logo

Polycyclic aromatic hydrocarbons in the graphene era

More info
  • ReceivedFeb 25, 2019
  • AcceptedApr 29, 2019
  • PublishedJun 25, 2019

Abstract

Polycyclic aromatic hydrocarbons (PAHs) have been the subject of interdisciplinary research in the fields of chemistry, physics, materials science, and biology. Notably, PAHs have drawn increasing attention since the discovery of graphene, which has been regarded as the “wonder” material in the 21st century. Different from semimetallic graphene, nanoscale graphenes, such as graphene nanoribbons and graphene quantum dots, exhibit finite band gaps owing to the quantum confinement, making them attractive semiconductors for next-generation electronic applications. Researches based on PAHs and graphenes have expanded rapidly over the past decade, thereby posing a challenge in conducting a comprehensive review. This study aims to interconnect the fields of PAHs and graphenes, which have mainly been discussed separately. In particular, by selecting representative examples, we explain how these two domains can stimulate each other. We hope that this integrated approach can offer new opportunities and further promote synergistic developments in these fields.


Acknowledgment

The authors thank all of their distinguished collaborators and research associates who enabled the achievements partly described in this article. This article is a tribute to scientific interaction and its benefit. This work was supported by the European Union Projects GENIUS (ITN-264694), UPGRADE, MoQuaS, and Graphene Flagship (CNECT-ICT-604391), European Research Council (ERC)-Adv.-Grant 267160 (NANOGRAPH), the Office of Naval Research Basic Research Challenge (BRC) Program (molecular synthesis and characterization), the Max Planck Society, the German Chemical Industry Association, the Alexander von Humboldt Foundation. BASF SE and Samsung are gratefully acknowledged. X.Y. is thankful for a fellowship from the China Scholarship Council.

Funding note Open access funding provided by Max Planck Society.


Open access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Hirsch A. Nat Mater, 2010, 9: 868-871 CrossRef ADS Google Scholar

[2] Georgakilas V, Perman JA, Tucek J, Zboril R. Chem Rev, 2015, 115: 4744-4822 CrossRef PubMed Google Scholar

[3] Geim AK, Novoselov KS. Nat Mater, 2007, 6: 183-191 CrossRef PubMed ADS Google Scholar

[4] Geim AK. Science, 2009, 324: 1530-1534 CrossRef PubMed ADS arXiv Google Scholar

[5] Novoselov KS, Fal'Ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. Nature, 2012, 490: 192-200 CrossRef ADS Google Scholar

[6] Wang XY, Narita A, Müllen K. Nat Rev Chem, 2017, 2: 0100 CrossRef Google Scholar

[7] Ferrari AC, Bonaccorso F, Fal'ko V, Novoselov KS, Roche S, Bøggild P, Borini S, Koppens FHL, Palermo V, Pugno N, Garrido JA, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhänen T, Morpurgo A, Coleman JN, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider GF, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko AN, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams GM, Hee Hong B, Ahn JH, Min Kim J, Zirath H, van Wees BJ, van der Zant H, Occhipinti L, Di Matteo A, Kinloch IA, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil SRT, Tannock Q, Löfwander T, Kinaret J. Nanoscale, 2015, 7: 4598-4810 CrossRef ADS Google Scholar

[8] Avouris P, Dimitrakopoulos C. Mater Today, 2012, 15: 86-97 CrossRef Google Scholar

[9] Allen MJ, Tung VC, Kaner RB. Chem Rev, 2010, 110: 132-145 CrossRef PubMed Google Scholar

[10] Chen L, Hernandez Y, Feng X, Müllen K. Angew Chem Int Ed, 2012, 51: 7640-7654 CrossRef PubMed Google Scholar

[11] Peierls RE. Ann Inst Henri Poincare, 1935, 5: 177–222. Google Scholar

[12] Landau LD. Phys Z Sowjetunion, 1937, 11: 26–35. Google Scholar

[13] Mermin ND. Phys Rev, 1968, 176: 250-254 CrossRef ADS Google Scholar

[14] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306: 666-669 CrossRef PubMed ADS Google Scholar

[15] Schwierz F. Nat Nanotech, 2010, 5: 487-496 CrossRef PubMed ADS Google Scholar

[16] Narita A, Chen Z, Chen Q, Müllen K. Chem Sci, 2019, 10: 964-975 CrossRef PubMed Google Scholar

[17] Li X, Wang X, Zhang L, Lee S, Dai H. Science, 2008, 319: 1229-1232 CrossRef PubMed ADS Google Scholar

[18] Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H. Phys Rev Lett, 2008, 100: 206803 CrossRef PubMed ADS arXiv Google Scholar

[19] Jiao L, Wang X, Diankov G, Wang H, Dai H. Nat Nanotech, 2010, 5: 321-325 CrossRef PubMed ADS arXiv Google Scholar

[20] Tour JM. Chem Mater, 2014, 26: 163-171 CrossRef Google Scholar

[21] Han MY, Ozyilmaz B, Zhang Y, Kim P. Phys Rev Lett, 2007, 98: 206805 CrossRef PubMed ADS Google Scholar

[22] Son YW, Cohen ML, Louie SG. Phys Rev Lett, 2006, 97: 216803 CrossRef PubMed ADS Google Scholar

[23] Han W, Kawakami RK, Gmitra M, Fabian J. Nat Nanotech, 2014, 9: 794-807 CrossRef PubMed ADS arXiv Google Scholar

[24] Cao T, Zhao F, Louie SG. Phys Rev Lett, 2017, 119: 076401 CrossRef PubMed ADS arXiv Google Scholar

[25] Shen J, Zhu Y, Yang X, Li C. Chem Commun, 2012, 48: 3686 CrossRef PubMed Google Scholar

[26] Zhang Z, Zhang J, Chen N, Qu L. Energy Environ Sci, 2012, 5: 8869 CrossRef Google Scholar

[27] Yan X, Li B, Li L. Acc Chem Res, 2013, 46: 2254-2262 CrossRef PubMed Google Scholar

[28] Müllen K, Wegner G. Electronic Materials: the Oligomer Approach. Weinheim: John Wiley & Sons, 2008. Google Scholar

[29] Watson MD, Fechtenkötter A, Müllen K. Chem Rev, 2001, 101: 1267-1300 CrossRef Google Scholar

[30] Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem Rev, 2012, 112: 2208-2267 CrossRef PubMed Google Scholar

[31] Dou L, Liu Y, Hong Z, Li G, Yang Y. Chem Rev, 2015, 115: 12633-12665 CrossRef PubMed Google Scholar

[32] Murphy AR, Fréchet JMJ. Chem Rev, 2007, 107: 1066-1096 CrossRef PubMed Google Scholar

[33] Clar E, Schoental R. Polycyclic Hydrocarbons. Vol. 2. Berlin, Heidelberg: Springer, 1964. Google Scholar

[34] Armit JW, Robinson R. J Chem Soc Trans, 1925, 127: 1604-1618 CrossRef Google Scholar

[35] Payamyar P, King BT, Öttinger HC, Schlüter AD. Chem Commun, 2016, 52: 18-34 CrossRef PubMed Google Scholar

[36] Zdetsis AD. J Phys Chem C, 2018, 122: 17526-17536 CrossRef Google Scholar

[37] Gutzler R, Perepichka DF. J Am Chem Soc, 2013, 135: 16585-16594 CrossRef PubMed Google Scholar

[38] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Science, 2009, 324: 1312-1314 CrossRef PubMed ADS arXiv Google Scholar

[39] Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Özyilmaz B, Ahn JH, Hong BH, Iijima S. Nat Nanotech, 2010, 5: 574-578 CrossRef PubMed ADS Google Scholar

[40] Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P. Science, 2010, 327: 662 CrossRef PubMed ADS arXiv Google Scholar

[41] Tzalenchuk A, Lara-Avila S, Kalaboukhov A, Paolillo S, Syväjärvi M, Yakimova R, Kazakova O, Janssen TJBM, Fal'ko V, Kubatkin S. Nat Nanotech, 2010, 5: 186-189 CrossRef PubMed ADS arXiv Google Scholar

[42] Wan X, Chen K, Liu D, Chen J, Miao Q, Xu J. Chem Mater, 2012, 24: 3906-3915 CrossRef Google Scholar

[43] Tan YZ, Yang B, Parvez K, Narita A, Osella S, Beljonne D, Feng X, Müllen K. Nat Commun, 2013, 4: 2646 CrossRef PubMed ADS Google Scholar

[44] Stein SE, Brown RL. J Am Chem Soc, 1987, 109: 3721-3729 CrossRef Google Scholar

[45] Salem L. J Am Chem Soc, 1968, 90: 543-552 CrossRef Google Scholar

[46] Dewar MJS. The Molecular Orbital Theory of Organic Chemistry. New York: McGraw-Hill, 1969. Google Scholar

[47] Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Chem Rev, 2016, 116: 962-1052 CrossRef PubMed Google Scholar

[48] Chen L, Li C, Müllen K. J Mater Chem C, 2014, 2: 1938-1956 CrossRef Google Scholar

[49] Fabian J, Nakazumi H, Matsuoka M. Chem Rev, 1992, 92: 1197-1226 CrossRef Google Scholar

[50] Allamandola LJ, Tielens AGGM, Barker JR. Astrophys J Suppl Ser, 1989, 71: 733-775 CrossRef ADS Google Scholar

[51] Tielens AGGM. Annu Rev Astron Astrophys, 2008, 46: 289-337 CrossRef ADS Google Scholar

[52] Anthony JE. Chem Rev, 2006, 106: 5028-5048 CrossRef PubMed Google Scholar

[53] Abdel-Shafy HI, Mansour MSM. Egyptian J Pet, 2016, 25: 107-123 CrossRef Google Scholar

[54] Gingras M. Chem Soc Rev, 2013, 42: 968-1006 CrossRef PubMed Google Scholar

[55] Gingras M, Félix G, Peresutti R. Chem Soc Rev, 2013, 42: 1007-1050 CrossRef PubMed Google Scholar

[56] Gingras M. Chem Soc Rev, 2013, 42: 1051-1095 CrossRef PubMed Google Scholar

[57] Shen Y, Chen CF. Chem Rev, 2012, 112: 1463-1535 CrossRef PubMed Google Scholar

[58] Song H, Reed MA, Lee T. Adv Mater, 2011, 23: 1583-1608 CrossRef PubMed Google Scholar

[59] Xiang D, Wang X, Jia C, Lee T, Guo X. Chem Rev, 2016, 116: 4318-4440 CrossRef PubMed Google Scholar

[60] Stabel A, Herwig P, Müllen K, Rabe JP. Angew Chem Int Ed, 1995, 34: 1609-1611 CrossRef Google Scholar

[61] Dong L, Wang S, Wang W, Chen C, Lin T, Adisoejoso J, Lin N. Transition metals trigger on-surface ullmann coupling reaction: intermediate, catalyst and template. In: Gourdon A, Ed. On-Surface Synthesis. Advances in Atom and Single Molecule Machines. Cham: Springer International Publishing, 2016. 23–42. Google Scholar

[62] Sun Q, Zhang R, Qiu J, Liu R, Xu W. Adv Mater, 2018, 30: 1705630 CrossRef PubMed Google Scholar

[63] Talirz L, Ruffieux P, Fasel R. Adv Mater, 2016, 28: 6222-6231 CrossRef PubMed Google Scholar

[64] Figueira-Duarte TM, Müllen K. Chem Rev, 2011, 111: 7260-7314 CrossRef PubMed Google Scholar

[65] Sun M, Müllen K, Yin M. Chem Soc Rev, 2016, 45: 1513-1528 CrossRef PubMed Google Scholar

[66] Segawa Y, Ito H, Itami K. Nat Rev Mater, 2016, 1: 15002 CrossRef ADS Google Scholar

[67] Narita A, Wang XY, Feng X, Müllen K. Chem Soc Rev, 2015, 44: 6616-6643 CrossRef PubMed Google Scholar

[68] Majewski MA, Stępień M. Angew Chem Int Ed, 2019, 58: 86-116 CrossRef PubMed Google Scholar

[69] Ito H, Ozaki K, Itami K. Angew Chem Int Ed, 2017, 56: 11144-11164 CrossRef PubMed Google Scholar

[70] Ito H, Segawa Y, Murakami K, Itami K. J Am Chem Soc, 2019, 141: 3-10 CrossRef PubMed Google Scholar

[71] Stępień M, Gońka E, Żyła M, Sprutta N. Chem Rev, 2017, 117: 3479–3716. Google Scholar

[72] Mas-Torrent M, Rovira Ć. Chem Rev, 2011, 111: 4833-4856 CrossRef PubMed Google Scholar

[73] Mei J, Diao Y, Appleton AL, Fang L, Bao Z. J Am Chem Soc, 2013, 135: 6724-6746 CrossRef PubMed Google Scholar

[74] Wu J, Pisula W, Müllen K. Chem Rev, 2007, 107: 718-747 CrossRef PubMed Google Scholar

[75] Lei T, Wang JY, Pei J. Chem Mater, 2014, 26: 594-603 CrossRef Google Scholar

[76] Sergeyev S, Pisula W, Geerts YH. Chem Soc Rev, 2007, 36: 1902 CrossRef PubMed Google Scholar

[77] Günes S, Neugebauer H, Sariciftci NS. Chem Rev, 2007, 107: 1324–1338. Google Scholar

[78] Roy-Mayhew JD, Aksay IA. Chem Rev, 2014, 114: 6323-6348 CrossRef PubMed Google Scholar

[79] Feng X, Pisula W, Müllen K. Pure Appl Chem, 2009, 81: 2203–2224. Google Scholar

[80] Rieger R, Müllen K. J Phys Org Chem, 2010, 23: 315-325 CrossRef Google Scholar

[81] Sun Z, Ye Q, Chi C, Wu J. Chem Soc Rev, 2012, 41: 7857 CrossRef PubMed Google Scholar

[82] Grzybowski M, Skonieczny K, Butenschön H, Gryko DT. Angew Chem Int Ed, 2013, 52: 9900-9930 CrossRef PubMed Google Scholar

[83] Simpson CD, Brand JD, Berresheim AJ, Przybilla L, Räder HJ, Müllen K. Chem Eur J, 2002, 8: 1424-1429 CrossRef Google Scholar

[84] Kawasumi K, Zhang Q, Segawa Y, Scott LT, Itami K. Nat Chem, 2013, 5: 739-744 CrossRef PubMed ADS Google Scholar

[85] Ormsby JL, Black TD, Hilton CL, Bharat CL, King BT. Tetrahedron, 2008, 64: 11370-11378 CrossRef Google Scholar

[86] Pradhan A, Dechambenoit P, Bock H, Durola F. J Org Chem, 2013, 78: 2266-2274 CrossRef PubMed Google Scholar

[87] Dou X, Yang X, Bodwell GJ, Wagner M, Enkelmann V, Müllen K. Org Lett, 2007, 9: 2485-2488 CrossRef PubMed Google Scholar

[88] Wentrup C. Angew Chem Int Ed, 2017, 56: 14808-14835 CrossRef PubMed Google Scholar

[89] Tsefrikas VM, Scott LT. Chem Rev, 2006, 106: 4868-4884 CrossRef PubMed Google Scholar

[90] Scott LT, Boorum MM, McMahon BJ, Hagen S, Mack J, Blank J, Wegner H, de Meijere A. Science, 2002, 295: 1500-1503 CrossRef PubMed ADS Google Scholar

[91] Scott LT, Jackson EA, Zhang Q, Steinberg BD, Bancu M, Li B. J Am Chem Soc, 2012, 134: 107-110 CrossRef PubMed Google Scholar

[92] Mallory FB, Mallory CW. Org React, 2004, 30: 1. Google Scholar

[93] Laarhoven WH. Recl Trav Chim Pays-Bas, 1983, 102: 185-204 CrossRef Google Scholar

[94] Meier H. Angew Chem Int Ed Engl, 1992, 31: 1399-1420 CrossRef Google Scholar

[95] Xiao S, Myers M, Miao Q, Sanaur S, Pang K, Steigerwald ML, Nuckolls C. Angew Chem Int Ed, 2005, 44: 7390-7394 CrossRef PubMed Google Scholar

[96] Dössel L, Gherghel L, Feng X, Müllen K. Angew Chem Int Ed, 2011, 50: 2540-2543 CrossRef PubMed Google Scholar

[97] Daigle M, Picard-Lafond A, Soligo E, Morin JF. Angew Chem Int Ed, 2016, 55: 2042-2047 CrossRef PubMed Google Scholar

[98] Jackson EA, Steinberg BD, Bancu M, Wakamiya A, Scott LT. J Am Chem Soc, 2007, 129: 484-485 CrossRef PubMed Google Scholar

[99] Amsharov KY, Kabdulov MA, Jansen M. Angew Chem Int Ed, 2012, 51: 4594-4597 CrossRef PubMed Google Scholar

[100] Gross L, Mohn F, Moll N, Liljeroth P, Meyer G. Science, 2009, 325: 1110-1114 CrossRef PubMed ADS Google Scholar

[101] Treier M, Pignedoli CA, Laino T, Rieger R, Müllen K, Passerone D, Fasel R. Nat Chem, 2010, 3: 61-67 CrossRef PubMed ADS Google Scholar

[102] Fort EH, Donovan PM, Scott LT. J Am Chem Soc, 2009, 131: 16006-16007 CrossRef PubMed Google Scholar

[103] Clar E, Zander M. J Chem Soc, 1957, : 4616 CrossRef Google Scholar

[104] Fort EH, Scott LT. Angew Chem Int Ed, 2010, 49: 6626-6628 CrossRef PubMed Google Scholar

[105] Some S, Dutta B, Ray JK. Tetrahedron Lett, 2006, 47: 1221-1224 CrossRef Google Scholar

[106] Iuliano A, Piccioli P, Fabbri D. Org Lett, 2004, 6: 3711-3714 CrossRef PubMed Google Scholar

[107] Bonifacio MC, Robertson CR, Jung JY, King BT. J Org Chem, 2005, 70: 8522-8526 CrossRef PubMed Google Scholar

[108] Xia Y, Liu Z, Xiao Q, Qu P, Ge R, Zhang Y, Wang J. Angew Chem Int Ed, 2012, 51: 5714-5717 CrossRef PubMed Google Scholar

[109] Senese DA, Chalifoux AW. Molecules, 2018, 24. Google Scholar

[110] Yao T, Campo MA, Larock RC. Org Lett, 2004, 6: 2677-2680 CrossRef PubMed Google Scholar

[111] Goldfinger MB, Crawford KB, Swager TM. J Am Chem Soc, 1997, 119: 4578-4593 CrossRef Google Scholar

[112] Jin T, Zhao J, Asao N, Yamamoto Y. Chem Eur J, 2014, 20: 3554-3576 CrossRef PubMed Google Scholar

[113] Donovan PM, Scott LT. J Am Chem Soc, 2004, 126: 3108-3112 CrossRef PubMed Google Scholar

[114] Shen HC, Tang JM, Chang HK, Yang CW, Liu RS. J Org Chem, 2005, 70: 10113-10116 CrossRef PubMed Google Scholar

[115] Schuler B, Collazos S, Gross L, Meyer G, Pérez D, Guitián E, Peña D. Angew Chem Int Ed, 2014, 53: 9004-9006 CrossRef PubMed Google Scholar

[116] Rüdiger EC, Porz M, Schaffroth M, Rominger F, Bunz UHF. Chem Eur J, 2014, 20: 12725-12728 CrossRef PubMed Google Scholar

[117] Nagao I, Shimizu M, Hiyama T. Angew Chem Int Ed, 2009, 48: 7573-7576 CrossRef PubMed Google Scholar

[118] Yue W, Gao J, Li Y, Jiang W, Di Motta S, Negri F, Wang Z. J Am Chem Soc, 2011, 133: 18054-18057 CrossRef PubMed Google Scholar

[119] Dang H, Garcia-Garibay MA. J Am Chem Soc, 2001, 123: 355-356 CrossRef Google Scholar

[120] Dang H, Levitus M, Garcia-Garibay MA. J Am Chem Soc, 2002, 124: 136-143 CrossRef Google Scholar

[121] Lütke Eversloh C, Avlasevich Y, Li C, Müllen K. Chem Eur J, 2011, 17: 12756-12762 CrossRef PubMed Google Scholar

[122] Ozaki K, Kawasumi K, Shibata M, Ito H, Itami K. Nat Commun, 2015, 6: 6251 CrossRef PubMed ADS Google Scholar

[123] Kato K, Segawa Y, Itami K. Can J Chem, 2016, 95: 329-333 CrossRef Google Scholar

[124] Narita A, Feng X, Müllen K. Chem Record, 2015, 15: 295-309 CrossRef PubMed Google Scholar

[125] Hou ICY, Hu Y, Narita A, Müllen K. Polym J, 2018, 50: 3-20 CrossRef Google Scholar

[126] Yang X, Dou X, Rouhanipour A, Zhi L, Räder HJ, Müllen K. J Am Chem Soc, 2008, 130: 4216-4217 CrossRef PubMed Google Scholar

[127] Schwab MG, Narita A, Hernandez Y, Balandina T, Mali KS, De Feyter S, Feng X, Müllen K. J Am Chem Soc, 2012, 134: 18169-18172 CrossRef PubMed Google Scholar

[128] Wu J, Gherghel L, Watson MD, Li J, Wang Z, Simpson CD, Kolb U, Müllen K. Macromolecules, 2003, 36: 7082-7089 CrossRef ADS Google Scholar

[129] Shifrina ZB, Averina MS, Rusanov AL, Wagner M, Müllen K. Macromolecules, 2000, 33: 3525-3529 CrossRef ADS Google Scholar

[130] Narita A, Feng X, Hernandez Y, Jensen SA, Bonn M, Yang H, Verzhbitskiy IA, Casiraghi C, Hansen MR, Koch AHR, Fytas G, Ivasenko O, Li B, Mali KS, Balandina T, Mahesh S, De Feyter S, Müllen K. Nat Chem, 2013, 6: 126-132 CrossRef PubMed ADS Google Scholar

[131] Konnerth R, Cervetti C, Narita A, Feng X, Müllen K, Hoyer A, Burghard M, Kern K, Dressel M, Bogani L. Nanoscale, 2015, 7: 12807-12811 CrossRef PubMed ADS Google Scholar

[132] Soavi G, Dal Conte S, Manzoni C, Viola D, Narita A, Hu Y, Feng X, Hohenester U, Molinari E, Prezzi D, Müllen K, Cerullo G. Nat Commun, 2016, 7: 11010 CrossRef PubMed ADS Google Scholar

[133] Verzhbitskiy IA, Corato MD, Ruini A, Molinari E, Narita A, Hu Y, Schwab MG, Bruna M, Yoon D, Milana S, Feng X, Müllen K, Ferrari AC, Casiraghi C, Prezzi D. Nano Lett, 2016, 16: 3442-3447 CrossRef PubMed ADS arXiv Google Scholar

[134] Zhao S, Rondin L, Delport G, Voisin C, Beser U, Hu Y, Feng X, Müllen K, Narita A, Campidelli S, Lauret JS. Carbon, 2017, 119: 235-240 CrossRef Google Scholar

[135] El Gemayel M, Narita A, Dössel LF, Sundaram RS, Kiersnowski A, Pisula W, Hansen MR, Ferrari AC, Orgiu E, Feng X, Müllen K, Samorì P. Nanoscale, 2014, 6: 6301-6314 CrossRef PubMed ADS Google Scholar

[136] Abbas AN, Liu G, Narita A, Orosco M, Feng X, Müllen K, Zhou C. J Am Chem Soc, 2014, 136: 7555-7558 CrossRef PubMed Google Scholar

[137] Ivanov I, Hu Y, Osella S, Beser U, Wang HI, Beljonne D, Narita A, Müllen K, Turchinovich D, Bonn M. J Am Chem Soc, 2017, 139: 7982-7988 CrossRef PubMed Google Scholar

[138] Jensen SA, Ulbricht R, Narita A, Feng X, Müllen K, Hertel T, Turchinovich D, Bonn M. Nano Lett, 2013, 13: 5925-5930 CrossRef PubMed ADS Google Scholar

[139] Huang Y, Mai Y, Beser U, Teyssandier J, Velpula G, van Gorp H, Straasø LA, Hansen MR, Rizzo D, Casiraghi C, Yang R, Zhang G, Wu D, Zhang F, Yan D, De Feyter S, Müllen K, Feng X. J Am Chem Soc, 2016, 138: 10136-10139 CrossRef PubMed Google Scholar

[140] Yang W, Lucotti A, Tommasini M, Chalifoux WA. J Am Chem Soc, 2016, 138: 9137-9144 CrossRef PubMed Google Scholar

[141] Schwab MG, Narita A, Osella S, Hu Y, Maghsoumi A, Mavrinsky A, Pisula W, Castiglioni C, Tommasini M, Beljonne D, Feng X, Müllen K. Chem Asian J, 2015, 10: 2134-2138 CrossRef PubMed Google Scholar

[142] Li G, Yoon KY, Zhong X, Wang J, Zhang R, Guest JR, Wen J, Zhu XY, Dong G. Nat Commun, 2018, 9: 1687 CrossRef PubMed ADS Google Scholar

[143] Li G, Yoon KY, Zhong X, Zhu X, Dong G. Chem Eur J, 2016, 22: 9116-9120 CrossRef PubMed Google Scholar

[144] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R. Nature, 2010, 466: 470-473 CrossRef PubMed ADS Google Scholar

[145] Zhang H, Lin H, Sun K, Chen L, Zagranyarski Y, Aghdassi N, Duhm S, Li Q, Zhong D, Li Y, Müllen K, Fuchs H, Chi L. J Am Chem Soc, 2015, 137: 4022-4025 CrossRef PubMed Google Scholar

[146] Sun K, Ji P, Zhang H, Niu K, Li L, Chen A, Li Q, Müllen K, Chi L. Faraday Discuss, 2017, 204: 297-305 CrossRef PubMed ADS Google Scholar

[147] Sun Q, Zhang C, Li Z, Kong H, Tan Q, Hu A, Xu W. J Am Chem Soc, 2013, 135: 8448-8451 CrossRef PubMed Google Scholar

[148] Chen Z, Zhang W, Palma CA, Lodi Rizzini A, Liu B, Abbas A, Richter N, Martini L, Wang XY, Cavani N, Lu H, Mishra N, Coletti C, Berger R, Klappenberger F, Kläui M, Candini A, Affronte M, Zhou C, de Renzi V, del Pennino U, Barth JV, Räder HJ, Narita A, Feng X, Müllen K. J Am Chem Soc, 2016, 138: 15488-15496 CrossRef PubMed Google Scholar

[149] Sakaguchi H, Kawagoe Y, Hirano Y, Iruka T, Yano M, Nakae T. Adv Mater, 2014, 26: 4134-4138 CrossRef PubMed Google Scholar

[150] Yang S, Lohe MR, Müllen K, Feng X. Adv Mater, 2016, 28: 6213-6221 CrossRef PubMed Google Scholar

[151] Lavin-Lopez MP, Valverde JL, Sanchez-Silva L, Romero A. Ind Eng Chem Res, 2016, 55: 845-855 CrossRef Google Scholar

[152] Gao H, Hu G. RSC Adv, 2016, 6: 10132-10143 CrossRef Google Scholar

[153] Yi M, Shen Z. J Mater Chem A, 2015, 3: 11700-11715 CrossRef Google Scholar

[154] Yazdi G, Iakimov T, Yakimova R. Crystals, 2016, 6: 53 CrossRef Google Scholar

[155] Wang H, Yu G. Adv Mater, 2016, 28: 4956-4975 CrossRef PubMed Google Scholar

[156] Li X, Colombo L, Ruoff RS. Adv Mater, 2016, 28: 6247-6252 CrossRef PubMed Google Scholar

[157] Chen X, Wu B, Liu Y. Chem Soc Rev, 2016, 45: 2057-2074 CrossRef PubMed Google Scholar

[158] Jiang L, Niu T, Lu X, Dong H, Chen W, Liu Y, Hu W, Zhu D. J Am Chem Soc, 2013, 135: 9050-9054 CrossRef PubMed Google Scholar

[159] Liang T, Kong Y, Chen H, Xu M. Chin J Chem, 2016, 34: 32-40 CrossRef Google Scholar

[160] Magda GZ, Jin X, Hagymási I, Vancsó P, Osváth Z, Nemes-Incze P, Hwang C, Biró LP, Tapasztó L. Nature, 2014, 514: 608-611 CrossRef PubMed ADS Google Scholar

[161] Talirz L, Söde H, Dumslaff T, Wang S, Sanchez-Valencia JR, Liu J, Shinde P, Pignedoli CA, Liang L, Meunier V, Plumb NC, Shi M, Feng X, Narita A, Müllen K, Fasel R, Ruffieux P. ACS Nano, 2017, 11: 1380-1388 CrossRef Google Scholar

[162] Jordan RS, Li YL, Lin CW, McCurdy RD, Lin JB, Brosmer JL, Marsh KL, Khan SI, Houk KN, Kaner RB, Rubin Y. J Am Chem Soc, 2017, 139: 15878-15890 CrossRef PubMed Google Scholar

[163] Jänsch D, Ivanov I, Zagranyarski Y, Duznovic I, Baumgarten M, Turchinovich D, Li C, Bonn M, Müllen K. Chem Eur J, 2017, 23: 4870-4875 CrossRef PubMed Google Scholar

[164] Chen Z, Wang HI, Bilbao N, Teyssandier J, Prechtl T, Cavani N, Tries A, Biagi R, de Renzi V, Feng X, Kläui M, de Feyter S, Bonn M, Narita A, Müllen K. J Am Chem Soc, 2017, 139: 9483-9486 CrossRef PubMed Google Scholar

[165] Jordan RS, Wang Y, McCurdy RD, Yeung MT, Marsh KL, Khan SI, Kaner RB, Rubin Y. Chem, 2016, 1: 78-90 CrossRef Google Scholar

[166] Kimouche A, Ervasti MM, Drost R, Halonen S, Harju A, Joensuu PM, Sainio J, Liljeroth P. Nat Commun, 2015, 6: 10177 CrossRef PubMed ADS Google Scholar

[167] Basagni A, Sedona F, Pignedoli CA, Cattelan M, Nicolas L, Casarin M, Sambi M. J Am Chem Soc, 2015, 137: 1802-1808 CrossRef PubMed Google Scholar

[168] Chen YC, de Oteyza DG, Pedramrazi Z, Chen C, Fischer FR, Crommie MF. ACS Nano, 2013, 7: 6123-6128 CrossRef Google Scholar

[169] Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Liao Z, Yu D, Wang E, Ding F, Peng H, Liu K. Nat Nanotech, 2016, 11: 930-935 CrossRef PubMed ADS Google Scholar

[170] Huang H, Wei D, Sun J, Wong SL, Feng YP, Neto AHC, Wee ATS. Sci Rep, 2012, 2: 983 CrossRef PubMed ADS Google Scholar

[171] Yang L, Park CH, Son YW, Cohen ML, Louie SG. Phys Rev Lett, 2007, 99: 186801 CrossRef PubMed ADS Google Scholar

[172] Son YW, Cohen ML, Louie SG. Nature, 2006, 444: 347-349 CrossRef PubMed ADS Google Scholar

[173] Ruffieux P, Wang S, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli CA, Passerone D, Dumslaff T, Feng X, Müllen K, Fasel R. Nature, 2016, 531: 489-492 CrossRef PubMed ADS arXiv Google Scholar

[174] Jia X, Campos-Delgado J, Terrones M, Meunier V, Dresselhaus MS. Nanoscale, 2011, 3: 86-95 CrossRef ADS Google Scholar

[175] Girit CO, Meyer JC, Erni R, Rossell MD, Kisielowski C, Yang L, Park CH, Crommie MF, Cohen ML, Louie SG, Zettl A. Science, 2009, 323: 1705-1708 CrossRef ADS Google Scholar

[176] Dumslaff T, Yang B, Maghsoumi A, Velpula G, Mali KS, Castiglioni C, de Feyter S, Tommasini M, Narita A, Feng X, Müllen K. J Am Chem Soc, 2016, 138: 4726-4729 CrossRef Google Scholar

[177] Gröning O, Wang S, Yao X, Pignedoli CA, Borin Barin G, Daniels C, Cupo A, Meunier V, Feng X, Narita A, Müllen K, Ruffieux P, Fasel R. Nature, 2018, 560: 209-213 CrossRef PubMed ADS arXiv Google Scholar

[178] Rizzo DJ, Veber G, Cao T, Bronner C, Chen T, Zhao F, Rodriguez H, Louie SG, Crommie MF, Fischer FR. Nature, 2018, 560: 204-208 CrossRef PubMed ADS arXiv Google Scholar

[179] Anthony JE. Angew Chem Int Ed, 2008, 47: 452-483 CrossRef PubMed Google Scholar

[180] Anthony JE, Brooks JS, Eaton DL, Parkin SR. J Am Chem Soc, 2001, 123: 9482-9483 CrossRef Google Scholar

[181] Dorel R, Echavarren AM. Eur J Org Chem, 2017, 2017(1): 14-24 CrossRef PubMed Google Scholar

[182] Herwig PT, Müllen K. Adv Mater, 1999, 11: 480-483 CrossRef Google Scholar

[183] Mondal R, Shah BK, Neckers DC. J Am Chem Soc, 2006, 128: 9612-9613 CrossRef PubMed Google Scholar

[184] Mondal R, Tönshoff C, Khon D, Neckers DC, Bettinger HF. J Am Chem Soc, 2009, 131: 14281-14289 CrossRef PubMed Google Scholar

[185] Tönshoff C, Bettinger HF. Angew Chem Int Ed, 2010, 49: 4125-4128 CrossRef PubMed Google Scholar

[186] Krüger J, García F, Eisenhut F, Skidin D, Alonso JM, Guitián E, Pérez D, Cuniberti G, Moresco F, Peña D. Angew Chem Int Ed, 2017, 56: 11945-11948 CrossRef PubMed Google Scholar

[187] Zuzak R, Dorel R, Kolmer M, Szymonski M, Godlewski S, Echavarren AM. Angew Chem Int Ed, 2018, 57: 10500-10505 CrossRef PubMed Google Scholar

[188] Scholl R, Mansfeld J. Ber Dtsch Chem Ges, 1910, 43: 1734-1746 CrossRef Google Scholar

[189] Scholl R, Seer C, Weitzenböck R. Ber Dtsch Chem Ges, 1910, 43: 2202-2209 CrossRef Google Scholar

[190] Clar E. Chem Ber, 1948, 81: 52-63 CrossRef Google Scholar

[191] Clar E. Chem Ber, 1949, 82: 46-60 CrossRef Google Scholar

[192] Ajayakumar MR, Fu Y, Ma J, Hennersdorf F, Komber H, Weigand JJ, Alfonsov A, Popov AA, Berger R, Liu J, Müllen K, Feng X. J Am Chem Soc, 2018, 140: 6240-6244 CrossRef PubMed Google Scholar

[193] Ni Y, Gopalakrishna TY, Phan H, Herng TS, Wu S, Han Y, Ding J, Wu J. Angew Chem Int Ed, 2018, 57: 9697-9701 CrossRef PubMed Google Scholar

[194] Rogers C, Chen C, Pedramrazi Z, Omrani AA, Tsai HZ, Jung HS, Lin S, Crommie MF, Fischer FR. Angew Chem Int Ed, 2015, 54: 15143-15146 CrossRef PubMed Google Scholar

[195] Zeng W, Qi Q, Wu J. Eur J Org Chem, 2017, 2018: 7. Google Scholar

[196] Zeng W, Phan H, Herng TS, Gopalakrishna TY, Aratani N, Zeng Z, Yamada H, Ding J, Wu J. Chem, 2017, 2: 81-92 CrossRef Google Scholar

[197] Konishi A, Hirao Y, Matsumoto K, Kurata H, Kishi R, Shigeta Y, Nakano M, Tokunaga K, Kamada K, Kubo T. J Am Chem Soc, 2013, 135: 1430-1437 CrossRef PubMed Google Scholar

[198] Konishi A, Hirao Y, Nakano M, Shimizu A, Botek E, Champagne B̂, Shiomi D, Sato K, Takui T, Matsumoto K, Kurata H, Kubo T. J Am Chem Soc, 2010, 132: 11021-11023 CrossRef PubMed Google Scholar

[199] Wang S, Talirz L, Pignedoli CA, Feng X, Müllen K, Fasel R, Ruffieux P. Nat Commun, 2016, 7: 11507 CrossRef PubMed ADS arXiv Google Scholar

[200] Talirz L, Söde H, Cai J, Ruffieux P, Blankenburg S, Jafaar R, Berger R, Feng X, Müllen K, Passerone D, Fasel R, Pignedoli CA. J Am Chem Soc, 2013, 135: 2060-2063 CrossRef PubMed Google Scholar

[201] Paternò GM, Chen Q, Wang XY, Liu J, Motti SG, Petrozza A, Feng X, Lanzani G, Müllen K, Narita A, Scotognella F. Angew Chem Int Ed, 2017, 56: 6753-6757 CrossRef PubMed Google Scholar

[202] Bellunato A, Arjmandi Tash H, Cesa Y, Schneider GF. ChemPhysChem, 2016, 17: 785-801 CrossRef PubMed Google Scholar

[203] Suenaga K, Koshino M. Nature, 2010, 468: 1088-1090 CrossRef PubMed ADS Google Scholar

[204] Zhang X, Xin J, Ding F. Nanoscale, 2013, 5: 2556-2569 CrossRef PubMed ADS Google Scholar

[205] Clar E, Stephen JF. Tetrahedron, 1965, 21: 467-470 CrossRef Google Scholar

[206] Ball M, Zhong Y, Wu Y, Schenck C, Ng F, Steigerwald M, Xiao S, Nuckolls C. Acc Chem Res, 2015, 48: 267-276 CrossRef PubMed Google Scholar

[207] Liu J, Li BW, Tan YZ, Giannakopoulos A, Sanchez-Sanchez C, Beljonne D, Ruffieux P, Fasel R, Feng X, Müllen K. J Am Chem Soc, 2015, 137: 6097-6103 CrossRef PubMed Google Scholar

[208] Pradhan A, Dechambenoit P, Bock H, Durola F. Angew Chem Int Ed, 2011, 50: 12582-12585 CrossRef PubMed Google Scholar

[209] Luo J, Xu X, Mao R, Miao Q. J Am Chem Soc, 2012, 134: 13796-13803 CrossRef PubMed Google Scholar

[210] Li C, Yang Y, Miao Q. Chem Asian J, 2018, 13: 884-894 CrossRef PubMed Google Scholar

[211] Lin WB, Li M, Fang L, Chen CF. Chin Chem Lett, 2018, 29: 40-46 CrossRef Google Scholar

[212] Berezhnaia V, Roy M, Vanthuyne N, Villa M, Naubron JV, Rodriguez J, Coquerel Y, Gingras M. J Am Chem Soc, 2017, 139: 18508-18511 CrossRef PubMed Google Scholar

[213] Hosokawa T, Takahashi Y, Matsushima T, Watanabe S, Kikkawa S, Azumaya I, Tsurusaki A, Kamikawa K. J Am Chem Soc, 2017, 139: 18512-18521 CrossRef PubMed Google Scholar

[214] Fujikawa T, Segawa Y, Itami K. J Am Chem Soc, 2015, 137: 7763-7768 CrossRef PubMed Google Scholar

[215] Zhu Y, Xia Z, Cai Z, Yuan Z, Jiang N, Li T, Wang Y, Guo X, Li Z, Ma S, Zhong D, Li Y, Wang J. J Am Chem Soc, 2018, 140: 4222-4226 CrossRef PubMed Google Scholar

[216] Wang Y, Yin Z, Zhu Y, Gu J, Li Y, Wang J. Angew Chem Int Ed, 2019, 58: 587-591 CrossRef PubMed Google Scholar

[217] Schuster NJ, Paley DW, Jockusch S, Ng F, Steigerwald ML, Nuckolls C. Angew Chem Int Ed, 2016, 55: 13519-13523 CrossRef PubMed Google Scholar

[218] Evans PJ, Ouyang J, Favereau L, Crassous J, Fernández I, Perles J, Martín N. Angew Chem Int Ed, 2018, 57: 6774-6779 CrossRef PubMed Google Scholar

[219] Nakakuki Y, Hirose T, Sotome H, Miyasaka H, Matsuda K. J Am Chem Soc, 2018, 140: 4317-4326 CrossRef PubMed Google Scholar

[220] Daigle M, Miao D, Lucotti A, Tommasini M, Morin JF. Angew Chem Int Ed, 2017, 56: 6213-6217 CrossRef PubMed Google Scholar

[221] Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS. Chem Rev, 2012, 112: 6156-6214 CrossRef PubMed Google Scholar

[222] Englert JM, Dotzer C, Yang G, Schmid M, Papp C, Gottfried JM, Steinrück HP, Spiecker E, Hauke F, Hirsch A. Nat Chem, 2011, 3: 279-286 CrossRef PubMed ADS Google Scholar

[223] Chua CK, Pumera M. Chem Soc Rev, 2013, 42: 3222 CrossRef PubMed Google Scholar

[224] Eigler S, Hirsch A. Angew Chem Int Ed, 2014, 53: 7720-7738 CrossRef PubMed Google Scholar

[225] Chen D, Feng H, Li J. Chem Rev, 2012, 112: 6027-6053 CrossRef PubMed Google Scholar

[226] Fogel Y, Kastler M, Wang Z, Andrienko D, Bodwell GJ, Müllen K. J Am Chem Soc, 2007, 129: 11743-11749 CrossRef PubMed Google Scholar

[227] Zhou C, Chen S, Lou J, Wang J, Yang Q, Liu C, Huang D, Zhu T. Nanoscale Res Lett, 2014, 9: 26 CrossRef PubMed Google Scholar

[228] Pumera M, Wong CHA. Chem Soc Rev, 2013, 42: 5987 CrossRef PubMed Google Scholar

[229] Feng W, Long P, Feng Y, Li Y. Adv Sci, 2016, 3: 1500413 CrossRef PubMed Google Scholar

[230] Karlický F, Kumara Ramanatha Datta K, Otyepka M, Zbořil R. ACS Nano, 2013, 7: 6434-6464 CrossRef PubMed Google Scholar

[231] Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS. Science, 2009, 323: 610-613 CrossRef PubMed ADS arXiv Google Scholar

[232] Savchenko A. Science, 2009, 323: 589-590 CrossRef PubMed Google Scholar

[233] Yang Z, Sun Y, Alemany LB, Narayanan TN, Billups WE. J Am Chem Soc, 2012, 134: 18689-18694 CrossRef PubMed Google Scholar

[234] Watson MD, Debije MG, Warman JM, Müllen K. J Am Chem Soc, 2004, 126: 766-771 CrossRef PubMed Google Scholar

[235] Li B, Zhou L, Wu D, Peng H, Yan K, Zhou Y, Liu Z. ACS Nano, 2011, 5: 5957-5961 CrossRef PubMed Google Scholar

[236] Wu J, Xie L, Li Y, Wang H, Ouyang Y, Guo J, Dai H. J Am Chem Soc, 2011, 133: 19668-19671 CrossRef PubMed Google Scholar

[237] Liu YM, Hou H, Zhou YZ, Zhao XJ, Tang C, Tan YZ, Müllen K. Nat Commun, 2018, 9: 1901 CrossRef PubMed ADS Google Scholar

[238] Tan YZ, Osella S, Liu Y, Yang B, Beljonne D, Feng X, Müllen K. Angew Chem Int Ed, 2015, 54: 2927-2931 CrossRef PubMed Google Scholar

[239] Cao J, Liu YM, Jing X, Yin J, Li J, Xu B, Tan YZ, Zheng N. J Am Chem Soc, 2015, 137: 10914-10917 CrossRef PubMed Google Scholar

[240] Wu ZS, Tan YZ, Zheng S, Wang S, Parvez K, Qin J, Shi X, Sun C, Bao X, Feng X, Müllen K. J Am Chem Soc, 2017, 139: 4506-4512 CrossRef PubMed Google Scholar

[241] Dong R, Pfeffermann M, Skidin D, Wang F, Fu Y, Narita A, Tommasini M, Moresco F, Cuniberti G, Berger R, Müllen K, Feng X. J Am Chem Soc, 2017, 139: 2168-2171 CrossRef PubMed Google Scholar

[242] Keerthi A, Radha B, Rizzo D, Lu H, Diez Cabanes V, Hou ICY, Beljonne D, Cornil J, Casiraghi C, Baumgarten M, Müllen K, Narita A. J Am Chem Soc, 2017, 139: 16454-16457 CrossRef PubMed Google Scholar

[243] Dössel LF, Kamm V, Howard IA, Laquai F, Pisula W, Feng X, Li C, Takase M, Kudernac T, de Feyter S, Müllen K. J Am Chem Soc, 2012, 134: 5876-5886 CrossRef PubMed Google Scholar

[244] Slota M, Keerthi A, Myers WK, Tretyakov E, Baumgarten M, Ardavan A, Sadeghi H, Lambert CJ, Narita A, Müllen K, Bogani L. Nature, 2018, 557: 691-695 CrossRef PubMed ADS Google Scholar

[245] Pesin D, MacDonald AH. Nat Mater, 2012, 11: 409-416 CrossRef PubMed ADS arXiv Google Scholar

[246] Rogers C, Perkins WS, Veber G, Williams TE, Cloke RR, Fischer FR. J Am Chem Soc, 2017, 139: 4052-4061 CrossRef PubMed Google Scholar

[247] Joshi D, Hauser M, Veber G, Berl A, Xu K, Fischer FR. J Am Chem Soc, 2018, 140: 9574-9580 CrossRef PubMed Google Scholar

[248] González-Herrero H, Gómez-Rodríguez JM, Mallet P, Moaied M, Palacios JJ, Salgado C, Ugeda MM, Veuillen JY, Yndurain F, Brihuega I. Science, 2016, 352: 437-441 CrossRef PubMed ADS Google Scholar

[249] Araujo PT, Terrones M, Dresselhaus MS. Mater Today, 2012, 15: 98-109 CrossRef Google Scholar

[250] Banhart F, Kotakoski J, Krasheninnikov AV. ACS Nano, 2011, 5: 26-41 CrossRef PubMed Google Scholar

[251] Liu L, Qing M, Wang Y, Chen S. J Mater Sci Tech, 2015, 31: 599-606 CrossRef Google Scholar

[252] Jing N, Xue Q, Ling C, Shan M, Zhang T, Zhou X, Jiao Z. RSC Adv, 2012, 2: 9124 CrossRef Google Scholar

[253] Mortazavi B, Ahzi S. Carbon, 2013, 63: 460-470 CrossRef Google Scholar

[254] Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S. Nature, 2004, 430: 870-873 CrossRef PubMed ADS Google Scholar

[255] Stone AJ, Wales DJ. Chem Phys Lett, 1986, 128: 501-503 CrossRef ADS Google Scholar

[256] Thrower PA. Chem Phys Carbon, 1969, 5: 217–319. Google Scholar

[257] Huang PY, Ruiz-Vargas CS, van der Zande AM, Whitney WS, Levendorf MP, Kevek JW, Garg S, Alden JS, Hustedt CJ, Zhu Y, Park J, McEuen PL, Muller DA. Nature, 2011, 469: 389-392 CrossRef PubMed ADS arXiv Google Scholar

[258] Yazyev OV, Louie SG. Phys Rev B, 2010, 81: 195420 CrossRef ADS arXiv Google Scholar

[259] Lahiri J, Lin Y, Bozkurt P, Oleynik II, Batzill M. Nat Nanotech, 2010, 5: 326-329 CrossRef PubMed ADS Google Scholar

[260] Yazyev OV, Louie SG. Nat Mater, 2010, 9: 806-809 CrossRef PubMed ADS arXiv Google Scholar

[261] Singh R, Kroll P. J Phys: Condens Matter, 2009, 21: 196002. Google Scholar

[262] Ma Y, Lehtinen PO, Foster AS, Nieminen RM. New J Phys, 2004, 6: 68 CrossRef ADS Google Scholar

[263] Valencia AM, Caldas MJ. Phys Rev B, 2017, 96: 125431 CrossRef ADS arXiv Google Scholar

[264] Kotakoski J, Meyer JC, Kurasch S, Santos-Cottin D, Kaiser U, Krasheninnikov AV. Phys Rev B, 2011, 83: 245420 CrossRef ADS arXiv Google Scholar

[265] Meyer JC, Kisielowski C, Erni R, Rossell MD, Crommie MF, Zettl A. Nano Lett, 2008, 8: 3582-3586 CrossRef PubMed ADS Google Scholar

[266] Robertson AW, Allen CS, Wu YA, He K, Olivier J, Neethling J, Kirkland AI, Warner JH. Nat Commun, 2012, 3: 1144 CrossRef PubMed ADS Google Scholar

[267] Tang M, Colombo L, Zhu J, Diaz de La Rubia T. Phys Rev B, 1997, 55: 14279-14289 CrossRef ADS Google Scholar

[268] Lusk MT, Carr LD. Phys Rev Lett, 2008, 100: 175503 CrossRef PubMed ADS arXiv Google Scholar

[269] Lusk MT, Wu DT, Carr LD. Phys Rev B, 2010, 81: 155444 CrossRef ADS arXiv Google Scholar

[270] Anderson AG, Daugs ED, Kao LG, Wang JF. J Org Chem, 1986, 51: 2961-2965 CrossRef Google Scholar

[271] Vogel E, Markowitz G, Schmalstieg L, Itô S, Breuckmann R, Roth WR. Angew Chem Int Ed, 1984, 23: 719-720 CrossRef Google Scholar

[272] Becker BC, Huber W, Schnieders C, Müllen K. Chem Ber, 1983, 14: no. Google Scholar

[273] Nestoros E, Stuparu MC. Chem Commun, 2018, 54: 6503-6519 CrossRef PubMed Google Scholar

[274] Zhu J, Huang Y, Mei W, Zhao C, Zhang C, Zhang J, Amiinu IS, Mu S. Angew Chem Int Ed, 2019, 58: 3859–3864. Google Scholar

[275] Liu J, Osella S, Ma J, Berger R, Beljonne D, Schollmeyer D, Feng X, Müllen K. J Am Chem Soc, 2016, 138: 8364-8367 CrossRef PubMed Google Scholar

[276] Mishra S, Lohr TG, Pignedoli CA, Liu J, Berger R, Urgel JI, Müllen K, Feng X, Ruffieux P, Fasel R. ACS Nano, 2018, 12: 11917-11927 CrossRef Google Scholar

[277] Yamamoto K, Harada T, Nakazaki M, Naka T, Kai Y, Harada S, Kasai N. J Am Chem Soc, 1983, 105: 7171-7172 CrossRef Google Scholar

[278] Yamamoto K, Saitho Y, Iwaki D, Ooka T. Angew Chem Int Ed Engl, 1991, 30: 1173-1174 CrossRef Google Scholar

[279] Cheung KY, Xu X, Miao Q. J Am Chem Soc, 2015, 137: 3910-3914 CrossRef PubMed Google Scholar

[280] Pun SH, Chan CK, Luo J, Liu Z, Miao Q. Angew Chem Int Ed, 2017, 57: 1581-1586 CrossRef PubMed Google Scholar

[281] Fernández-García JM, Evans PJ, Medina Rivero S, Fernández I, García-Fresnadillo D, Perles J, Casado J, Martín N. J Am Chem Soc, 2018, 140: 17188-17196 CrossRef PubMed Google Scholar

[282] Feng C-N, Kuo M-Y, Wu Y-T. Angew Chem Int Ed, 2013, 52: 7791–7794. Google Scholar

[283] Sakamoto Y, Suzuki T. J Am Chem Soc, 2013, 135: 14074–14077. Google Scholar

[284] Miller RW, Duncan AK, Schneebeli ST, Gray DL, Whalley AC. Chem Eur J, 2014, 20: 3705–3711. Google Scholar

[285] Cheung KY, Chan CK, Liu Z, Miao Q. Angew Chem Int Ed, 2017, 56: 9003-9007 CrossRef PubMed Google Scholar

[286] Tang C, Wang HF, Chen X, Li BQ, Hou TZ, Zhang B, Zhang Q, Titirici MM, Wei F. Adv Mater, 2016, 28: 6845-6851 CrossRef PubMed Google Scholar

[287] Yan X, Jia Y, Yao X. Chem Soc Rev, 2018, 47: 7628-7658 CrossRef PubMed Google Scholar

[288] Liu M, Liu M, She L, Zha Z, Pan J, Li S, Li T, He Y, Cai Z, Wang J, Zheng Y, Qiu X, Zhong D. Nat Commun, 2017, 8: 14924 CrossRef PubMed ADS Google Scholar

[289] Lin Y, Liao Y, Chen Z, Connell JW. Mater Res Lett, 2017, 5: 209-234 CrossRef Google Scholar

[290] Yang J, Ma M, Li L, Zhang Y, Huang W, Dong X. Nanoscale, 2014, 6: 13301-13313 CrossRef PubMed ADS Google Scholar

[291] Bai J, Zhong X, Jiang S, Huang Y, Duan X. Nat Nanotech, 2010, 5: 190-194 CrossRef PubMed ADS Google Scholar

[292] Liang X, Jung YS, Wu S, Ismach A, Olynick DL, Cabrini S, Bokor J. Nano Lett, 2010, 10: 2454-2460 CrossRef PubMed ADS Google Scholar

[293] Beser U, Kastler M, Maghsoumi A, Wagner M, Castiglioni C, Tommasini M, Narita A, Feng X, Müllen K. J Am Chem Soc, 2016, 138: 4322-4325 CrossRef PubMed Google Scholar

[294] Bieri M, Treier M, Cai J, Aït-Mansour K, Ruffieux P, Gröning O, Gröning P, Kastler M, Rieger R, Feng X, Müllen K, Fasel R. Chem Commun, 2009, 58: 6919 CrossRef PubMed Google Scholar

[295] Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache MV, Paradinas M, Panighel M, Ceballos G, Valenzuela SO, Peña D, Mugarza A. Science, 2018, 360: 199-203 CrossRef PubMed ADS arXiv Google Scholar

[296] Merino-Díez N, Garcia-Lekue A, Carbonell-Sanromà E, Li J, Corso M, Colazzo L, Sedona F, Sánchez-Portal D, Pascual JI, de Oteyza DG. ACS Nano, 2017, 11: 11661-11668 CrossRef Google Scholar

[297] Kawai S, Saito S, Osumi S, Yamaguchi S, Foster AS, Spijker P, Meyer E. Nat Commun, 2015, 6: 8098 CrossRef ADS Google Scholar

[298] Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P. Chem Soc Rev, 2014, 43: 7067-7098 CrossRef PubMed Google Scholar

[299] Wang H, Maiyalagan T, Wang X. ACS Catal, 2012, 2: 781-794 CrossRef Google Scholar

[300] Xu H, Ma L, Jin Z. J Energy Chem, 2018, 27: 146-160 CrossRef Google Scholar

[301] Liang HW, Zhuang X, Brüller S, Feng X, Müllen K. Nat Commun, 2014, 5: 4973 CrossRef PubMed ADS Google Scholar

[302] Zhang J, Chen G, Müllen K, Feng X. Adv Mater, 2018, 30: 1800528 CrossRef PubMed Google Scholar

[303] Hu C, Dai L. Adv Mater, 2019, 31: 1804672 CrossRef PubMed Google Scholar

[304] Yang L, Shui J, Du L, Shao Y, Liu J, Dai L, Hu Z. Adv Mater, 2019, 31: 1804799 CrossRef PubMed Google Scholar

[305] Draper SM, Gregg DJ, Madathil R. J Am Chem Soc, 2002, 124: 3486-3487 CrossRef Google Scholar

[306] Draper SM, Gregg DJ, Schofield ER, Browne WR, Duati M, Vos JG, Passaniti P. J Am Chem Soc, 2004, 126: 8694-8701 CrossRef PubMed Google Scholar

[307] Wijesinghe LP, Lankage BS, Máille GMÓ, Perera SD, Nolan D, Wang L, Draper SM. Chem Commun, 2014, 50: 10637-10640 CrossRef Google Scholar

[308] Bronner C, Stremlau S, Gille M, Brauße F, Haase A, Hecht S, Tegeder P. Angew Chem Int Ed, 2013, 52: 4422-4425 CrossRef PubMed Google Scholar

[309] Zhang Y, Zhang Y, Li G, Lu J, Lin X, Du S, Berger R, Feng X, Müllen K, Gao HJ. Appl Phys Lett, 2014, 105: 023101 CrossRef ADS Google Scholar

[310] Cai J, Pignedoli CA, Talirz L, Ruffieux P, Söde H, Liang L, Meunier V, Berger R, Li R, Feng X, Müllen K, Fasel R. Nat Nanotech, 2014, 9: 896-900 CrossRef PubMed ADS Google Scholar

[311] Li Q, Zhang S, Dai L, Li L. J Am Chem Soc, 2012, 134: 18932-18935 CrossRef PubMed Google Scholar

[312] Noffke BW, Li Q, Raghavachari K, Li LS. J Am Chem Soc, 2016, 138: 13923-13929 CrossRef PubMed Google Scholar

[313] Wang XY, Richter M, He Y, Björk J, Riss A, Rajesh R, Garnica M, Hennersdorf F, Weigand JJ, Narita A, Berger R, Feng X, Auwärter W, Barth JV, Palma CA, Müllen K. Nat Commun, 2017, 8: 1948 CrossRef PubMed ADS Google Scholar

[314] Berger R, Giannakopoulos A, Ravat P, Wagner M, Beljonne D, Feng X, Müllen K. Angew Chem Int Ed, 2014, 53: 10520-10524 CrossRef PubMed Google Scholar

[315] Berger R, Wagner M, Feng X, Müllen K. Chem Sci, 2015, 6: 436-441 CrossRef PubMed Google Scholar

[316] Zhang L, Xia Z. J Phys Chem C, 2011, 115: 11170-11176 CrossRef Google Scholar

[317] Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Science, 2016, 351: 361-365 CrossRef PubMed ADS Google Scholar

[318] Singh SK, Takeyasu K, Nakamura J. Adv Mater, 2019, 31: 1804297 CrossRef PubMed Google Scholar

[319] Wang T, Chen ZX, Chen YG, Yang LJ, Yang XD, Ye JY, Xia HP, Zhou ZY, Sun SG. ACS Energy Lett, 2018, 3: 986-991 CrossRef Google Scholar

[320] Takase M, Enkelmann V, Sebastiani D, Baumgarten M, Müllen K. Angew Chem Int Ed, 2007, 46: 5524-5527 CrossRef PubMed Google Scholar

[321] Lazerges M, Jouini M, Hapiot P, Guiriec P, Lacaze PC. J Phys Chem A, 2003, 107: 5042-5048 CrossRef ADS Google Scholar

[322] Takase M, Narita T, Fujita W, Asano MS, Nishinaga T, Benten H, Yoza K, Müllen K. J Am Chem Soc, 2013, 135: 8031-8040 CrossRef PubMed Google Scholar

[323] Oki K, Takase M, Mori S, Shiotari A, Sugimoto Y, Ohara K, Okujima T, Uno H. J Am Chem Soc, 2018, 140: 10430-10434 CrossRef PubMed Google Scholar

[324] Żyła-Karwowska M, Zhylitskaya H, Cybińska J, Lis T, Chmielewski PJ, Stępień M. Angew Chem Int Ed, 2016, 55: 14658-14662 CrossRef PubMed Google Scholar

[325] Gońka E, Chmielewski PJ, Lis T, Stępień M. J Am Chem Soc, 2014, 136: 16399-16410 CrossRef PubMed Google Scholar

[326] Żyła M, Gońka E, Chmielewski PJ, Cybińska J, Stępień M. Chem Sci, 2016, 7: 286-294 CrossRef PubMed Google Scholar

[327] Yokoi H, Hiraoka Y, Hiroto S, Sakamaki D, Seki S, Shinokubo H. Nat Commun, 2015, 6: 8215 CrossRef PubMed ADS Google Scholar

[328] Ito S, Tokimaru Y, Nozaki K. Angew Chem Int Ed, 2015, 54: 7256-7260 CrossRef PubMed Google Scholar

[329] Tokimaru Y, Ito S, Nozaki K. Angew Chem Int Ed, 2018, 57: 9818-9822 CrossRef PubMed Google Scholar

[330] Mishra S, Krzeszewski M, Pignedoli CA, Ruffieux P, Fasel R, Gryko DT. Nat Commun, 2018, 9: 1714 CrossRef PubMed ADS Google Scholar

[331] Ito Y, Christodoulou C, Nardi MV, Koch N, Kläui M, Sachdev H, Müllen K. J Am Chem Soc, 2015, 137: 7678-7685 CrossRef PubMed Google Scholar

[332] Błoński P, Tuček J, Sofer Z, Mazánek V, Petr M, Pumera M, Otyepka M, Zbořil R. J Am Chem Soc, 2017, 139: 3171-3180 CrossRef PubMed Google Scholar

[333] Agnoli S, Favaro M. J Mater Chem A, 2016, 4: 5002-5025 CrossRef Google Scholar

[334] Tang YB, Yin LC, Yang Y, Bo XH, Cao YL, Wang HE, Zhang WJ, Bello I, Lee ST, Cheng HM, Lee CS. ACS Nano, 2012, 6: 1970-1978 CrossRef PubMed Google Scholar

[335] Wu ZS, Ren W, Xu L, Li F, Cheng HM. ACS Nano, 2011, 5: 5463-5471 CrossRef PubMed Google Scholar

[336] Han J, Zhang LL, Lee S, Oh J, Lee KS, Potts JR, Ji J, Zhao X, Ruoff RS, Park S. ACS Nano, 2013, 7: 19-26 CrossRef PubMed Google Scholar

[337] Lv R, Chen G, Li Q, McCreary A, Botello-Méndez A, Morozov SV, Liang L, Declerck X, Perea-López N, Cullen DA, Feng S, Elías AL, Cruz-Silva R, Fujisawa K, Endo M, Kang F, Charlier JC, Meunier V, Pan M, Harutyunyan AR, Novoselov KS, Terrones M. Proc Natl Acad Sci USA, 2015, 112: 14527-14532 CrossRef PubMed ADS Google Scholar

[338] Yu X, Han P, Wei Z, Huang L, Gu Z, Peng S, Ma J, Zheng G. Joule, 2018, 2: 1610-1622 CrossRef Google Scholar

[339] Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. J Am Chem Soc, 2014, 136: 4394-4403 CrossRef PubMed Google Scholar

[340] Dou C, Saito S, Matsuo K, Hisaki I, Yamaguchi S. Angew Chem Int Ed, 2012, 51: 12206-12210 CrossRef PubMed Google Scholar

[341] Osumi S, Saito S, Dou C, Matsuo K, Kume K, Yoshikawa H, Awaga K, Yamaguchi S. Chem Sci, 2016, 7: 219-227 CrossRef PubMed Google Scholar

[342] Cloke RR, Marangoni T, Nguyen GD, Joshi T, Rizzo DJ, Bronner C, Cao T, Louie SG, Crommie MF, Fischer FR. J Am Chem Soc, 2015, 137: 8872-8875 CrossRef PubMed Google Scholar

[343] Wang S, Zhang L, Xia Z, Roy A, Chang DW, Baek JB, Dai L. Angew Chem Int Ed, 2012, 51: 4209-4212 CrossRef PubMed Google Scholar

[344] Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang ZF, Storr K, Balicas L, Liu F, Ajayan PM. Nat Mater, 2010, 9: 430-435 CrossRef PubMed ADS Google Scholar

[345] Wang XY, Wang JY, Pei J. Chem Eur J, 2014, 21: 3528-3539 CrossRef PubMed Google Scholar

[346] Wang XY, Zhuang FD, Wang RB, Wang XC, Cao XY, Wang JY, Pei J. J Am Chem Soc, 2014, 136: 3764-3767 CrossRef PubMed Google Scholar

[347] Zhong Z, Wang XY, Zhuang FD, Ai N, Wang J, Wang JY, Pei J, Peng J, Cao Y. J Mater Chem A, 2016, 4: 15420-15425 CrossRef Google Scholar

[348] Matsui K, Oda S, Yoshiura K, Nakajima K, Yasuda N, Hatakeyama T. J Am Chem Soc, 2018, 140: 1195-1198 CrossRef PubMed Google Scholar

[349] Nakatsuka S, Yasuda N, Hatakeyama T. J Am Chem Soc, 2018, 140: 13562-13565 CrossRef PubMed Google Scholar

[350] Kawai S, Nakatsuka S, Hatakeyama T, Pawlak R, Meier T, Tracey J, Meyer E, Foster AS. Sci Adv, 2018, 4: eaar7181 CrossRef PubMed ADS Google Scholar

[351] Müller M, Behnle S, Maichle-Mössmer C, Bettinger HF. Chem Commun, 2014, 50: 7821-7823 CrossRef PubMed Google Scholar

[352] Krieg M, Reicherter F, Haiss P, Ströbele M, Eichele K, Treanor MJ, Schaub R, Bettinger HF. Angew Chem Int Ed, 2015, 54: 8284-8286 CrossRef PubMed Google Scholar

[353] Dosso J, Tasseroul J, Fasano F, Marinelli D, Biot N, Fermi A, Bonifazi D. Angew Chem Int Ed, 2017, 56: 4483-4487 CrossRef PubMed Google Scholar

  • Figure 1

    Golden triangle of polycyclic aromatic hydrocarbons (PAHs), graphene nanoribbons, and graphene (color online).

  • Figure 2

    (a) Distribution of publications by year using “polycyclic aromatic hydrocarbons” as keyword for searching on the Web of Science; (b) Same distribution diagram but excluding publications on toxicology studies (color online).

  • Figure 3

    Illustration of two-stage synthetic protocol of PAHs with p-HBC (6) as an example (color online).

  • Figure 4

    Two possible mechanisms of Scholl-type cyclodehydrogenation reaction (color online).

  • Figure 5

    Application of Scholl reaction to synthesize (a) PAH 16 with 222 sp2-carbons and (b) non-planar PAH 20. Cu(OTf)2: copper(II) trifluoromethanesulfonate; DDQ: 2,3-dichloro-5,6-dicyano-1,4-benzoquinone; TfOH: trifluoromethanesulfonic acid (color online).

  • Figure 6

    Flash vacuum pyrolysis (FVP) for preparing (a) fullerene 22 and (b) bowl-shaped PAH 24 (color online).

  • Figure 7

    Photochemical cyclization for synthesis of PAHs. (a) Two pathways toward phenanthrene via oxidation or HX elimination; (b) synthesis of hexa-cata-hexabenzocoronenes; (c) photocyclodehydrohalogenation vs. Scholl reaction (color online).

  • Figure 8

    Synthesis of (a) PAH 34 through palladium-catalyzed intramolecular Heck reaction and (b) PAH 36 via Al2O3-mediated C–H arylation. PdCl2(PCy3)2: dichlorobis(tricyclohexylphosphine)palladium(II); DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene; DMAc: dimethylacetamide.

  • Figure 9

    (a) Surface-assisted synthesis of PAH 38 via cyclodehydrogenation on Cu(111) surface; (b) high-resolution STM image of PAH 38 on Cu(111) surface. Reprinted with permission from Ref. [101], copyright (2010) Macmillan Publishers Ltd. (color online).

  • Figure 10

    (a) Synthesis of pristine coronene 43 via π-extension of perylene at bay regions by Diels-Alder reactions; (b) Diels-Alder reaction between bisanthene 44 and nitroethylene; (c) Diels-Alder reaction between perylene 39 and nitroethylene.

  • Figure 11

    π-Extension toward different PAHs through (a) ring-closing olefin metathesis, (b) rhodium(II)-catalyzed cyclization of N-tosylhydrazone-based intermediates, and (c) alkyne cyclization. TsNHNH2: p-toluenesulfonyl hydrazide; Rh2(OAc)4: dirhodium tetraacetate; TFA: trifluoroacetic acid (color online).

  • Figure 12

    Cyclotrimerization toward extended PAHs. (a) Synthesis of star-shaped PAH 62 through palladium-catalyzed cyclotrimerization; (b) synthesis of starphenes 64 and 66 via Yamamoto coupling. Pd2(dba)3: tris(dibenzylideneacetone)dipalladium(0); COD: 1,5-cyclooctadiene; Bpy: 2,2′-bipyridine.

  • Figure 13

    Synthesis of PAHs 69, 71 and 73 through annulative π-extension by palladium-catalyzed double cross-couplings. Pd(t-Bu3P)2:bis(tri-tert-butylphosphine)palladium(0).

  • Figure 14

    Transition-metal-catalyzed π-annulation toward cyclopentannelated arenes. Pd(dba)2: bis(dibenzylideneacetone)palladium(0); P(o-tol)3: tri(o-tolyl)phosphine; Et3N: triethylamine.

  • Figure 15

    K-region-selective annulative π-extension through doubleC–H arylation (color online).

  • Figure 16

    Synthesis of GNRs based on (a) A2B2-type Suzuki polymerization and (b) AB-type Diels-Alder polymerization. Pd(PPh3)4: tetrakis(triphenylphosphine)palladium(0)‎.

  • Figure 17

    On-surface synthesis of GNRs via polymerization of dihalogenated precursors and subsequent cyclodehydrogenation. STM images are reprinted with permission from Ref. [144], copyright (2010) Macmillan Publishers Ltd. (color online).

  • Figure 18

    (a) Synthesis of graphene via 2D polymerization of hexabromobenzene. Reprinted with permission from Ref. [158], copyright (2013) American Chemical Society. (b) Synthesis of graphene via dehydrogenative coupling of PAH precursors. Reprinted with permission from Ref. [42], copyright (2012) American Chemical Society (color online).

  • Figure 19

    Schematic representation of typical edge topologies of PAHs (color online).

  • Figure 20

    (a, b) Chemical structures of N=9 armchair GNRs (9-AGNRs) and N=6 zigzag GNRs (6-ZGNRs) with illustration of width N; (c, d) band gaps in AGNRs and ZGNRs as a function of ribbon widths. Reprinted with permission from Ref. [160], copyright (2014) Macmillan Publishers Ltd. (color online).

  • Figure 21

    Modulation of electronic properties of p-HBC by adding one, two, three, four, and six K-regions (color online).

  • Figure 22

    (a) Surface-assisted synthesis of GNR 111 using 98 and 110 as precursor molecules. (b) dI/dV spectra taken at locations indicated by corresponding color markers in panel c. (c) Constant-height nc-AFM image of GNR 111 and experimental dI/dV maps of GNR 111 on Au(111). (d) Surface-assisted synthesis of GNR 113 from molecular precursor 112. (e) Bond-resolved STM image of 7/9-AGNR superlattice on Au(111). (f) dI/dV spectra of GNR 113 taken at locations indicated by corresponding color markers, and constant-current dI/dV maps of GNR 113 on Au(111). (b, c) Reprinted with permission from Ref. [177], copyright (2018) Macmillan Publishers Ltd.; (e, f) reprinted with permission from Ref. [178], copyright (2018) Macmillan Publishers Ltd. (color online).

  • Figure 23

    The family of linear acenes and their different synthetic strategies. (a) Pentacene and its diradical resonance structure; (b) synthesis of pentacene via retro-Diels-Alder reactions in the solid state; (c) synthesis of higher acenes up to nonacene 116e in polymer matrices; (d, e) surface-assisted synthesis of decacene 118 and undecacene 120.

  • Figure 24

    Extension of acenes along different dimensions leading to a variety of PAHs and GNRs (color online).

  • Figure 25

    (a) Resonance structures of peri-tetracene 126 and peri-pentacene 127; (b) synthesis of peri-tetracene derivatives 134 in solution; (c) surface-assisted synthesis of peri-pentacene; (d) high-resolution STM image and constant-height nc-AFM image of peri-pentacene on Au(111). DDQ: 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Reprinted with permission from Ref. [194], copyright (2015) Wiley (color online).

  • Figure 26

    (a) Surface-assisted synthesis of 6-ZGNRs 138; (b) constant-height nc-AFM image of 6-ZGNRs on Au(111) taken with a CO-functionalized tip; (c) differential-conductance maps of filled (left) and empty (right) edge states of 6-ZGNRs on Au(111); (d) local density of states showing the spatial distribution of filled (left) and empty (right) edge states. Reprinted with permission from Ref. [173], copyright (2016) Macmillan Publishers Ltd. (color online).

  • Figure 27

    Synthesis of dibenzo[hi,st]ovalene 142. DDQ: 2,3-dichloro-5,6-dicyano-1,4-benzoquinone.

  • Figure 28

    (a) Examples of PAHs and GNRs with cove regions (containing [4]helicene moieties); (b) PAHs with fjord regions (containing [5]helicene moieties); (c) PAHs containing [6], [7] and [9]helicene moieties. The STM image in (a) was reprinted with permission from Ref. [207], copyright (2015) American Chemical Society (color online).

  • Figure 29

    Edge oxidation of p-HBC derivative 152 at K-region and further functionalizations.

  • Figure 30

    Regioselective hydrogenation of p-HBC derivatives 155 toward peralkylated coronenes 156.

  • Figure 31

    Schematic illustration of photochemical chlorination of graphene. Reprinted with permission from Ref. [235], copyright (2011) American Chemical Society (color online).

  • Figure 32

    Examples of edge-chlorinated nanographene molecules. The gulf regions as indicated by the red color are not chlorinated due to the steric hindrance (color online).

  • Figure 33

    Synthesis of donor-acceptor nanographene molecules 163 and 164 through Buchwald-Hartwig C–N cross-couplings of perchlorinated precursors. Pd2(dba)3: tris(dibenzylideneacetone)dipalladium(0); BINAP: 2,2′-bis(diphenylphosphino)-1,1′-binaphthalene.

  • Figure 34

    Synthesis of sulfur-annelated nanographene molecules 165 and 166 through thiolation of perchlorinated p-HBC 157. DMI: 1,3- dimethyl-2-imidazolidinone.

  • Figure 35

    Synthesis of persulfurated coronene 170.

  • Figure 36

    (a) Edge chlorination of GNR 171 to chlorinated GNR 172; (b) UV-Vis spectra of GNR 171 and chlorinated GNR 172. Reprinted with permission from Ref. [43], copyright (2013) Macmillan Publishers Ltd. (color online).

  • Figure 37

    Edge functionalization of GNRs with different functional groups. (a) Synthesis of GNR 177 bearing electron-deficient and radical units; (b) synthesis of GNR 180 with methyl ester groups; (c) synthesis of GNR 185 with fluorescent dyes along the edge. Pd(PPh3)4: tetrakis(triphenylphosphine)palladium(0)‎; Sphos: 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl; DMF: dimehylformamide (color online).

  • Figure 38

    Manipulation of hydrogen atoms on graphene by STM to modulate local magnetic moments. Reprinted with permission from Ref. [248], copyright (2016) American Association for the Advancement of Science (color online).

  • Figure 39

    Schematic illustration of different defects in graphene sheets: (a) single vacancy, (b) double vacancy, and (c) Stone-Wales defect. Reprinted with permission from Ref. [252], copyright (2012) Royal Society of Chemistry (color online).

  • Figure 40

    Schematic illustration of reconstructed single- and double-vacancy defects in graphene sheets: (a) single vacancy, (b) double vacancy (5–8–5), (c) double vacancy (555–777), and (d) double vacancy (5555–6–7777). Reprinted with permission from Ref. [252], copyright (2012) Royal Society of Chemistry (color online).

  • Figure 41

    (a) DFT-optimized structural model of inverse Stone-Wales defect formed by incorporating a pair of adatoms into the graphene lattice. Reprinted with permission from Ref. [250], copyright (2011) American Chemical Society. (b) Several small PAHs that are relevant to the graphene defects, including naphthalene and its isomer azulene 186, pyrene, and its three isomers: dicyclopenta[ef,kl]heptalene 187, dicyclohepta[cd,gh]pentalene 188, and acepleiadylene 189 (color online).

  • Figure 42

    Examples of π-extended corannulene derivatives.

  • Figure 43

    (a) Synthesis of bowl-shaped PAH 198 as a fragment of C70 fullerene with embedded five-membered rings; (b) surface-assisted synthesis of pristine peri-tetracene 126; (c) calculated spin density distributions of 126; (d) surface-assisted synthesis of peri-tetracene isomer 201; (e) calculated spin density distributions of 201. (c, e) Reprinted with permission from Ref. [276], copyright (2018) American Chemical Society (color online).

  • Figure 44

    Examples of [n]circulenes containing five-, six-, seven- or eight-membered rings.

  • Figure 45

    (a) Synthesis of PAH 205 with an extra sp3-carbon; (b) synthesis of curved nanographene molecules 208 and 210 with embedded seven-membered rings; (c) synthesis of negatively curved nanographene molecules 214.

  • Figure 46

    Synthesis of corannulene-based nanographene molecules 216 with positive curvature and 217 with both positive and negative curvature. Reprinted with permission from Ref. [281], copyright (2018) American Chemical Society (color online).

  • Figure 47

    (a) Synthesis of peri-substituted [8]circulene 219; (b) two different synthetic routes to tetrabenzo[8]circulene 224; (c) synthesis of a twisted PAH 227 with an embedded eight-membered ring. Pd(OAc)2: palladium(II) acetate; Cu(OTf)2: copper(II) trifluoromethanesulfonate; DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene; DMA: dimethylacetamide; DDQ: 2,3-dichloro-5,6-dicyano-1,4-benzoquinone.

  • Figure 48

    Surface-assisted synthesis of GNR 231 with regularly embedded four- and eight-membered rings (color online).

  • Figure 49

    Synthesis of nanographene molecule 233 with a hole defect.

  • Figure 50

    (a) Surface-assisted synthesis of 2D polyphenylene networks; (b) STM image of an edge of the polymer network. (b) Reprinted with permission from Ref. [294], copyright (2009) Royal Society of Chemistry (color online).

  • Figure 51

    On-surface synthesis of nanoporous graphene 239 via dehydrogenative lateral couplings of obtained GNRs.

  • Figure 52

    Schematic illustration of various types of nitrogen in N-doped graphene (color online).

  • Figure 53

    Representative examples of pyridinic-N-doped nanograhene molecules (p-HBC derivatives) (color online).

  • Figure 54

    Surface-assisted synthesis of (a) N-doped chevron-type GNR 245 and (b) GNR heterojunction 248. (c) High-resolution STM image of N-doped chevron-type GNR 245, showing an antiparallel alignment to maximize the attractive N⋯H interactions. Reprinted with permission from Ref. [309], copyright (2014) AIP Publishing LLC. (d, e) STM images of N-doped chevron-type GNR 248. The N-doped and non-doped GNR segments are highlighted in blue and light gray dash lines, respectively, in panel (e). (f, g) Differential-conductance (dI/dV) maps observed at bias voltages of (f) −0.35 V and (g) −1.65 V. Reprinted with permission from Ref. [310], copyright (2014) Macmillan Publishers Ltd. (color online).

  • Figure 55

    Structures of N-doped and non-doped nanographene molecules (color online).

  • Figure 56

    (a) Generation of polycyclic azomethine ylide (PAMY) and its resonance structures; (b) synthesis of pyrazine-embedded partially fused PAH 257a and fully fused p-HBC 258c via PAMY homocoupling; (c) PAMY for 1,3-dipolar cycloaddition reactions with dipolarophiles. DMSO: dimethyl sulfoxide; DDQ: 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (color online).

  • Figure 57

    Possible mechanisms of oxygen reduction reaction (ORR) catalyzed by nitrogen-doped carbon materials via two-electron or four-electron pathway. Reprinted with permission from Ref. [317], Copyright (2016) American Association for the Advancement of Science (color online).

  • Figure 58

    Representative examples of pyrrolic N-doped nanographene molecules (color online).

  • Figure 59

    (a) Synthesis of N-doped PAH 272 through stepwise palladium-catalyzed intramolecular cyclizations; (b) synthesis of N-doped PAH 276 via 1,3-dipolar cycloaddition of PAMY with diarylacetylene; (c) synthesis of N-doped PAH 279 through 1,3-dipolar cycloaddition of PAMY with corannulene.

  • Figure 60

    Synthesis of pyrrolic N-doped nanographene 288 by a combination of in-solution and on-surface chemistry. Pd(OAc)2: palladium(II) acetate (color online).

  • Figure 61

    (a) Magnetization curves of graphitic carbon materials with/without nitrogen. Reprinted with permission from Ref. [331], copyright (2015) American Chemical Society. (b) Origin of observed magnetic properties from a chemical point of view. (c) Partial densities of states calculated for N-doped graphene with graphitic nitrogens embedded in the lattice at para positions. Reprinted with permission from Ref. [332], copyright (2017) American Chemical Society. (d) Relevant graphitic and pyridinic-N-doped p-HBCs (color online).

  • Figure 62

    Synthesis of B-doped nanographenes 292.

  • Figure 63

    (a) Surface-assisted synthesis of B-doped 7-AGNRs. (b) STM image of B-doped 7-AGNRs. (c, d) Laterally fused 14- and 21-AGNRs, respectively. Reprinted with permission from Ref. [297], copyright (2015) Macmillan Publishers Ltd.

  • Figure 64

    (a) Schematic illustration of hybrid structure consisting of h-BN and graphene domains. (b) Current-voltage (I-V) characteristics of hybrid materials with different carbon contents. Reprinted with permission from Ref. [344], copyright (2010) Macmillan Publishers Ltd. (color online).

  • Figure 65

    Synthesis of 2D π-extended BN-doped nanographenes 297 (color online).

  • Figure 66

    Synthesis of BN-doped nanographenes 299, 300, and 301 by one-shot borylation under different conditions (color online).

  • Figure 67

    Synthesis of bowl-shaped BN-doped diboratetrabenzocorannulene 304 (color online).

  • Figure 68

    Surface-assisted synthesis of BN-doped GNRs comprising two different segments with regard to BN direction (color online).

  • Figure 69

    Synthetic efforts toward borazine-embedded p-HBC derivatives (315 and 319) (color online).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1