logo

Stabilizing the black phase of cesium lead halide inorganic perovskite for efficient solar cells

More info
  • ReceivedFeb 25, 2019
  • AcceptedMay 17, 2019
  • PublishedJun 5, 2019

Abstract

Inorganic perovskite cesium lead halide is extensively studied because of its potential in improving the thermal stability of perovskite materials. However, the tolerance factor of this type of perovskite is near the critical value, which leads to phase instability. The optoelectronic active black phases (α, β, and γ phases of CsPbI3) are metastable at room temperature, which can be easily transferred into an optoelectronic inactive yellow phase (δ-CsPbI3). This review highlights recent progress in stabilizing the black phase for efficient and stable perovskite solar cells.


Funded by

the National Key Research and Development Program of China(2016YFB0700700,2017YFA0206600)

Beijing Municipal Science & Technology Commission(Z181100004718005,Z181100005118002)

the National Natural Science Foundation of China(61574133,61634001)

and the National 1000 Young Talents awards.


Acknowledgment

This work was supported by the National Key Research and Development Program of China (2016YFB0700700, 2017YFA0206600), Beijing Municipal Science & Technology Commission (Z181100004718005, Z181100005118002), the National Natural Science Foundation of China (61574133, 61634001), and the National 1000 Young Talents Awards.


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050-6051 CrossRef PubMed Google Scholar

[2] Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG, Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ, Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y, Tan H, Jain A, Voznyy O, Lan X, García de Arquer FP, Fan JZ, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan LN, Zhao Y, Lu ZH, Yang Z, Hoogland S, Sargent EH. Sci Rep, 2012, 2: 591 CrossRef PubMed ADS Google Scholar

[3] Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J. Nat Energy, 2017, 2: 16177 CrossRef ADS Google Scholar

[4] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J. Nat Photonics, 2019, 131: doi: 10.1038/s41566-019-0398-2 CrossRef Google Scholar

[5] Zhu H, Miyata K, Fu Y, Wang J, Joshi PP, Niesner D, Williams KW, Jin S, Zhu XY, Miyata K, Meggiolaro D, Trinh MT, Joshi PP, Mosconi E, Jones SC, De Angelis F, Zhu XY. Science, 2016, 353: 1409-1413 CrossRef PubMed ADS Google Scholar

[6] Wang D, Wright M, Elumalai NK, Uddin A, Kim HS, Seo JY, Park NG, Manser JS, Saidaminov MI, Christians JA, Bakr OM, Kamat PV. Sol Energy Mater Sol Cells, 2016, 147: 255-275 CrossRef Google Scholar

[7] Kulbak M, Cahen D, Hodes G, Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D. J Phys Chem Lett, 2015, 6: 2452-2456 CrossRef PubMed Google Scholar

[8] Nenon DP, Christians JA, Wheeler LM, Blackburn JL, Sanehira EM, Dou B, Olsen ML, Zhu K, Berry JJ, Luther JM. Energy Environ Sci, 2016, 9: 2072-2082 CrossRef Google Scholar

[9] Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D. J Phys Chem Lett, 2016, 7: 167-172 CrossRef PubMed Google Scholar

[10] Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ. Energy Environ Sci, 2014, 7: 982-988 CrossRef Google Scholar

[11] Møller CK. Nature, 1958, 182: 1436 CrossRef Google Scholar

[12] Eperon GE, Paternò GM, Sutton RJ, Zampetti A, Haghighirad AA, Cacialli F, Snaith HJ. J Mater Chem A, 2015, 3: 19688-19695 CrossRef Google Scholar

[13] Ripolles TS, Nishinaka K, Ogomi Y, Miyata Y, Hayase S. Sol Energy Mater Sol Cells, 2016, 144: 532-536 CrossRef Google Scholar

[14] Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, Yang RX, Walsh A, Kovalenko MV. Nano Lett, 2015, 15: 3692-3696 CrossRef PubMed ADS Google Scholar

[15] Song J, Li J, Li X, Xu L, Dong Y, Zeng H. Adv Mater, 2015, 27: 7162-7167 CrossRef PubMed Google Scholar

[16] Swarnkar A, Marshall AR, Sanehira EM, Chernomordik BD, Moore DT, Christians JA, Chakrabarti T, Luther JM. Science, 2016, 354: 92-95 CrossRef PubMed ADS Google Scholar

[17] Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J. Nat Commun, 2018, 9: 2225 CrossRef PubMed ADS Google Scholar

[18] Wang Y, Zhang T, Kan M, Zhao Y. J Am Chem Soc, 2018, 140: 12345-12348 CrossRef PubMed Google Scholar

[19] Sutton RJ, Filip MR, Haghighirad AA, Sakai N, Wenger B, Giustino F, Snaith HJ. ACS Energy Lett, 2018, 3: 1787-1794 CrossRef Google Scholar

[20] Marronnier A, Roma G, Boyer-Richard S, Pedesseau L, Jancu JM, Bonnassieux Y, Katan C, Stoumpos CC, Kanatzidis MG, Even J. ACS Nano, 2018, 12: 3477-3486 CrossRef Google Scholar

[21] Wang Q, Zheng X, Deng Y, Zhao J, Chen Z, Huang J. Joule, 2017, 1: 371-382 CrossRef Google Scholar

[22] Wang K, Jin Z, Liang L, Bian H, Bai D, Wang H, Zhang J, Wang Q, Liu S. Nat Commun, 2018, 9: 4544 CrossRef PubMed ADS Google Scholar

[23] Green MA, Ho-Baillie A. ACS Energy Lett, 2017, 2: 822-830 CrossRef Google Scholar

[24] Li C, Lu X, Ding W, Feng L, Gao Y, Guo Z. Acta Crystlogr B Struct Sci, 2008, 64: 702-707 CrossRef PubMed Google Scholar

[25] Nam JK, Chai SU, Cha W, Choi YJ, Kim W, Jung MS, Kwon J, Kim D, Park JH. Nano Lett, 2017, 17: 2028-2033 CrossRef PubMed ADS Google Scholar

[26] Bai D, Zhang J, Jin Z, Bian H, Wang K, Wang H, Liang L, Wang Q, Liu SF. ACS Energy Lett, 2018, 3: 970-978 CrossRef Google Scholar

[27] Lau CFJ, Deng X, Zheng J, Kim J, Zhang Z, Zhang M, Bing J, Wilkinson B, Hu L, Patterson R, Huang S, Ho-Baillie A. J Mater Chem A, 2018, 6: 5580-5586 CrossRef Google Scholar

[28] Liang J, Zhao P, Wang C, Wang Y, Hu Y, Zhu G, Ma L, Liu J, Jin Z. J Am Chem Soc, 2017, 139: 14009-14012 CrossRef PubMed Google Scholar

[29] Hu Y, Bai F, Liu X, Ji Q, Miao X, Qiu T, Zhang S. ACS Energy Lett, 2017, 2: 2219-2227 CrossRef Google Scholar

[30] Lau CFJ, Zhang M, Deng X, Zheng J, Bing J, Ma Q, Kim J, Hu L, Green MA, Huang S, Ho-Baillie A. ACS Energy Lett, 2017, 2: 2319-2325 CrossRef Google Scholar

[31] Yang F, Hirotani D, Kapil G, Kamarudin MA, Ng CH, Zhang Y, Shen Q, Hayase S. Angew Chem Int Ed, 2018, 57: 12745-12749 CrossRef PubMed Google Scholar

[32] Xiang W, Wang Z, Kubicki DJ, Tress W, Luo J, Prochowicz D, Akin S, Emsley L, Zhou J, Dietler G, Grätzel M, Hagfeldt A. Joule, 2019, 3: 205-214 CrossRef Google Scholar

[33] Liu C, Li W, Li H, Wang H, Zhang C, Yang Y, Schropp RE, Gao X, Xue Q, Mai Y. Adv Energy Mater, 2018: 1803572. Google Scholar

[34] Sutton RJ, Eperon GE, Miranda L, Parrott ES, Kamino BA, Patel JB, Hörantner MT, Johnston MB, Haghighirad AA, Moore DT, Snaith HJ. Adv Energy Mater, 2016, 6: 1502458 CrossRef Google Scholar

[35] Dong C, Han X, Zhao Y, Li J, Chang L, Zhao W. Sol RRL, 2018, 2: 1800139 CrossRef Google Scholar

[36] Beal RE, Slotcavage DJ, Leijtens T, Bowring AR, Belisle RA, Nguyen WH, Burkhard GF, Hoke ET, McGehee MD. J Phys Chem Lett, 2016, 7: 746-751 CrossRef PubMed Google Scholar

[37] Chen CY, Lin HY, Chiang KM, Tsai WL, Huang YC, Tsao CS, Lin HW. Adv Mater, 2017, 29: 1605290 CrossRef PubMed Google Scholar

[38] Frolova LA, Anokhin DV, Piryazev AA, Luchkin SY, Dremova NN, Stevenson KJ, Troshin PA. J Phys Chem Lett, 2017, 8: 67-72 CrossRef PubMed Google Scholar

[39] Yonezawa K, Yamamoto K, Shahiduzzaman M, Furumoto Y, Hamada K, Ripolles, TS, Taima T, Jap J. Applied Phys, 2017, 56: 04C11. Google Scholar

[40] Hutter EM, Sutton RJ, Chandrashekar S, Abdi-Jalebi M, Stranks SD, Snaith HJ, Savenije TJ. ACS Energy Lett, 2017, 2: 1901-1908 CrossRef PubMed Google Scholar

[41] Shahiduzzaman M, Yonezawa K, Yamamoto K, Ripolles TS, Karakawa M, Kuwabara T, Takahashi K, Hayase S, Taima T. ACS Omega, 2017, 2: 4464-4469 CrossRef Google Scholar

[42] Ma Q, Huang S, Chen S,Zhang M, Lau C, Deng X, Zheng J, Ho-Baillie A. J Phys Chem C, 2017, 121: 19642–19649. Google Scholar

[43] Ma Q, Huang S, Wen X, Green MA, Ho-Baillie AWY. Adv Energy Mater, 2016, 6: 1502202 CrossRef Google Scholar

[44] Lau CFJ, Deng X, Ma Q, Zheng J, Yun JS, Green MA, Huang S, Ho-Baillie AWY. ACS Energy Lett, 2016, 1: 573-577 CrossRef Google Scholar

[45] Zeng Q, Zhang X, Feng X, Lu S, Chen Z, Yong X, Redfern SAT, Wei H, Wang H, Shen H, Zhang W, Zheng W, Zhang H, Tse JS, Yang B. Adv Mater, 2018, 30: 1705393 CrossRef PubMed Google Scholar

[46] Liu C, Li W, Zhang C, Ma Y, Fan J, Mai Y. J Am Chem Soc, 2018, 140: 3825-3828 CrossRef PubMed Google Scholar

[47] Bai D, Bian H, Jin Z, Wang H, Meng L, Wang Q, (Frank) Liu S. Nano Energy, 2018, 52: 408-415 CrossRef Google Scholar

[48] Chen W, Chen H, Xu G, Xue R, Wang S, Li Y, Li Y. Joule, 2019, 3: 191-204 CrossRef Google Scholar

[49] Li X, Ibrahim Dar M, Yi C, Luo J, Tschumi M, Zakeeruddin SM, Nazeeruddin MK, Han H, Grätzel M. Nat Chem, 2015, 7: 703-711 CrossRef PubMed ADS Google Scholar

[50] Li B, Zhang Y, Fu L, Yu T, Zhou S, Zhang L, Yin L. Nat Commun, 2018, 9: 1076 CrossRef PubMed ADS Google Scholar

[51] Fu Y, Rea MT, Chen J, Morrow DJ, Hautzinger MP, Zhao Y, Pan D, Manger LH, Wright JC, Goldsmith RH, Jin S. Chem Mater, 2017, 29: 8385-8394 CrossRef Google Scholar

[52] Xiang S, Fu Z, Li W, Wei Y, Liu J, Liu H, Zhu L, Zhang R, Chen H. ACS Energy Lett, 2018, 3: 1824-1831 CrossRef Google Scholar

[53] Luo P, Xia W, Zhou S, Sun L, Cheng J, Xu C, Lu Y. J Phys Chem Lett, 2016, 7: 3603-3608 CrossRef PubMed Google Scholar

[54] Ding X, Chen H, Wu Y, Ma S, Dai S, Yang S, Zhu J. J Mater Chem A, 2018, 6: 18258-18266 CrossRef Google Scholar

[55] Zhang T, Dar MI, Li G, Xu F, Guo N, Grätzel M, Zhao Y. Sci Adv, 2017, 3: e1700841 CrossRef PubMed ADS Google Scholar

[56] Li F, Pei Y, Xiao F, Zeng T, Yang Z, Xu J, Sun J, Peng B, Liu M. Nanoscale, 2018, 10: 6318-6322 CrossRef PubMed Google Scholar

[57] Xiang S, Li W, Wei Y, Liu J, Liu H, Zhu L, Chen H. Nanoscale, 2018, 10: 9996-10004 CrossRef PubMed Google Scholar

[58] Wang Y, Zhang T, Kan M, Li Y, Wang T, Zhao Y. Joule, 2018, 2: 1–11. Google Scholar

[59] Zhao B, Jin SF, Huang S, Liu N, Ma JY, Xue DJ, Han Q, Ding J, Ge QQ, Feng Y, Hu JS. J Am Chem Soc, 2018, 140: 11716-11725 CrossRef PubMed Google Scholar

[60] Ke W, Spanopoulos I, Stoumpos CC, Kanatzidis MG. Nat Commun, 2018, 9: 4785 CrossRef PubMed ADS Google Scholar

[61] Lu J, Chen SC, Zheng Q. ACS Appl Energy Mater, 2018, 1: 5872-5878 CrossRef Google Scholar

[62] Jena AK, Kulkarni A, Sanehira Y, Ikegami M, Miyasaka T. Chem Mater, 2018, 30: 6668-6674 CrossRef Google Scholar

[63] Eperon GE, Paterno GM, Sutton RJ, Zampetti A, Haghighirad AA, Cacialli F, Snaith HJ. J Mater Chem A, 2015, 3: 19688–19695. Google Scholar

[64] Sanchez S, Christoph N, Grobety B, Phung N, Steiner U, Saliba M, Abate A. Adv Energy Mater, 2018, 8: 1802060. Google Scholar

[65] Jiang Y, Yuan J, Ni Y, Yang J, Wang Y, Jiu T, Yuan M, Chen J. Joule, 2018, 2: 1356-1368 CrossRef Google Scholar

[66] Haque F, Wright M, Mahmud MA, Yi H, Wang D, Duan L, Xu C, Upama MB, Uddin A. ACS Omega, 2018, 3: 11937-11944 CrossRef Google Scholar

[67] Li N, Zhu Z, Li J, Jen AKY, Wang L. Adv Energy Mater, 2018, 5: 1801117. Google Scholar

  • Figure 1

    (a) Thermogravimetric analyses of methylammonium bromide (MABr), methylammonium lead bromide (MAPbBr3), lead bromide (PbBr2), cesium lead bromide (CsPbBr3), and cesium bromide (CsBr). Results show that inorganic perovskite has higher thermal stability than the hybrid organic-inorganic perovskite. (b) Aging analysis of MAPbBr3 and CsPbBr3 solar cells [9]. (c) In situ temperature-dependent synchrotron X-ray diffraction for CsPbI3. The original yellow phase converts to the black phase upon heating but does not return to the original structure upon cooling. (d) Polyhedral models of the different polymorphs of CsPbI3 and their structural transitions [20] (color online).

  • Figure 2

    Scanning electron microscopy (SEM) images of doped CsPbI2Br and CsPbI3 films. (a–d) 0%, 0.5%, 1%, and 2% MnCl2-doped CsPbI2Br [26];(e–h) 0%, 5%, 7%, and 10% Ca-doped CsPbI3 [27] (color online).

  • Figure 3

    Properties of perovskite CsPbI3 incorporated with Br. (a) UV-Vis absorbance spectra and (b) photoluminescence spectra (PL) for mixed halide CsPb(IxBr1−x)3 films with varying iodide concentrations x [34]. (c) PL peak position as a function of time for CsPb(IxBr1−x)3 materials under ~1 sun illumination [36]. (d) Long-term moisture stability of unencapsulated devices in an air atmosphere with RH of 30% [48]. (e) Long-term stability of the device stored without encapsulation (25 °C and RH=25%–35%) [56] (color online).

  • Figure 4

    Device performance in dry environment. (a) Device performance distribution for 80 devices. The curve represents the Gaussian function of the histogram. (b) Images of annealed CsPbI3 films stored in a dry nitrogen box for different days. (c, d) Photostability of the devices under continuous one-sun illumination in a nitrogen glove box [17] (color online).

  • Figure 5

    Performance and mechanism of surface passivation. (a) Schematic of the chemical bonding between CsPbI3 and PVP molecules; (b–d) the mechanism involving PVP and solvent DMSO/DMF effect on CsPbI3 film; (e) time-resolved photoluminescence spectra of orthorhombic and PVP-CsPbI3 films deposited on glass substrates; (f) long-term moisture stability and thermal stability of PVP-CsPbI3 cell [50] (color online).

  • Figure 6

    X-ray diffraction results of high-temperature annealed films and low-temperature annealed films. (a) K-doped CsPbI3 [25]; (b) MnCl2-doped CsPbI2Br [26]; (c) surface passivation of CsPbI3 [50]; (d) Bi-doped CsPbI2Br [29]; (e) HI/IPA-processed CsPbI3 [56]; (f) PEA-stabilized CsPbI3 [51] (color online).

  • Figure 7

    Low-temperature process using HI additive. (a) Structural diagram of CsPbI3 phases at room temperature and 310 or 100 °C with HI; (b) absorbance spectra of films fabricated at low and high temperatures (with and without HI additive) [12]; (c) scheme for the stabilization of CsPbI3 by proton transfer [59] (color online).

  • Figure 8

    (a) Schematic of gradient Br doping and PTA organic cation surface passivation on CsPbI3 perovskite thin film. (b) J-V characteristics of champion CsPbI3 and PTABr-CsPbI3-based PSCs under simulated AM 1.5G illumination of 100 mW/cm2 in reverse scan; (c) photostability of PTABr-CsPbI3 PSC under continuous white-light LED illumination (100 mW/cm2) in a N2 glove box [18] (color online).

  • Figure 9

    Low-temperature synthesis of CsPbI3 via DMAPbI3. (a) Molecular structures of FA (top) and DMA (bottom) cations; (b) tolerance factors of CsPbI3, DMAPbI3, and Cs0.7DMA0.3PbI3; (c) NMR spectra of Cs0.7DMA0.3PbI3 films and DMAI powder synthesized from DMF and HI; (d) J-V curves of devices using various absorbers measured under reverse voltage scans [60] (color online).

  • Figure 10

    Low-temperature synthesis of CsPbI3 by incorporating organic ligands. (a) δ-CsPbI3 without surface ligands; (b) OA-stabilized CsPbI3 perovskite in the cubic phase; (c) PEA-stabilized CsPbI3 perovskite in the orthorhombic phase [51]; (d) mechanism of α-CsPbI3 stabilization by zwitterion [21] (color online).

  • Figure 11

    Low-temperature synthesis of CsPbI3 by elemental doping. (a) Evolution of crystal structure and space group of CsPbBr3 single crystal with InCl3 dopant; (b, c) SEM images of InCl3:CsPbI2Br thin films with InCl3 dopant ratios: control and 2%, respectively [33]; (d) evolution of film morphology and crystal structure of CsPbI3 single crystal with Eu dopant [62]; (e, f) SEM images of the CsPbI2Br and CsPb0.95Eu0.05I2Br perovskite thin films, respectively [32] (color online).

  • Figure 12

    CsPbI3 QD-based solar cells. (a) Structure and cross-section SEM image of the PSCs based on CsPbI3 QD layers and (b) J-V curves of the CsPbI3 QD PSCs after different storage periods [16] (color online).

  • Table 1   Radii of potential elements for A, B, and X sites in perovskites

    A site (pm)

    B site (pm)

    X site (pm)

    Cs+

    169

    Pb2+

    120

    Sr2+

    113

    I

    216

    Na+

    95

    Mn2+

    66

    Eu3+

    95

    Br

    195

    K+

    133

    Ca2+

    99

    Ge2+

    73

    Cl

    181

    Rb+

    148

    Bi3+

    108

    In3+

    81

     

    Sb3+

    92

    Sn2+

    93

     

  • Table 2   Summary of the progress in CsPbI solar cells with high-temperature processing

    Pub. date

    PSC device structure

    Efficiency (%)

    Annealing temperature (°C)

    Ref.

    10/23/2015

    FTO/bl-TiO2/mp-TiO2/CsPbI3/P3HT/MoO3/Au

    4.7

    350

    [13]

    02/02/2016

    FTO/bl-TiO2/CsPbI3/Spiro-OMeTAD/Ag

    5.9

    350

    [34]

    11/14/2016

    ITO/Ca/C60/CsPbI3/TAPC/TAPC:MoO3/Ag

    9.1

    325

    [37]

    12/12/2016

    ITO/c-TiO2/CsPbI3/P3HT/Au

    10.5

    320

    [38]

    03/24/2017

    ITO/c-TiO2/CsPbI3/P3HT/Ag

    5.7

    350

    [39]

    08/11/2017

    ITO/c-TiO2/CsPbI3/P3HT/Ag

    6.8

    350

    [41]

    09/21/2017

    FTO/bl-TiO2/mp-TiO2/CsPb0.9Sn0.1IBr2/carbon

    11.3

    350

    [28]

    02/02/2016

    FTO/bl-TiO2/CsPbI2Br/Spiro-OMeTAD/Ag

    9.8

    250

    [34]

    02/07/2017

    FTO/c-TiO2/K0.075Cs0.925PbI2Br/Spiro-OMeTAD/Au

    10.0

    260

    [25]

    01/15/2018

    ITO/c-TiO2/CsPbI2Br/P3HT/Au

    12.0

    260

    [37]

    02/26/2018

    MgF2/glass/FTO/bl-TiO2/mp-TiO2/CsCa0.05Pb0.95I3/P3HT/Ag

    13.5

    350

    [27]

    03/14/2018

    FTO/c-TiO2/PVP-CsPbI3/Spiro-OMeTAD/Au

    10.7

    300

    [50]

    03/21/2018

    FTO/TiO2/MnCl2 doped CsPbBrI2/CsPbI2BrQDs/PTAA/Au

    13.5

    260

    [26]

    06/08/2018

    ITO/SnO2/CsPbI3/Spiro-OMeTAD/Au

    15.7

    340

    [17]

    07/19/2018

    FTO/c-TiO2/CsPbI2Br/carbon

    10.0

    340

    [35]

    08/06/2018

    FTO/c-TiO2/FA-CsPbI2Br/FA-CsPbI2Br QD/PTAA/Ag

    14.8

    300

    [47]

  • Table 3   Summary of the progress in CsPbI solar cells with low-temperature processing

    Pub. date

    PSC device structure

    Efficiency (%)

    Annealing temperature (°C)

    Ref.

    09/04/2015

    FTO/c-TiO2/CsPbI3(HI)/Spiro-OMeTAD/Au

    2.9

    100

    [12]

    08/29/2016

    FTO/c-TiO2/CsPbI3(HI/IPA)/Spiro-OMeTAD /Ag

    4.13

    100

    [53]

    08/31/2017

    FTO/c-TiO2/CsPb0.96Bi0.04I3/CuI/Au

    13.2

    100

    [29]

    09/11/2017

    FTO/c-TiO2/mp-TiO2/CsPb0.98Sr0.02I2Br/P3HT/Au

    11.3

    100

    [30]

    09/29/2017

    FTO/c-TiO2/CsPbI3:0.025EDAI2/Spiro-OMeTAD/Ag

    11.9

    150

    [55]

    03/10/2018

    FTO/bl-TiO2/mp-TiO2/CsxPEA1−xPbI3/Spiro-OMeTAD/Au

    5.7

    100

    [56]

    04/24/2018

    FTO/c-TiO2/mp-TiO2/mp-Al2O3/CsPb0.96Sb0.04I3/Spiro-OMeTAD/Au

    5.3

    100

    [57]

    06/01/2018

    ITO/SnO2/PEA2Csn−1PbnI3n+1/Spiro-OMETAD/Au

    12.4

    100

    [65]

    07/06/2018

    FTO/c-TiO2/CsPbI3(HPbI3)/PEAI/Spiro-OMeTAD/Ag

    14.3

    180

    [58]

    07/09/2018

    FTO/c-TiO2/m-TiO2/CsPbI3(HPbI3)/carbon

    9.5

    200

    [52]

    08/25/2018

    FTO/c-TiO2/CsPbI3:0.05DETAI3/P3HT/Au

    7.9

    150

    [54]

    09/07/2018

    FTO/c-TiO2/CsPbI3(HI)/P3HT/Au

    11.3

    100

    [59]

    09/24/2018

    FTO/c-TiO2/CsPbI3(HPbI3)/PTABr/Spiro-OMeTAD/Ag

    17.1

    180

    [18]

    09/26/2018

    ITO/PEDOT:PSS/CsPbI3(HI)/PC71BM/Ag

    6.3

    100

    [66]

    10/31/2018

    FTO/c-TiO2/CsPbI3-PEAI/PTAA/Au

    15.1

    150

    [22]

    08/01/2018

    FTO/SnO2/CsPb0.8Ge0.2I2Br/P3HT/spiro-OMeTAD/Au

    10.8

    160

    [31]

    09/15/2018

    PET/ITO/Nb2O5/CsPbI2Br/spiro-OMeTAD/Au

    11.7

    120

    [67]

    09/19/2018

    FTO/c-TiO2/m-TiO2/CsPbI1.8Br1.2/PTAA/Au

    10.3

    100

    [64]

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号