logo

SCIENCE CHINA Chemistry, Volume 62 , Issue 8 : 1044-1050(2019) https://doi.org/10.1007/s11426-019-9486-0

Defect passivation of CsPbI2Br perovskites through Zn(II) doping: toward efficient and stable solar cells

More info
  • ReceivedMar 23, 2019
  • AcceptedApr 25, 2019
  • PublishedJun 5, 2019

Abstract

Defect passivation is an important strategy to achieve perovskite solar cells (PVSCs) with enhanced power conversion efficiencies (PCEs) and improved stability because the trap states induced by defects in the interfaces and grain boundaries of perovskites are harmful to both large open circuit voltage and high photocurrent of devices. Here, zinc cations (Zn2+) were used as a dopant to passivate defects of the CsPbI2Br perovskite leading to Zn2+-doped CsPbI2Br film with fewer trap states, improved charge transportation, and enhanced light-harvesting ability. Thus, the best-performance PVSC based on CsPbI2Br with the optimal Zn2+ doping shows a higher PCE of 12.16% with a larger open-circuit voltage (VOC) of 1.236 V, an improved short-circuit current (JSC) of 15.61 mA cm−2 in comparison with the control device based on the pure CsPbI2Br which exhibits a PCE of 10.21% with a VOC of 1.123 V, a JSC of 13.27 mA cm−2. Time-resolved photoluminescence results show that the Zn2+ doping leads to perovskite film with extended photoluminescence lifetime which means a longer diffusion length and subsequently enhanced photocurrent and open circuit voltage. This work provides a simple strategy to boost the performance of PVSCs through Zn2+ doping.


Funded by

the National Natural Science Foundation of China(U1605241)

the Key Research Program of Frontier Sciences

CAS(QYZDB-SSW-SLH032)

and the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB20030300)

UPS

and EDX elemental mapping measurements(ShanghaiTech,University)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (U1605241), the Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-SLH032), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20030300). We thank Prof. Zhijun Ning and Mr. Xianyuan Jiang for their help with SEM, UPS, and EDX elemental mapping measurements (ShanghaiTech University).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M, Han L. Science, 2015, 350: 944-948 CrossRef PubMed Google Scholar

[2] Li M, Wang ZK, Kang T, Yang Y, Gao X, Hsu CS, Li Y, Liao LS. Nano Energy, 2018, 43: 47-54 CrossRef Google Scholar

[3] McMeekin DP, Sadoughi G, Rehman W, Eperon GE, Saliba M, Hörantner MT, Haghighirad A, Sakai N, Korte L, Rech B, Johnston MB, Herz LM, Snaith HJ. Science, 2016, 351: 151-155 CrossRef PubMed ADS Google Scholar

[4] Jeon NJ, Na H, Jung EH, Yang TY, Lee YG, Kim G, Shin HW, Il Seok S, Lee J, Seo J. Nat Energy, 2018, 3: 682-689 CrossRef Google Scholar

[5] Polman A, Knight M, Garnett EC, Ehrler B, Sinke WC. Science, 2016, 352: aad4424 CrossRef PubMed Google Scholar

[6] Wang Z, Shi Z, Li T, Chen Y, Huang W. Angew Chem Int Ed, 2017, 56: 1190-1212 CrossRef PubMed Google Scholar

[7] Akbulatov AF, Luchkin SY, Frolova LA, Dremova NN, Gerasimov KL, Zhidkov IS, Anokhin DV, Kurmaev EZ, Stevenson KJ, Troshin PA. J Phys Chem Lett, 2017, 8: 1211-1218 CrossRef PubMed Google Scholar

[8] Lee JW, Kim DH, Kim HS, Seo SW, Cho SM, Park NG. Adv Energy Mater, 2015, 5: 1501310 CrossRef Google Scholar

[9] Sutter-Fella CM, Ngo QP, Cefarin N, Gardner KL, Tamura N, Stan CV, Drisdell WS, Javey A, Toma FM, Sharp ID. Nano Lett, 2018, 18: 3473-3480 CrossRef PubMed ADS Google Scholar

[10] Zhou W, Zhao Y, Zhou X, Fu R, Li Q, Zhao Y, Liu K, Yu D, Zhao Q. J Phys Chem Lett, 2017, 8: 4122-4128 CrossRef PubMed Google Scholar

[11] Liu C, Li W, Zhang C, Ma Y, Fan J, Mai Y. J Am Chem Soc, 2018, 140: 3825-3828 CrossRef PubMed Google Scholar

[12] Liang J, Wang C, Wang Y, Xu Z, Lu Z, Ma Y, Zhu H, Hu Y, Xiao C, Yi X, Zhu G, Lv H, Ma L, Chen T, Tie Z, Jin Z, Liu J. J Am Chem Soc, 2016, 138: 15829-15832 CrossRef PubMed Google Scholar

[13] Swarnkar A, Marshall AR, Sanehira EM, Chernomordik BD, Moore DT, Christians JA, Chakrabarti T, Luther JM. Science, 2016, 354: 92-95 CrossRef PubMed ADS Google Scholar

[14] Park YH, Jeong I, Bae S, Son HJ, Lee P, Lee J, Lee CH, Ko MJ. Adv Funct Mater, 2017, 27: 1605988 CrossRef Google Scholar

[15] Sutton RJ, Eperon GE, Miranda L, Parrott ES, Kamino BA, Patel JB, Hörantner MT, Johnston MB, Haghighirad AA, Moore DT, Snaith HJ. Adv Energy Mater, 2016, 6: 1502458 CrossRef Google Scholar

[16] Lu J, Chen SC, Zheng Q. ACS Appl Energy Mater, 2018, 1: 5872-5878 CrossRef Google Scholar

[17] Bai D, Bian H, Jin Z, Wang H, Meng L, Wang Q, (Frank) Liu S. Nano Energy, 2018, 52: 408-415 CrossRef Google Scholar

[18] Zhang L, Li B, Yuan J, Wang M, Shen T, Huang F, Wen W, Cao G, Tian J. J Phys Chem Lett, 2018, 9: 3646-3653 CrossRef PubMed Google Scholar

[19] Zeng Q, Zhang X, Liu C, Feng T, Chen Z, Zhang W, Zheng W, Zhang H, Yang B. Sol RRL, 2019, 3: 1800239 CrossRef Google Scholar

[20] Chen CY, Lin HY, Chiang KM, Tsai WL, Huang YC, Tsao CS, Lin HW. Adv Mater, 2017, 29: 1605290 CrossRef PubMed Google Scholar

[21] Zeng Q, Zhang X, Feng X, Lu S, Chen Z, Yong X, Redfern SAT, Wei H, Wang H, Shen H, Zhang W, Zheng W, Zhang H, Tse JS, Yang B. Adv Mater, 2018, 30: 1705393 CrossRef PubMed Google Scholar

[22] Yan L, Xue Q, Liu M, Zhu Z, Tian J, Li Z, Chen Z, Chen Z, Yan H, Yip HL, Cao Y. Adv Mater, 2018, 30: 1802509 CrossRef PubMed Google Scholar

[23] Chen W, Chen H, Xu G, Xue R, Wang S, Li Y, Li Y. Joule, 2019, 3: 191-204 CrossRef Google Scholar

[24] Zhou Y, Chen J, Bakr OM, Sun HT. Chem Mater, 2018, 30: 6589-6613 CrossRef Google Scholar

[25] Yang F, Hirotani D, Kapil G, Kamarudin MA, Ng CH, Zhang Y, Shen Q, Hayase S. Angew Chem Int Ed, 2018, 57: 12745-12749 CrossRef PubMed Google Scholar

[26] Lau CFJ, Zhang M, Deng X, Zheng J, Bing J, Ma Q, Kim J, Hu L, Green MA, Huang S, Ho-Baillie A. ACS Energy Lett, 2017, 2: 2319-2325 CrossRef Google Scholar

[27] Bai D, Zhang J, Jin Z, Bian H, Wang K, Wang H, Liang L, Wang Q, Liu SF. ACS Energy Lett, 2018, 3: 970-978 CrossRef Google Scholar

[28] Xiang W, Wang Z, Kubicki DJ, Tress W, Luo J, Prochowicz D, Akin S, Emsley L, Zhou J, Dietler G, Grätzel M, Hagfeldt A. Joule, 2019, 3: 205-214 CrossRef Google Scholar

[29] Jin J, Li H, Chen C, Zhang B, Xu L, Dong B, Song H, Dai Q. ACS Appl Mater Interfaces, 2017, 9: 42875-42882 CrossRef Google Scholar

[30] Almutawah ZS, Watthage SC, Song Z, Ahangharnejhad RH, Subedi KK, Shrestha N, Phillips AB, Yan Y, Ellingson RJ, Heben MJ. MRS Adv, 2018, 3: 3237-3242 CrossRef Google Scholar

[31] De Marco N, Zhou H, Chen Q, Sun P, Liu Z, Meng L, Yao EP, Liu Y, Schiffer A, Yang Y. Nano Lett, 2016, 16: 1009-1016 CrossRef PubMed ADS Google Scholar

[32] Nanda J, Sarma DD. J Appl Phys, 2001, 90: 2504-2510 CrossRef ADS Google Scholar

[33] Sengar SK, Mehta BR, Gupta G. Appl Phys Lett, 2011, 98: 193115. Google Scholar

[34] Måtensson N, Nilsson A. J Electron Spectr Relat Phenom, 1995, 75: 209-223 CrossRef Google Scholar

[35] Xu W, Zheng L, Zhang X, Cao Y, Meng T, Wu D, Liu L, Hu W, Gong X. Adv Energy Mater, 2018, 8: 1703178 CrossRef Google Scholar

[36] Bi D, Tress W, Dar MI, Gao P, Luo J, Renevier C, Schenk K, Abate A, Giordano F, Correa Baena JP, Decoppet JD, Zakeeruddin SM, Nazeeruddin MK, Gra Tzel M, Hagfeldt A. Sci Adv, 2016, 2: e1501170 CrossRef PubMed ADS Google Scholar

[37] Yang Z, Rajagopal A, Jen AKY. Adv Mater, 2017, 29: 1704418 CrossRef PubMed Google Scholar

[38] Wang F, Jiang X, Chen H, Shang Y, Liu H, Wei J, Zhou W, He H, Liu W, Ning Z. Joule, 2018, 2: 2732-2743 CrossRef Google Scholar

[39] Yin Z, Zheng Q, Chen SC, Cai D, Ma Y. Adv Energy Mater, 2016, 6: 1501493 CrossRef Google Scholar

[40] Hawash Z, Ono LK, Qi Y. Adv Mater Interfaces, 2018, 5: 1700623 CrossRef Google Scholar

[41] Chuang CHM, Brown PR, Bulović V, Bawendi MG. Nat Mater, 2014, 13: 796-801 CrossRef PubMed ADS Google Scholar

[42] Zhang J, Bai D, Jin Z, Bian H, Wang K, Sun J, Wang Q, Liu SF. Adv Energy Mater, 2018, 8: 1703246 CrossRef Google Scholar

[43] Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Nat Commun, 2014, 5: 5784 CrossRef PubMed ADS Google Scholar

[44] Deng Y, Dong Q, Bi C, Yuan Y, Huang J. Adv Energy Mater, 2016, 6: 1600372 CrossRef Google Scholar

  • Figure 1

    (a) XRD patterns; (b) the Gaussian fitting curves for (100) peaks of the CsPbI2Br films with Zn-x%; (c, d) top-view SEM images of the CsPbI2Br films with (c) Zn-0%, (d) Zn-7.5% (color online).

  • Figure 2

    EDX elemental mapping of the CsPbI2Br film with Zn-7.5%. Scale bar: 1 μm (color online).

  • Figure 3

    XPS spectra of the CsPbI2Br films with Zn-x% incorporation. (a) Cs 3d; (b) Pb 4f; (c) I 3d; (d) Br 3d (color online).

  • Figure 4

    (a) Absorption and (b) steady-state PL spectra; (c) TRPL spectra of the CsPbI2Br films with Zn-x%; UPS spectra for (d) valence band edge and (e) secondary electron cutoff edge of the CsPbI2Br films with Zn-x%; (f) energy level diagram of ITO, SnO2, the CsPbI2Br films with Zn-x%, Spiro-OMeTAD, MoO3 and Ag (color online).

  • Figure 5

    (a) The schematic structure of the CsPbI2Br PVSCs; (b) cross-section SEM image of the perovskite solar cells; (c) current-voltage characteristic and (d) EQE spectra and the corresponding integrated JSC curves of the champion PVSCs; (e) PCE statistical distribution histograms of PVSCs based on pure CsPbI2Br; (f) PCE statistical distribution histograms of PVSCs based on CsPbI2Br with Zn-7.5% (color online).

  • Table 1   Detailed photovoltaic properties of the PVSCs based on CsPbIBr with Zn-%

    Doping ratio

    VOC (V)

    JSC(mA cm−2)

    FF

    PCE (%) a)

    Zn-0%

    1.123

    13.27

    0.685

    10.21 (9.31±0.63)

    Zn-2.5%

    1.155

    13.96

    0.659

    10.62 (9.79±0.46)

    Zn-5.0%

    1.174

    14.82

    0.638

    11.10 (10.56±0.56)

    Zn-7.5%

    1.236

    15.61

    0.630

    12.16 (11.78±0.22)

    Zn-10.0%

    1.164

    15.03

    0.587

    10.26 (10.02±0.24)

    In parentheses are average values based on more than 8 devices.

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号