDOT:PSS prepared in different acid treatments and D-sorbitol doping treatments; (d) optical transmission spectra of FTO, PDMS, PDMS/n-PEDOT:PSS, and HC-Tape (PDMS/n-PEDOT:PSS/electric glue) (color online).

  • Figure 2

    AFM images of (a) pristine PEDOT:PSS film and (b) n-PEDOT:PSS film after nitric acid treatment (color online).

  • Figure 3

    SEM image of perovskite film.

  • Figure 4

    (a) J-V curves of the reference device (FTO/SnO2/Perovskite/Spiro-OMeTAD/Au), laminated devices (with e-glue) illuminated from the bottom FTO and top HC-Tape sides, laminated devices (without e-glue) illuminated from the bottom FTO side; (b) EQE spectra of the reference and laminated devices (with or without e-glue) illuminated from both the bottom and top electrodes (color online).

  • Figure 5

    (a) J-V curves of opaque and transparent devices with different thicknesses (260 and 470 nm); (b) EQE spectra of the 260 nm- and 470 nm-thick opaque and transparent devices (color online).

  • Figure 6

    Optical transmission of semi-transparent perovskite solar cells with different thicknesses (150, 260 and 470 nm) (color online).

  • Table 1   Performance parameters of the fabricated solar cell

    Back contact

    Illumination direction

    Voc (V)

    Jsc (mA/cm2)

    FF (%)

    PCE (%)



















    n-PEDOT:PSS laminate w/o e-glue






  • Table 2   Performance parameters of solar cells with different thicknesses and transparencies


    Illumination direction

    Voc (V)

    Jsc (mA/cm2)

    FF (%)

    PCE (%)

    Opaque (470 nm)






    Semi-transparent (470 nm)






    Opaque (260 nm)






    Semi-transparent (260 nm)






Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号