logo

More info
  • ReceivedJan 9, 2020
  • AcceptedMar 5, 2020
  • PublishedApr 3, 2020

Abstract

Measurements at the single-entity level provide more precise diagnosis and understanding of basic biological and chemical processes. Recent advances in the chemical measurement provide a means for ultra-sensitive analysis. Confining the single analyte and electrons near the sensing interface can greatly enhance the sensitivity and selectivity. In this review, we summarize the recent progress in single-entity electrochemistry of single molecules, single particles, single cells and even brain analysis. The benefits of confining these entities to a compatible size sensing interface are exemplified. Finally, the opportunities and challenges of single entity electrochemistry are addressed.


Funded by

the National Natural Science Foundation of China(21790390,21790391)

the Strategic Priority Research Program of Chinese Academy of Sciences(XDB30000000)

the National Basic Research Program of China(2018YFE0200800,2018YFA0703501,2016YFA0200104)

and the Chinese Academy of Sciences(QYZDJ-SSW-SLH030)


Acknowledgment

The authors would like to acknowledge funding from National Natural Science Foundation of China (21834001, 21925403, 21874070, 21790390, 21790391, 61901171). Y-L. Y. is sponsored by National Ten Thousand Talent Program for young topnotch talent. P. A. would like to acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 812398. L-Q. M. would like to acknowledge funding supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB30000000), the National Basic Research Program of China (2018YFE0200800, 2018YFA0703501 and 2016YFA0200104), and the Chinese Academy of Sciences (QYZDJSSW- SLH030). H. W. would like to acknowledgment funding from Office of Naval Research (N00014-19-1-2331), the US Air Force Office of Scientific Research MURI (FA9550-14-1-0003) and the Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, and Basic Energy Sciences under Award number DESC0001160. The images reported in Figure 21(b) were acquired using instrumentation purchased with support from the Office of Naval Research DURIP program (N00014-18-1-2235).


Interest statement

The authors declare that they have no conflict of interest.


Contributions statement

These authors contributed equally to this work.


References

[1] Baker LA. J Am Chem Soc, 2018, 140: 15549-15559 CrossRef PubMed Google Scholar

[2] Long Y‐, Unwin PR, Baker LA. ChemElectroChem, 2018, 5: 2918-2919 CrossRef Google Scholar

[3] Gooding JJ, Gaus K. Angew Chem Int Ed, 2016, 55: 11354-11366 CrossRef PubMed Google Scholar

[4] Wu Y, Tilley RD, Gooding JJ. J Am Chem Soc, 2019, 141: 1162-1170 CrossRef PubMed Google Scholar

[5] Ying YL, Long YT. J Am Chem Soc, 2019, 141: 15720-15729 CrossRef PubMed Google Scholar

[6] Shi W, Friedman AK, Baker LA. Anal Chem, 2016, 89: 157-188 CrossRef PubMed Google Scholar

[7] Mirkin MV, Sun T, Yu Y, Zhou M. Acc Chem Res, 2016, 49: 2328-2335 CrossRef PubMed Google Scholar

[8] Fu K, Bohn PW. ACS Cent Sci, 2018, 4: 20-29 CrossRef Google Scholar

[9] Allerston LK, Rees NV. Curr Opin Electrochem, 2018, 10: 31-36 CrossRef Google Scholar

[10] Bentley CL, Kang M, Unwin PR. J Am Chem Soc, 2019, 141: 2179-2193 CrossRef PubMed Google Scholar

[11] Anderson TJ, Zhang B. Acc Chem Res, 2016, 49: 2625-2631 CrossRef PubMed Google Scholar

[12] Kleijn SEF, Lai SCS, Koper MTM, Unwin PR. Angew Chem Int Ed, 2014, 53: 3558-3586 CrossRef PubMed Google Scholar

[13] Valenti G, Scarabino S, Goudeau B, Lesch A, Jović M, Villani E, Sentic M, Rapino S, Arbault S, Paolucci F, Sojic N. J Am Chem Soc, 2017, 139: 16830-16837 CrossRef PubMed Google Scholar

[14] Lugo-Morales LZ, Loziuk PL, Corder AK, Toups JV, Roberts JG, McCaffrey KA, Sombers LA. Anal Chem, 2013, 85: 8780-8786 CrossRef PubMed Google Scholar

[15] Wang W. Chem Soc Rev, 2018, 47: 2485-2508 CrossRef PubMed Google Scholar

[16] Harrison AG. Chemical ionization mass spectrometry. 2018, Routledge. Google Scholar

[17] Li H, Liu X, Li L, Mu X, Genov R, Mason A, Sensors, 2017, 17(1): 74. Google Scholar

[18] Kranz C. Faraday Discuss, 2018, 210: 499–501. Google Scholar

[19] Crooks RM. Faraday Discuss, 2016, 193: 533-547 CrossRef PubMed Google Scholar

[20] Ying YL, Cao C, Hu YX, Long YT. Natl Sci Rev, 2018, 5: 450-452 CrossRef Google Scholar

[21] Meller A. Nat Nanotechnol, 2019, 14: 732-733 CrossRef PubMed Google Scholar

[22] Howorka S, Siwy Z. Chem Soc Rev, 2009. 38(8): 2360-2384. Google Scholar

[23] Venkatesan BM, Bashir R. Nat Nanotech, 2011, 6: 615-624 CrossRef PubMed Google Scholar

[24] Ying YL, Zhang J, Gao R, Long YT. Angew Chem Int Ed, 2013, 52: 13154-13161 CrossRef PubMed Google Scholar

[25] Deamer D, Akeson M, Branton D. Nat Biotechnol, 2016, 34: 518-524 CrossRef PubMed Google Scholar

[26] Restrepo-Pérez L, Joo C, Dekker C. Nat Nanotech, 2018, 13: 786-796 CrossRef PubMed Google Scholar

[27] Luchian T, Park Y, Asandei A, Schiopu I, Mereuta L, Apetrei A. Acc Chem Res, 2019, 52: 267-276 CrossRef PubMed Google Scholar

[28] Luo L, German SR, Lan WJ, Holden DA, Mega TL, White HS. Annu Rev Anal Chem, 2014, 7: 513-535 CrossRef PubMed Google Scholar

[29] Cao C, Long YT. Acc Chem Res, 2018, 51: 331-341 CrossRef PubMed Google Scholar

[30] Yu RJ, Ying YL, Gao R, Long YT. Angew Chem Int Ed, 2019, 58(12): 3706–3714. Google Scholar

[31] Ptrice Ft, Qiu K, Ying YL, Long YT. Annu Rev Anal Chem (Palo Alto Calif), 2019. 12(1): 347–370. Google Scholar

[32] Liu SC, Li MX, Li MY, Wang YQ, Ying YL, Wan YJ, Long YT. Faraday Discuss, 2018. 210(0): 87-99. Google Scholar

[33] Wang  J, Yang  J, Ying  Y, Long  Y‐. Chem Asian J, 2019, 14: 389-397 CrossRef PubMed Google Scholar

[34] Kasianowicz JJ, Brandin E, Branton D, Deamer DW. Proc Natl Acad Sci USA, 1996, 93: 13770-13773 CrossRef PubMed Google Scholar

[35] Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA. Nature, 2001, 412: 166-169 CrossRef PubMed Google Scholar

[36] Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C. Nat Mater, 2003, 2: 537-540 CrossRef PubMed Google Scholar

[37] Ying YL, Long YT. Sci China Chem, 2017, 60: 1187-1190 CrossRef Google Scholar

[38] Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko JA. Nature, 2010, 467: 190-193 CrossRef PubMed Google Scholar

[39] Schneider ǴF, Kowalczyk SW, Calado VE, Pandraud Ǵ, Zandbergen HW, Vandersypen LMK, Dekker C. Nano Lett, 2010, 10: 3163-3167 CrossRef PubMed Google Scholar

[40] Merchant CA, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein MD, Venta K, Luo Z, Johnson ATC, Drndić M. Nano Lett, 2010, 10: 2915-2921 CrossRef PubMed Google Scholar

[41] Liu K, Feng J, Kis A, Radenovic A. ACS Nano, 2014, 8: 2504-2511 CrossRef PubMed Google Scholar

[42] Dekker C. Nat Nanotechnol, 2007, 2: 209–215. Google Scholar

[43] Miles BN, Ivanov AP, Wilson KA, Doğan F, Japrung D, Edel JB. Chem Soc Rev, 2013, 42: 15-28 CrossRef PubMed Google Scholar

[44] Gao R, Lin Y, Ying YL, Long YT. Sci China Chem, 2019, 62: 1576-1587 CrossRef Google Scholar

[45] Gu Z, Ying YL, Long YT. Sci China Chem, 2018, 61: 1483-1485 CrossRef Google Scholar

[46] Song l, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE. Science, 1996, 274: 1859–1866. Google Scholar

[47] Iacovache I, De Carlo S, Cirauqui N, Dal Peraro M, van der Goot FG, Zuber B. Nat Commun, 2016, 7: 12062 CrossRef PubMed Google Scholar

[48] Faller M, Niederweis M, Schulz GE. Science, 2004, 303: 1189-1192 CrossRef PubMed Google Scholar

[49] Subbarao GV, van den Berg B. J Mol Biol, 2006, 360: 750-759 CrossRef PubMed Google Scholar

[50] Cao B, Zhao Y, Kou Y, Ni D, Zhang XC, Huang Y. Proc Natl Acad Sci USA, 2014, 111: E5439-E5444 CrossRef PubMed Google Scholar

[51] De Colibus L, Sonnen AFP, Morris KJ, Siebert CA, Abrusci P, Plitzko J, Hodnik V, Leippe M, Volpi E, Anderluh G, Gilbert RJC. Structure, 2012, 20: 1498-1507 CrossRef PubMed Google Scholar

[52] Locher KP, Rees B, Koebnik R, Mitschler A, Moulinier L, Rosenbusch JP, Moras D. Cell, 1998, 95: 771-778 CrossRef Google Scholar

[53] Bräuning B, Bertosin E, Praetorius F, Ihling C, Schatt A, Adler A, Richter K, Sinz A, Dietz H, Groll M. Nat Commun, 2018, 9: 1806 CrossRef PubMed Google Scholar

[54] Simpson AA, Tao Y, Leiman PG, Badasso MO, He Y, Jardine PJ, Olson NH, Morais MC, Grimes S, Anderson DL, Baker TS, Rossmann MG. Nature, 2000, 408: 745-750 CrossRef PubMed Google Scholar

[55] Sun K, Zhao C, Zeng X, Chen Y, Jiang X, Ding X, Gou L, Xie H, Li X, Zhang X, Lin S, Dou L, Wei L, Niu H, Zhang M, Tian R, Sawyer E, Yuan Q, Huang Y, Chen P, Zhao C, Zhou C, Ying B, Shi B, Wei X, Jiang R, Zhang L, Lu G, Geng J. Nat Commun, 2019, 10: 5083 CrossRef PubMed Google Scholar

[56] Montal M, Mueller P. Proc Natl Acad Sci U S A, 1972, 69(12): 3561–3566. Google Scholar

[57] Cao C, Liao DF, Yu J, Tian H, Long YT. Nat Protoc, 2017, 12: 1901-1911 CrossRef PubMed Google Scholar

[58] Wang J, Terrasse R, Bafna JA, Benier L, Winterhalter M. Angew Chem Int Ed, 2020. Google Scholar

[59] Wu XY, Wang MB, Wang YQ, Li MY, Ying YL, Huang J, Long YT. CCS Chemistry, 2019, 1: 304–312.. Google Scholar

[60] Li MY, Wang YQ, Lu Y, Ying YL, Long YT. Front Chem, 2019, 7: 528 CrossRef Google Scholar

[61] Wang YQ, Li MY, Qiu H, Cao C, Wang MB, Wu XY, Huang J, Ying YL, Long YT. Anal Chem, 2018, 90: 7790-7794 CrossRef PubMed Google Scholar

[62] Goodwin S, McPherson JD, McCombie WR. Nat Rev Genet, 2016, 17: 333-351 CrossRef PubMed Google Scholar

[63] Brown CG, Clarke J. Nat Biotechnol, 2016, 34: 810-811 CrossRef PubMed Google Scholar

[64] Jain M, Tyson JR, Loose M, Ip CLC, Eccles DA, O'Grady J, Malla S, Leggett RM, Wallerman O, Jansen HJ, Zalunin V, Birney E, Brown BL, Snutch TP, Olsen HE. F1000Res. 2017, 6:760. Google Scholar

[65] Jin Q, Fleming AM, Johnson RP, Ding Y, Burrows CJ, White HS. J Am Chem Soc, 2013, 135: 19347-19353 CrossRef PubMed Google Scholar

[66] Schibel AEP, An N, Jin Q, Fleming AM, Burrows CJ, White HS. J Am Chem Soc, 2010, 132: 17992-17995 CrossRef PubMed Google Scholar

[67] Zhang JH, Liu XL, Hu ZL, Ying YL, Long YT. Chem Commun, 2017, 53: 10176-10179 CrossRef PubMed Google Scholar

[68] Tian K, He Z, Wang Y, Chen SJ, Gu LQ. ACS Nano, 2013, 7: 3962-3969 CrossRef PubMed Google Scholar

[69] Zhang X, Zhang D, Zhao C, Tian K, Shi R, Du X, Burcke AJ, Wang J, Chen SJ, Gu LQ. Nat Commun, 2017, 8: 1458 CrossRef PubMed Google Scholar

[70] Sheng Y, You Y, Cao Z, Liu L, Wu HC. Analyst, 2018, 143: 2411-2415 CrossRef PubMed Google Scholar

[71] Ramsay WJ, Bayley H. Angew Chem Int Ed, 2018, 57: 2841-2845 CrossRef PubMed Google Scholar

[72] Lu Y, Wu XY, Ying YL, Long YT. Chem Commun, 2019, 55: 9311-9314 CrossRef PubMed Google Scholar

[73] Hu ZL, Li ZY, Ying YL, Zhang J, Cao C, Long YT, Tian H. Anal Chem, 2018, 90: 4268-4272 CrossRef PubMed Google Scholar

[74] Cao C, Ying YL, Hu ZL, Liao DF, Tian H, Long YT. Nat Nanotech, 2016, 11: 713-718 CrossRef PubMed Google Scholar

[75] Zeng T, Fleming AM, Ding Y, White HS, Burrows CJ. Biochemistry, 2017, 56: 1596-1603 CrossRef PubMed Google Scholar

[76] Wang HY, Gu Z, Cao C, Wang J, Long YT. Anal Chem, 2013, 85: 8254-8261 CrossRef PubMed Google Scholar

[77] Qing Y, Ionescu SA, Pulcu GS, Bayley H. Science, 2018, 361: 908-912 CrossRef PubMed Google Scholar

[78] Lieberman KR, Cherf GM, Doody MJ, Olasagasti F, Kolodji Y, Akeson M. J Am Chem Soc, 2010, 132: 17961-17972 CrossRef PubMed Google Scholar

[79] Stefureac R, Long YT, Kraatz HB, Howard P, Lee JS. Biochemistry, 2006, 45: 9172-9179 CrossRef PubMed Google Scholar

[80] Long YT, Zhang MN. Sci China Ser B-Chem, 2009, 52: 731-733 CrossRef Google Scholar

[81] Houghtaling J, List J, Mayer M. Small, 2018, 14: 1802412 CrossRef PubMed Google Scholar

[82] Wang HY, Ying YL, Li Y, Kraatz HB, Long YT. Anal Chem, 2011, 83: 1746-1752 CrossRef PubMed Google Scholar

[83] Liao DF, Cao C, Ying YL, Long YT. Small, 2018, 14: 1704520 CrossRef PubMed Google Scholar

[84] Asandei A, Iftemi S, Mereuta L, Schiopu I, Luchian T. J Membrane Biol, 2014, 247: 523-530 CrossRef PubMed Google Scholar

[85] Li S, Cao C, Yang J, Long YT. ChemElectroChem, 2019, 6: 126-129 CrossRef Google Scholar

[86] Piguet F, Ouldali H, Pastoriza-Gallego M, Manivet P, Pelta J, Oukhaled A. Nat Commun, 2018, 9: 966 CrossRef PubMed Google Scholar

[87] Huang G, Voet A, Maglia G. Nat Commun, 2019, 10: 835 CrossRef PubMed Google Scholar

[88] Ionescu SA, Lee S, Housden NG, Kaminska R, Kleanthous C, Bayley H. ChemBioChem, 2017, 18: 554-562 CrossRef PubMed Google Scholar

[89] Liu L, Fang Z, Zheng X, Xi D. ACS Sens, 2019, 4: 1323-1328 CrossRef Google Scholar

[90] Borsley S, Cockroft SL. ACS Nano, 2018, 12: 786-794 CrossRef Google Scholar

[91] Ying YL, Yang J, Meng FN, Li S, Li MY, Long YT. Research, 2019, 2019: 1050735. Google Scholar

[92] Rosen CB, Rodriguez-Larrea D, Bayley H. Nat Biotechnol, 2014, 32: 179-181 CrossRef PubMed Google Scholar

[93] Harrington L, Alexander LT, Knapp S, Bayley H. ACS Nano, 2019, 13: 633-641 CrossRef Google Scholar

[94] Willems K, Van Meervelt V, Wloka C, Maglia G. Phil Trans R Soc B, 2017, 372: 20160230 CrossRef PubMed Google Scholar

[95] Zhao Q, de Zoysa RSS, Wang D, Jayawardhana DA, Guan X. J Am Chem Soc, 2009, 131: 6324-6325 CrossRef PubMed Google Scholar

[96] Cao C, Li MY, Cirauqui N, Wang YQ, Dal Peraro M, Tian H, Long YT. Nat Commun, 2018, 9: 2823 CrossRef PubMed Google Scholar

[97] Wang J, Li MY, Yang J, Wang YQ, Wu XY, Huang J, Ying YL, Long YT. ACS Cent Sci, 2020, 6: 76-82 CrossRef Google Scholar

[98] Zhou B, Wang YQ, Cao C, Li DW, Long YT. Sci China Chem, 2018, 61: 1385-1388 CrossRef Google Scholar

[99] Manrao EA, Derrington IM, Laszlo AH, Langford KW, Hopper MK, Gillgren N, Pavlenok M, Niederweis M, Gundlach JH. Nat Biotechnol, 2012, 30: 349-353 CrossRef PubMed Google Scholar

[100] Wang J, Bafna JA, Bhamidimarri SP, Winterhalter M. Angew Chem Int Ed, 2019, 58: 4737-4741 CrossRef PubMed Google Scholar

[101] Li Y, Cox JT, Zhang B. J Am Chem Soc, 2010, 132: 3047-3054 CrossRef PubMed Google Scholar

[102] Hua H, Liu Y, Wang D, Li Y. Anal Chem, 2018, 90: 9677-9681 CrossRef PubMed Google Scholar

[103] Aiyappa HB, Wilde P, Quast T, Masa J, Andronescu C, Chen YT, Muhler M, Fischer RA, Schuhmann W. Angew Chem Int Ed, 2019, 58: 8927-8931 CrossRef PubMed Google Scholar

[104] Quinn BM, Van 't Hof PG, Lemay SG. J Am Chem Soc, 2004, 126: 8360-8361 CrossRef PubMed Google Scholar

[105] Gao G, Wang D, Brocenschi R, Zhi J, Mirkin MV. Anal Chem, 2018, 90: 12123-12130 CrossRef PubMed Google Scholar

[106] Dick JE, Hilterbrand AT, Strawsine LM, Upton JW, Bard AJ. Proc Natl Acad Sci USA, 2016, 113: 6403-6408 CrossRef PubMed Google Scholar

[107] Xiao X, Bard AJ. J Am Chem Soc, 2007, 129: 9610-9612 CrossRef PubMed Google Scholar

[108] Peng YY, Ma H, Ma W, Long YT, Tian H. Angew Chem Int Ed, 2018, 57: 3758-3762 CrossRef PubMed Google Scholar

[109] Ma H, Ma W, Chen JF, Liu XY, Peng YY, Yang ZY, Tian H, Long YT. J Am Chem Soc, 2018, 140: 5272-5279 CrossRef PubMed Google Scholar

[110] Zhou YG, Rees NV, Compton RG. Angew Chem Int Ed, 2011, 50: 4219-4221 CrossRef PubMed Google Scholar

[111] Evers MV, Bernal M, Roldan Cuenya B, Tschulik K. Angew Chem Int Ed, 2019, 58: 8221-8225 CrossRef PubMed Google Scholar

[112] Sun L, Jiang D, Li M, Yuan L, Wang W, Chen HY. Anal. Chem. 2017, 89, 11, 6050–6055. Google Scholar

[113] Li X, Majdi S, Dunevall J, Fathali H, Ewing AG. Angew Chem Int Ed, 2015, 54: 11978-11982 CrossRef PubMed Google Scholar

[114] Cheng W, Compton RG. Angew Chem Int Ed, 2014, 53: 13928-13930 CrossRef PubMed Google Scholar

[115] Tao B, Yule LC, Daviddi E, Bentley CL, Unwin PR. Angew Chem Int Ed, 2019, 58: 4606-4611 CrossRef PubMed Google Scholar

[116] Sun L, Fang Y, Li Z, Wang W, Chen H. Nano Res, 2017, 10: 1740-1748 CrossRef Google Scholar

[117] Brasiliense V, Patel AN, Martinez-Marrades A, Shi J, Chen Y, Combellas C, Tessier G, Kanoufi F. J Am Chem Soc, 2016, 138: 3478-3483 CrossRef PubMed Google Scholar

[118] Evans RC, Ellingworth A, Cashen CJ, Weinberger CR, Sambur JB. Proc Natl Acad Sci USA, 2019, 116: 12666-12671 CrossRef PubMed Google Scholar

[119] Hill, C.M. and S. Pan. Proc Natl Acad Sci U S A, 2013, 135(46): 17250–17253. Google Scholar

[120] Fang Y, Wang W, Wo X, Luo Y, Ying S, Wang Y, Shan X, Tao N. J Am Chem Soc, 2014, 136, 12584–12587. Google Scholar

[121] Nizamov S, Kasian O, Mirsky VM. Angew Chem Int Ed, 2016, 55: 7247-7251 CrossRef PubMed Google Scholar

[122] Xu W, Shen H, Kim YJ, Zhou X, Liu G, Park J, Chen P. Nano Lett, 2009, 9: 3968-3973 CrossRef PubMed Google Scholar

[123] Wilson AJ, Willets KA. Nano Lett, 2014, 14: 939-945 CrossRef PubMed Google Scholar

[124] Zhu MJ, Pan JB, Wu ZQ, Gao XY, Zhao W, Xia XH, Xu JJ, Chen HY. Angew Chem Int Ed, 2018, 57: 4010-4014 CrossRef PubMed Google Scholar

[125] Shan X, Díez-Pérez I, Wang L, Wiktor P, Gu Y, Zhang L, Wang W, Lu J, Wang S, Gong Q, Li J, Tao N. Nat Nanotech, 2012, 7: 668-672 CrossRef PubMed Google Scholar

[126] Jiang D, Jiang Y, Li Z, Liu T, Wo X, Fang Y, Tao N, Wang W, Chen HY. J Am Chem Soc, 2017, 139: 186-192 CrossRef PubMed Google Scholar

[127] Novo C, Funston AM, Gooding AK, Mulvaney P. J Am Chem Soc, 2009, 131: 14664-14666 CrossRef PubMed Google Scholar

[128] Liu T, Li M, Wang Y, Fang Y, Wang W. Chem Sci, 2018, 9: 4424-4429 CrossRef PubMed Google Scholar

[129] Wang H, Shan X, Chen HY, Tao N. Nano Lett, 2017, 17: 236-241 CrossRef PubMed Google Scholar

[130] Xia Q, Chen Z, Xiao P, Wang M, Chen X, Zhang JR, Chen HY, Zhu JJ. Nat Commun, 2019, 10: 3849 CrossRef PubMed Google Scholar

[131] Hooke, R., ed. Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses. : With observations and inquiries thereupon. Vol. 1665, Jo. Martyn, and Ja. Allestry: London. Google Scholar

[132] Ribatti D. Exp Cell Res., 2018, 364(1):1–4. Google Scholar

[133] Actis P, Small Methods, 2018, 2(3): 1700300. Google Scholar

[134] Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G, Geho DH, Petricoin Iii EF, Liotta LA. Nat Protoc, 2006, 1: 586-603 CrossRef PubMed Google Scholar

[135] Battich N, Stoeger T, Pelkmans L. Nat Methods, 2013, 10: 1127-1133 CrossRef PubMed Google Scholar

[136] Zare, R.N. and S. Kim. Annu Rev Biomed Eng., 2010, 12: 187–201. Google Scholar

[137] Prakadan, S.M., A.K. Shalek, and D.A. Weitz. Nature Reviews Genet, 2017, 18(6), 345). Google Scholar

[138] Sarkar, A, Kolitz S, Lauffenbruger DA, Han J, Nat Commun, 2014, 5, 3421. Google Scholar

[139] Higgins SG, Stevens MM. Science, 2017, 356: 379-380 CrossRef PubMed Google Scholar

[140] Nawarathna D, Chang R, Nelson E, Wickramasinghe HK. Anal Biochem, 2011, 408: 342-344 CrossRef PubMed Google Scholar

[141] Maresca D, Lakshmanan A, Lee-Gosselin A, Melis JM, Ni YL, Bourdeau RW, Kochmann DM, Shapiro MG. Appl Phys Lett, 2017, 110(7): 073704. Google Scholar

[142] Li X, Tao Y, Lee DH, Wickramasinghe HK, Lee AP. Lab Chip, 2017, 17: 1635-1644 CrossRef PubMed Google Scholar

[143] Nadappuram BP, Cadinu P, Barik A, Ainscough AJ, Devine MJ, Kang M, Gonzalez-Garcia J, Kittler JT, Willison KR, Vilar R, Actis P, Wojciak-Stothard B, Oh SH, Ivanov AP, Edel JB. Nat Nanotech, 2019, 14: 80-88 CrossRef PubMed Google Scholar

[144] McKelvey K, Nadappuram BP, Actis P, Takahashi Y, Korchev YE, Matsue T, Robinson C, Unwin PR. Anal Chem, 2013, 85: 7519-7526 CrossRef PubMed Google Scholar

[145] Guillaume-Gentil O, Potthoff E, Ossola D, Franz CM, Zambelli T, Vorholt JA. Trends Biotech, 2014, 32: 381-388 CrossRef PubMed Google Scholar

[146] Guillaume-Gentil O, Grindberg RV, Kooger R, Dorwling-Carter L, Martinez V, Ossola D, Pilhofer M, Zambelli T, Vorholt JA. Cell, 2016, 166: 506-516 CrossRef PubMed Google Scholar

[147] Guillaume-Gentil O, Rey T, Kiefer P, Ibáñez AJ, Steinhoff R, Brönnimann R, Dorwling-Carter L, Zambelli T, Zenobi R, Vorholt JA. Anal Chem, 2017, 89: 5017-5023 CrossRef PubMed Google Scholar

[148] Aramesh M, Forró C, Dorwling-Carter L, Lüchtefeld I, Schlotter T, Ihle SJ, Shorubalko I, Hosseini V, Momotenko D, Zambelli T, Klotzsch E, Vörös J. Nat Nanotechnol., 2019, 14(8):791–798. Google Scholar

[149] Actis P, Maalouf MM, Kim HJ, Lohith A, Vilozny B, Seger RA, Pourmand N. ACS Nano, 2014, : 546-553 CrossRef PubMed Google Scholar

[150] Chen CC, Zhou Y, Baker LA. Annu Rev Anal Chem, 2012, 5: 207-228 CrossRef PubMed Google Scholar

[151] Novak P, Li C, Shevchuk AI, Stepanyan R, Caldwell M, Hughes S, Smart TG, Gorelik J, Ostanin VP, Lab MJ, Moss GW, Frolenkov GI, Klenerman D, Korchev YE. Nat Methods., 2009, 6(4): 279–81. Google Scholar

[152] Rheinlaender J, Geisse NA, Proksch R, Schäffer TE. Langmuir, 2011, 27: 697-704 CrossRef PubMed Google Scholar

[153] Actis P, Mak AC, Pourmand N. Bioanal Rev, 2010, 1: 177-185 CrossRef PubMed Google Scholar

[154] Laforge FO, Carpino J, Rotenberg SA, Mirkin MV. Proc Natl Acad Sci USA, 2007, 104: 11895-11900 CrossRef PubMed Google Scholar

[155] Tóth EN, Lohith A, Mondal M, Guo J, Fukamizu A, Pourmand N. J Biol Chem, 2018, 293: 4940-4951 CrossRef PubMed Google Scholar

[156] Nashimoto Y, Takahashi Y, Zhou Y, Ito H, Ida H, Ino K, Matsue T, Shiku H. ACS Nano, 2016, 10: 6915-6922 CrossRef Google Scholar

[157] Nashimoto Y, Echigo M, Ino K, Shiku H. Anal Chem, 2019, 91: 8772-8776 CrossRef PubMed Google Scholar

[158] Saha-Shah A, Green CM, Abraham DH, Baker LA. Analyst, 2016, 141: 1958-1965 CrossRef PubMed Google Scholar

[159] Yin R, Prabhakaran V, Laskin J. Anal Chem, 2018, 90: 7937-7945 CrossRef PubMed Google Scholar

[160] Cao Y, Hjort M, Chen H, Birey F, Leal-Ortiz SA, Han CM, Santiago JG, Paşca SP, Wu JC, Melosh NA. Proc Natl Acad Sci USA, 2017, 114: E1866-E1874 CrossRef PubMed Google Scholar

[161] VanDersarl JJ, Xu AM, Melosh NA. Nano Lett, 2012, 12: 3881-3886 CrossRef PubMed Google Scholar

[162] Xu AM, Aalipour A, Leal-Ortiz S, Mekhdjian AH, Xie X, Dunn AR, Garner CC, Melosh NA. Nat Commun, 2014, 5: 3613. Google Scholar

[163] Singhal R, Orynbayeva Z, Kalyana Sundaram RV, Niu JJ, Bhattacharyya S, Vitol EA, Schrlau MG, Papazoglou ES, Friedman G, Gogotsi Y. Nat Nanotech, 2011, 6: 57-64 CrossRef PubMed Google Scholar

[164] Yan R, Park JH, Choi Y, Heo CJ, Yang SM, Lee LP, Yang P. Nat Nanotech, 2011, 7: 191-196 CrossRef PubMed Google Scholar

[165] Zhang M, Liu K, Gong K, Su L, Chen Y, Mao L. Anal Chem, 2005, 77: 6234-6242 CrossRef PubMed Google Scholar

[166] Hou H, Mao J, Han Y, Wu F, Zhang M, Wang D, Mao L, Li Y. Sci China Chem, 2019, 62: 1720–1724. Google Scholar

[167] Cheng H, Wang X, Wei H. Anal Chem, 2015, 87: 8889-8895 CrossRef PubMed Google Scholar

[168] Zhuang X, Wang D, Lin Y, Yang L, Yu P, Jiang W, Mao L. Anal Chem, 2012, 84: 1900-1906 CrossRef PubMed Google Scholar

[169] Zhang L, Liu F, Sun X, Wei GF, Tian Y, Liu ZP, Huang R, Yu Y, Peng H. Anal Chem, 2017, 89: 1831-1837 CrossRef PubMed Google Scholar

[170] Yan H, Guo S, Wu F, Yu P, Liu H, Li Y, Mao L. Angew Chem Int Ed, 2018, 57: 3922-3926 CrossRef PubMed Google Scholar

[171] Lin Y, Zhu N, Yu P, Su L, Mao L. Anal Chem, 2009, 81: 2067-2074 CrossRef PubMed Google Scholar

[172] Zhao F, Shi GY, Tian Y. Chin J Anal Chem, 2019, 47: 347-354 CrossRef Google Scholar

[173] Zhao L, Jiang Y, Wei H, Jiang Y, Ma W, Zheng W, Cao AM, Mao L. Anal Chem, 2019, 91: 4421-4428 CrossRef PubMed Google Scholar

[174] Liu J, Li F, Wang Y, Pan L, Lin P, Zhang B, Zheng Y, Xu Y, Liao H, Ko G, Fei F, Xu C, Du Y, Shin K, Kim D, Jang SS, Chung HJ, Tian H, Wang Q, Guo W, Nam JM, Chen Z, Hyeon T, Ling D. Nat Nanotechnol., 2020. Google Scholar

[175] Wu F, Cheng H, Wei H, Xiong T, Yu P, Mao L. Anal Chem, 2018, 90: 13021-13029 CrossRef PubMed Google Scholar

[176] Xiao T, Jiang Y, Ji W, Mao L. Anal Chem, 2018, 90: 4840-4846 CrossRef PubMed Google Scholar

[177] Schwerdt HN, Shimazu H, Amemori KI, Amemori S, Tierney PL, Gibson DJ, Hong S, Yoshida T, Langer R, Cima MJ, Graybiel AM. Proc Natl Acad Sci USA, 2017, 114: 13260-13265 CrossRef PubMed Google Scholar

[178] Ganesana M, Trikantzopoulos E, Maniar Y, Lee ST, Venton BJ. Biosens Bioelectron, 2019, 130: 103-109 CrossRef PubMed Google Scholar

[179] Xiao T, Li X, Wei H, Ji W, Yue Q, Yu P, Mao L. Anal Chem, 2018, 90: 13783-13789 CrossRef PubMed Google Scholar

[180] Smith SK, Lee CA, Dausch ME, Horman BM, Patisaul HB, McCarty GS, Sombers LA. ACS Chem Neurosci, 2017, 8: 272-280 CrossRef PubMed Google Scholar

[181] Smith SK, Gosrani SP, Lee CA, McCarty GS, Sombers LA. Anal Chem, 2018, 90: 12994-12999 CrossRef PubMed Google Scholar

[182] Zhang Z, Hao J, Xiao T, Yu P, Mao L. Analyst, 2015, 140: 5039-5047 CrossRef PubMed Google Scholar

[183] Llaudet E, Hatz S, Droniou M, Dale N. Anal Chem, 2005, 77: 3267-3273 CrossRef PubMed Google Scholar

[184] Wang S, Liu X, Zhang M. Anal Chem, 2017, 89: 5382-5388 CrossRef PubMed Google Scholar

[185] Wang K, Xiao T, Yue Q, Wu F, Yu P, Mao L. Anal Chem, 2017, 89: 9502-9507 CrossRef PubMed Google Scholar

[186] Xiao T, Wang Y, Wei H, Yu P, Jiang Y, Mao L. Angew Chem, 2019, 131: 6688-6691 CrossRef Google Scholar

[187] Xin Y, Zhang ZP, Yu P, Ma FR, Mao LQ. Sci China Chem, 2013, 56: 256-261 CrossRef Google Scholar

[188] Fan Y, Han C, Zhang B. Analyst, 2016, 141: 5474-5487 CrossRef PubMed Google Scholar

[189] Murray RW. Chem Rev, 2008, 108: 2688-2720 CrossRef PubMed Google Scholar

[190] Conyers JL, White HS. Anal Chem, 2000, 72: 4441-4446 CrossRef PubMed Google Scholar

[191] Zhang B, Zhang Y, White HS. Anal Chem, 2004, 76: 6229-6238 CrossRef PubMed Google Scholar

[192] Zhang B, Galusha J, Shiozawa PG, Wang G, Bergren AJ, Jones RM, White RJ, Ervin EN, Cauley CC, White HS. Anal Chem, 2007, 79: 4778-4787 CrossRef PubMed Google Scholar

[193] Ma W, Hu K, Chen QJ, Zhou M, Mirkin MV, Bard AJ. Nano Lett, 2017, 17: 4354-4358 CrossRef PubMed Google Scholar

[194] Kai T, Zoski CG, Bard AJ. Chem Commun, 2018, 54: 1934-1947 CrossRef PubMed Google Scholar

[195] Bentley CL, Kang M, Unwin PR. Curr Opin Electrochem, 2017, 6: 23-30 CrossRef Google Scholar

[196] Ebejer N, Güell AG, Lai SCS, McKelvey K, Snowden ME, Unwin PR. Annu Rev Anal Chem, 2013, 6: 329-351 CrossRef PubMed Google Scholar

[197] Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Science, 2017, 355: eaad4998 CrossRef PubMed Google Scholar

[198] Karlsson RKB, Cornell A. Chem Rev, 2016, 116: 2982-3028 CrossRef PubMed Google Scholar

[199] Kashchiev, D., Nucleation: Basic Theory with Applications. Butter-worth. 2000, Heineman, Oxford. Google Scholar

[200] Luo L, White HS. Langmuir, 2013, 29: 11169-11175 CrossRef PubMed Google Scholar

[201] Chen Q, Luo L, Faraji H, Feldberg SW, White HS. J Phys Chem Lett, 2014, 5: 3539-3544 CrossRef PubMed Google Scholar

[202] Chen Q, Wiedenroth HS, German SR, White HS. J Am Chem Soc, 2015, 137: 12064-12069 CrossRef PubMed Google Scholar

[203] Edwards MA, White HS, Ren H. ACS Nano, 2019, 13: 6330-6340 CrossRef Google Scholar

[204] German SR, Edwards MA, Ren H, White HS. J Am Chem Soc, 2018, 140: 4047-4053 CrossRef PubMed Google Scholar

[205] German SR, Hurd TS, White HS, Mega TL. ACS Nano, 2015, 9: 7186-7194 CrossRef Google Scholar

[206] Zhang Y, Edwards MA, German SR, White HS. J Phys Chem C, 2016, 120: 20781-20788 CrossRef Google Scholar

[207] Edwards MA, German SR, Dick JE, Bard AJ, White HS. ACS Nano, 2015, 9: 12274-12282 CrossRef Google Scholar

[208] German SR, Luo L, White HS, Mega TL. J Phys Chem C, 2012, 117: 703-711 CrossRef Google Scholar

[209] Qin Z, Zhe J, Wang GX. Meas Sci Technol, 2011, 22: 045804 CrossRef Google Scholar

[210] Ortega A, Garcı́a de la Torre J. J Chem Phys, 2003, 119: 9914-9919 CrossRef Google Scholar

[211] Lan WJ, Kubeil C, Xiong JW, Bund A, White HS. J Phys Chem C, 2014, 118: 2726-2734 CrossRef Google Scholar

[212] Han C, Hao R, Fan Y, Edwards MA, Gao H, Zhang B. Langmuir, 2019, 35: 7180-7190 CrossRef PubMed Google Scholar

[213] Holden DA, Hendrickson G, Lyon LA, White HS. J Phys Chem C, 2011, 115: 2999-3004 CrossRef PubMed Google Scholar

[214] McKelvey K, German SR, Zhang Y, White HS, Edwards MA. Curr Opin Electrochem, 2017, 6: 4-9 CrossRef Google Scholar

[215] Yu Y, Sundaresan V, Bandyopadhyay S, Zhang Y, Edwards MA, McKelvey K, White HS, Willets KA. ACS Nano, 2017, 11: 10529-10538 CrossRef Google Scholar

[216] Wang Y, Cai H, Mirkin MV. ChemElectroChem, 2015, 2: 343-347 CrossRef Google Scholar

[217] McKelvey K, Edwards MA, White HS. J Phys Chem Lett, 2016, 7: 3920-3924 CrossRef PubMed Google Scholar

[218] Katemann B , Schuhmann W. Electroanalysis, 2002, 14: 22-28 CrossRef Google Scholar

[219] Bae JH, Yu Y, Mirkin MV. ChemElectroChem, 2016, 3: 2043-2047 CrossRef Google Scholar

[220] Duay J, Goran JM, Stevenson KJ. Anal Chem, 2014, 86: 11528-11532 CrossRef PubMed Google Scholar

[221] Kim J, Kim BK, Cho SK, Bard AJ. J Am Chem Soc, 2014, 136: 8173-8176 CrossRef PubMed Google Scholar

[222] Jena BK, Percival SJ, Zhang B. Anal Chem, 2010, 82: 6737-6743 CrossRef PubMed Google Scholar

[223] Hao R, Zhang B. Anal Chem, 2015, 88: 614-620 CrossRef PubMed Google Scholar

[224] Yu Y, Gao Y, Hu K, Blanchard PY, Noël JM, Nareshkumar T, Phani KL, Friedman G, Gogotsi Y, Mirkin MV. ChemElectroChem, 2015, 2: 58-63 CrossRef Google Scholar

[225] Zhang B, Fan L, Zhong H, Liu Y, Chen S. J Am Chem Soc, 2013, 135: 10073-10080 CrossRef PubMed Google Scholar

[226] Nioradze N, Chen R, Kim J, Shen M, Santhosh P, Amemiya S. Anal Chem, 2013, 85: 6198-6202 CrossRef PubMed Google Scholar

[227] Sun T, Blanchard PY, Mirkin MV. Anal Chem, 2015, 87: 4092-4095 CrossRef PubMed Google Scholar

[228] Nogala W, Velmurugan J, Mirkin MV. Anal Chem, 2012, 84: 5192-5197 CrossRef PubMed Google Scholar

[229] Yu Y, Sun T, Mirkin MV. Anal Chem, 2016, 88: 11758-11766 CrossRef PubMed Google Scholar

[230] Marken F, Wadhawan JD. Acc Chem Res, 2019, 52: 3325-3338 CrossRef PubMed Google Scholar

[231] Bak E, Donten M, Stojek Z. Electrochem Commun, 2005, 7: 483-489 CrossRef Google Scholar

[232] Walker DS, Richmond GL. J Am Chem Soc, 2007, 129: 9446-9451 CrossRef PubMed Google Scholar

[233] Terry Weatherly CK, Ren H, Edwards MA, Wang L, White HS. J Am Chem Soc, 2019, 141: 18091-18098 CrossRef PubMed Google Scholar

[234] Bard AJ, Fan FRF, Kwak J, Lev O. Anal Chem, 1989, 61: 132-138 CrossRef Google Scholar

[235] Ebejer N, Schnippering M, Colburn AW, Edwards MA, Unwin PR. Anal Chem, 2010, 82: 9141-9145 CrossRef PubMed Google Scholar

[236] Bentley CL, Kang M, Unwin PR. J Am Chem Soc, 2017, 139: 16813-16821 CrossRef PubMed Google Scholar

[237] Güell AG, Ebejer N, Snowden ME, McKelvey K, Macpherson JV, Unwin PR. Proc Natl Acad Sci USA, 2012, 109: 11487-11492 CrossRef PubMed Google Scholar

[238] Mariano RG, McKelvey K, White HS, Kanan MW. Science, 2017, 358: 1187-1192 CrossRef PubMed Google Scholar

[239] Liu T, Liu S, Jiang W, Wang W. ACS Nano, 2019, 13: 6279-6286 CrossRef Google Scholar

[240] Ying YL, Hu YX, Gao R, Yu RJ, Gu Z, Lee LP, Long YT. J Am Chem Soc, 2018, 140: 5385-5392 CrossRef PubMed Google Scholar

[241] Hu K, Li Y, Rotenberg SA, Amatore C, Mirkin MV. J Am Chem Soc, 2019, 141: 4564-4568 CrossRef PubMed Google Scholar

[242] Pan R, Xu M, Burgess JD, Jiang D, Chen HY. Proc Natl Acad Sci USA, 2018, 115: 4087-4092 CrossRef PubMed Google Scholar

[243] Ivanov AP, Actis P, Jönsson P, Klenerman D, Korchev Y, Edel JB. ACS Nano, 2015, 9: 3587-3595 CrossRef Google Scholar

  • Figure 1

    Road map of single-entity electrochemistry approaches. The nanopore interface is a water filled pore that allows ions (cation (P+) and anion (N-)) bypass. The pore lumen fits the nanometer scale analytes and probes their characteristics. The nucleation and growth of a single nanobubble analyze with a nanoelectrode. The single nanoparticles (NP) are probed by the nano/micro-scale electrode. Single cell is clamped by nanopipette-based electrochemical measurements. Electrochemical reaction at the cellular surface or intracellular biomolecules is characterized via the electric responses. In vivo analysis of the tissue is performed by the electrode array. By positioning the array at the region of interest, the signal allows to characterize the electrophysiological behaviour (color online).

  • Figure 2

    (a) The transformation of a sensing interface into a single molecule interface. (i) The macroscale interface with a sensing molecule for detection of the targeting analyte. (ii) The macroscale interface shrinks and turns over, (iii) then rolls into a channel as the micro-/nanoscale interface. (iv) A single-biomolecule interface is derived from a single recognition molecule at the nano interface. A self-assembled aerolysin membrane protein is regarded as an example of a single-biomolecule interface. The oligonucleotide is taken as an example for illustrating the analyte. (b) Example of analysing an oligonucleotide through a single aerolysin interface with site-direct mutagenesis. A wild-type aerolysin with two positively charged amino acids produces distinguishable blockage current (red box). The speed of a single negatively charged oligonucleotide translocation aerolysin pore is as slow as ∼ 2 ms/base due to the strong electrostatic interactions caused by the positively charged residues at the entrances and inside the lumen. (c) The mutant I with negatively charged glutamic acid located at the entrance of the pore, which generates a high entropic energy barrier for the sensing of negatively charged oligonucleotide molecules. Consequentially, barely no current blockages occur with the continuous time-current recording. (d) The mutant II with negatively charged glutamic acid at the lumen of the single-molecule interface leads to a prolonged duration (red box). The dynamic conformational changes of the oligonucleotide may be enhanced inside the pore due to the electrostatic repulsion, inducing further current oscillations (blue box). Reproduced with permission from [20] (color online).

  • Figure 3

    Side and top views of nanopore self-assembled from biological components and the corresponding pore diameter. Narrowest pore opening is indicated in red. The membrane domains where the proteins assemble are hinted by solid lines (color online).

  • Figure 4

    Manipulation of probes at the nanopore based single-biomolecule interface: Possible sites at hot sensing regions of Aerolysin have been mutagenized [59-61] (color online).

  • Figure 5

    Examples of nanopore based single-entity measurements. (a) ssDNA [74]; (b) dsDNA [75]; (c) RNA [34]; (d) Peptide [76]; (e) Light driven molecular structure modification [73]; (f) Chemical reaction [77]; (g) Enzyme cleavage monitoring [78] (color online).

  • Figure 6

    Schematic illustration of three types of strategies for studying single nanoparticle electrochemistry (color online).

  • Figure 7

    Schematic illustration of the methodology of optical electrochemical imaging (color online).

  • Figure 8

    Schematic showing different methods available to extract cell contents. Reproduced with permission from [139]. Copyright 2017, AAAS (color online).

  • Figure 9

    Single mitochondrion extraction with nanotweezers. (a) Schematic of the extraction of a single mitochondrion from a neuron dendrite. (b) Fluorescence micrographs after fluorescent staining of the mitochondria. (c) Fluorescence micrographs showing (i) targeting of a single mitochondrion with the nanotweezers, (ii) trapping of the mitochondrion upon application of the AC voltage and (iii) extraction of the mitochondrion (color online).

  • Figure 10

    Schematic of the nanostraws technology. (a,b) This sampling technique is based on a polycarbonate membrane with protruding 150-nm diameter nanostraws supported on a cell-culture dish. Sampling is triggered by the application of short voltage pulses that temporarily electroporate the cells, allowing cellular content to diffuse through the NS and into the underlying fluidic reservoir (highlighted in pink in a)), which is then analysed using fluorescence imaging, ELISA, or qPCR. (c,d) SEM images of the 150 nm diameter NS (c) and the 200 × 200 μm2 active sampling region (d). Cells outside this window are unaffected by the sampling process. (e,f) SEM images of cells cultured on a 200 × 200 μm2 active sampling region containing 42 cells (e) and a 30 × 30 μm2 sampling region used to isolate and sample from a single cell (f) (color online).

  • Figure 11

    (a) Schematic diagram of analytical system for selective determination of VC in rat brain. Reprinted (adapted) with permission from ref. [166] Copyright (2019). (b) Typical cyclic voltammograms (CVs) obtained at heat-treated CNTs modified-electrodes in the presence (solid lines) and the absence (dash lines) of VC. (c) Online measurement of VC in the brains of ischemia rats (black line) and shame-operated rats (red line). Reprinted (adapted) with permission from [165] (color online).

  • Figure 12

    (a) The absorption of AA on defect-containing CNTs and differential pulse voltammetry (DPV) records obtained in the striatum of normal rat (blue line) and rat model of Alzheimer’s Disease (red line). Reprinted (adapted) with permission from ref. [169] Copyright (2017); (b) Schematic illustration of ratiometric electrochemical sensor for measuring AA in live brains. Reprinted (adapted) with permission from ref. [167] Copyright (2015); (c) Schematic illustration of Graphdiyne oxide (GDO) and current responds of both GDO-based (red line) and Graphene oxide (GO)-based (blue line) sensor toward humid air. Reprinted (adapted) with permission from ref. [170] Copyright (2017); (d) Schematic illustration of Co-SAC and typical amperometric responses from rat striatum under normal state and after injection of insulin. Reprinted (adapted) with permission from ref. [166] (color online).

  • Figure 13

    (a) Typical CVs obtained at multiwalled CNTs (MWNTs) modified electrode (black line) and Fe(CN)63-/Pim/MWNT-modified electrode (red line). (b) Typical amperometric response of microdialysate sampled continuously from the striatum of guinea pigs. Reprinted from [168] with permissions (color online).

  • Figure 14

    (a) Schematic illustration of in vivo AA monitoring by using GRP sensor. (b) Calibration curves of the GRP sensor before (black line) and after (red line) BSA adsorption. (c) In vivo AA monitoring during global cerebral ischemia (red arrow) and reperfusion (blue arrow). Reprinted (adapted) with permission from ref. [165] (color online).

  • Figure 15

    (a) Typical current recordings upon electrical stimulations (red bars), insert, schematic illustration of experiment setup (top) and VC release in different detection sites followed by electrical stimulations (red bars) (down). Reprinted (adapted) with permission from ref. [186] Copyright (2019); (b) Single-cell amperometric recordings of vesicular VC release by K+-stimulated exocytosis. Reprinted (adapted) with permission from ref. [185] (coloronline).

  • Figure 16

    (a) Schematic of the nucleation and growth of a single H2 nanobubble on a Pt nanoelectrode: ① H2 produced by proton reduction remains dissolved. ② A critically-sized nucleus forms. ③ A single stable bubble covers nearly the entire electrode. (b) Cyclic voltammogram showing bubble formation at a 10 nm Pt disk electrode in 1.0 M H2SO4 (10 cycles shown); numbers relate to stages in part a. (c) histogram of nucleation peak currents (iH2 nbp) from 400 voltammetric cycles and theoretical fit using J0 = 6.3 × 1012 s-1 and θ = 150°. (d) Schematic of the critical nucleus for H2 bubble derived from analysis of iH2 nbp in the voltammograms in (b). Reproduced, with modification, from ref. [203] copyright 2019 by the American Chemical Society (color online).

  • Figure 17

    Multipass resistive pulse sensing of a single nanoparticle. (a) Schematic of measuring a single nanoparticle passing forth and back through a nanopipette via voltage switching. (b) Voltage-time, V-t, and (c) current-time, i-t trace of four resistive pulses from one nanoparticle (out-in-out-in sequence). Right-hand side plots are the V-t and i-t traces on an expanded time range. Adapted from ref. [207], copyright American Chemical Society (color online).

  • Figure 18

    Nanoelectrode Stability. (a) Cyclic voltammogram of rapp52 nm inlaid disk Pt nanoelectrode in 5 mM ferrocene in acetonitrile (black) with subsequent recession by ~85 nm following exposure to aqueous conditions, resulting in voltammogram corresponding to an rapp18 nm Pt nanoelectrode. (b) Cyclic voltammogram of rapp150 nm inlaid disk Pt nanoelectrode in 5 mM ferrocene in acetonitrile cycling between 0 to 0.8 V vs. Ag/AgCl following cycling between 0.8 V and cathodic limit for 10 cycles, demonstrating minimal variation in apparent radius between subsequent voltammetric cycling. (c) SEM characterization of inlaid disk Pt nanoelectrode with an equivalent radius of 238 nm with subsequent remounting in SEM (d) and in situ exposure to 100 µL acetonitrile (e) demonstrating significant variations in NP topography and the emergence of characteristic nanoelectrode recession following electron beam exposure under grounded conditions (color online).

  • Figure 19

    Schematic of the electrochemical cell used to probe CEPhT reactions. A 0.25 mm diameter Pt-Ir wire is placed across the DCE/H2O interface, with the DCE phase containing TBAPF6 and Fc and the H2O phase containing NaCl. The right-side diagram shows the possible mechanisms of a CEPhT reaction. Reproduced from ref. [233], copyright 2019 by the American Chemical Society.

  • Figure 20

    Cyclic voltammetry corresponding to the Pt-Ir wire electrode positioned at different locations relative to the H2O/DCE interface. (a) The voltammetric response with Pt-Ir placed completely in the DCE phase (black), and the Pt-Ir electrode fully emerged in the H2O phase (red). (b) The voltammetric response with the Pt-Ir electrode placed across the H2O/DCE interface. Reproduced from ref. [223], copyright 2019 by the American Chemical Society (color online).

  • Figure 21

    Visualizing proton reduction on 35-nm radius Pt nanoparticles buried in a 150-nm thick Nafion film. (a) Schematic of SECCM measurement. (b) Voltammetry of HER on HOPG (red), Nafion/HOPG surface (green), and Nafion/PtNP/HOPG (blue). (c) Electrochemical image (121 pixels over a 200 × 200 nm scan area at -1 V vs Ag/AgCl.). The 100 nm-diameter nanopipette contained 25 mM HClO4; ν = 0.1 V/s (color online).

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号