Mo2C@3D ultrathin macroporous carbon realizing efficient and stable nitrogen fixation

More info
  • ReceivedFeb 27, 2020
  • AcceptedApr 7, 2020
  • PublishedApr 27, 2020


Ammonia is a key feedstock of fertilizers for farming and convenient hydrogen carrier as an emerging clean fuel, but industrial ammonium production process, Haber-Bosch reaction, is an energy-intensive process, consuming 1%–2% of global energy and producing 3% global CO2. Electrochemical nitrogen reduction reaction (NRR) is one of the most promising routes to realize highly efficient NH3 production under ambient conditions. However, up to now, few precious-metal-free electrocatalysts with desirable catalytic performance have been explored. In this work, Mo2C nanodots anchored on three-dimensional ultrathin macroporous carbon (Mo2C@3DUM-C) framework is developed toward significantly enhanced nitrogen reduction reaction. Thanks to the special structural design of 3D ultrathin macroporous carbon and highly active and stable Mo2C toward N2 electrochemical reduction, the Mo2C@3DUM-C framework exhibits a high Faradaic efficiency of 9.5% for NH3 production at −0.20 V and the yield rate reaches 30.4 µg h−1 mgMo2C−1. Further electrochemical characterizations reveal the enhanced electron transfer and increased electrochemical surface area in the 3D macroporous carbon framework. Moreover, the Mo2C@3DUM-C electrocatalysts hold high catalytic stability after long-term NRR test. The temperature-dependent yield rate of NH3 demonstrates that the activation energy of nitrogen reduction on the employed catalyst was calculated to be 28.1 kJ mol−1. Our proposed earth-abundant Mo2C@3DUM-C demonstrates an alternative insight into developing efficient and stable nitrogen fixation catalysts in acids as alternatives to noble metal catalysts.


G. Yu acknowledges the funding support from US Department of Energy, Office of Science, Basic Energy Sciences, under Award DE-SC0019019, and Camille Dreyfus Teacher-Scholar Award.

Interest statement

The authors declare that they have no conflict of interest.


The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Gilbert N. Nature, 2012, 483: 525-527 CrossRef PubMed ADS Google Scholar

[2] Wang L, Xia M, Wang H, Huang K, Qian C, Maravelias CT, Ozin GA. Joule, 2018, 2: 1055-1074 CrossRef Google Scholar

[3] Zheng G, Yan JM, Yu G. Small Methods, 2019, 3: 1900070 CrossRef Google Scholar

[4] Tang C, Qiao SZ. Chem Soc Rev, 2019, 48: 3166-3180 CrossRef PubMed Google Scholar

[5] Wan Y, Xu J, Lv R. Mater Today, 2019, 27: 69-90 CrossRef Google Scholar

[6] Xu H, Ithisuphalap K, Li Y, Mukherjee S, Lattimer J, Soloveichik G, Wu G. Nano Energy, 2020, 69: 104469 CrossRef Google Scholar

[7] Cao N, Zheng G. Nano Res, 2018, 11: 2992-3008 CrossRef Google Scholar

[8] van der Ham CJM, Koper MTM, Hetterscheid DGH. Chem Soc Rev, 2014, 43: 5183-5191 CrossRef PubMed Google Scholar

[9] Geng Z, Liu Y, Kong X, Li P, Li K, Liu Z, Du J, Shu M, Si R, Zeng J. Adv Mater, 2018, 30: 1803498 CrossRef PubMed Google Scholar

[10] Yao Y, Zhu S, Wang H, Li H, Shao M. J Am Chem Soc, 2018, 140: 1496-1501 CrossRef PubMed Google Scholar

[11] Lv C, Yan C, Chen G, Ding Y, Sun J, Zhou Y, Yu G. Angew Chem Int Ed, 2018, 57: 6073-6076 CrossRef PubMed Google Scholar

[12] Lv C, Qian Y, Yan C, Ding Y, Liu Y, Chen G, Yu G. Angew Chem Int Ed, 2018, 57: 10246-10250 CrossRef PubMed Google Scholar

[13] Mukherjee S, Yang X, Shan W, Samarakoon W, Karakalos S, Cullen DA, More K, Wang M, Feng Z, Wang G, Wu G. Small Methods, 2020, 4: 1900821 CrossRef Google Scholar

[14] Yu X, Han P, Wei Z, Huang L, Gu Z, Peng S, Ma J, Zheng G. Joule, 2018, 2: 1610-1622 CrossRef Google Scholar

[15] Chen GF, Cao X, Wu S, Zeng X, Ding LX, Zhu M, Wang H. J Am Chem Soc, 2017, 139: 9771-9774 CrossRef PubMed Google Scholar

[16] Luo Y, Chen GF, Ding L, Chen X, Ding LX, Wang H. Joule, 2019, 3: 279-289 CrossRef Google Scholar

[17] Zhang L, Ding L, Chen G, Yang X, Wang H. Angew Chem, 2019, 131: 2638-2642 CrossRef Google Scholar

[18] Yandulov DV, Schrock RR. Science, 2003, 301: 76-78 CrossRef PubMed ADS Google Scholar

[19] Zhao J, Chen Z. J Am Chem Soc, 2017, 139: 12480-12487 CrossRef PubMed Google Scholar

[20] Li Q, He L, Sun C, Zhang X. J Phys Chem C, 2017, 121: 27563-27568 CrossRef Google Scholar

[21] Cheng H, Ding LX, Chen GF, Zhang L, Xue J, Wang H. Adv Mater, 2018, 30: 1803694 CrossRef PubMed Google Scholar

[22] Cui X, Tang C, Zhang Q. Adv Energy Mater, 2018, 8: 1800369 CrossRef Google Scholar

[23] Zhang L, Ji X, Ren X, Luo Y, Shi X, Asiri AM, Zheng B, Sun X. ACS Sustain Chem Eng, 2018, 6: 9550-9554 CrossRef Google Scholar

[24] Cheng H, Cui P, Wang F, Ding LX, Wang H. Angew Chem Int Ed, 2019, 58: 15541-15547 CrossRef PubMed Google Scholar

[25] Guo W, Zhang K, Liang Z, Zou R, Xu Q. Chem Soc Rev, 2019, 48: 5658-5716 CrossRef PubMed Google Scholar

[26] Deng J, Li H, Wang S, Ding D, Chen M, Liu C, Tian Z, Novoselov KS, Ma C, Deng D, Bao X. Nat Commun, 2017, 8: 14430 CrossRef PubMed ADS Google Scholar

[27] Chen P, Zhang N, Wang S, Zhou T, Tong Y, Ao C, Yan W, Zhang L, Chu W, Wu C, Xie Y. Proc Natl Acad Sci USA, 2019, 116: 6635-6640 CrossRef PubMed Google Scholar

[28] Wang N, Bai Z, Fang Z, Zhang X, Xu X, Du Y, Liu L, Dou S, Yu G. ACS Mater Lett, 2019, 1: 265-271 CrossRef Google Scholar

[29] Fang Z, Wu P, Yu K, Li Y, Zhu Y, Ferreira PJ, Liu Y, Yu G. ACS Nano, 2019, 13: 14368-14376 CrossRef Google Scholar

[30] Fang Z, Zhang A, Wu P, Yu G. ACS Mater Lett, 2019, 1: 158-170 CrossRef Google Scholar

[31] Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V. Science, 2015, 347: 1246501 CrossRef PubMed ADS Google Scholar

[32] Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y. Science, 2019, 366: eaan8285 CrossRef PubMed Google Scholar

[33] Qian Y, Liu Q, Sarnello E, Tang C, Chng M, Shui J, Li T, Pennycook SJ, Han M, Zhao D. ACS Mater Lett, 2019, 1: 37-43 CrossRef Google Scholar

[34] Liu Y, Wang N, Zhao X, Fang Z, Zhang X, Liu Y, Bai Z, Dou S, Yu G. J Mater Chem A, 2020, 8: 2843-2850 CrossRef Google Scholar

[35] Kim HS, Cook JB, Tolbert SH, Dunn B. J Electrochem Soc, 2015, 162: A5083-A5090 CrossRef Google Scholar

[36] Yang L, Li X, Ouyang Y, Gao Q, Ouyang L, Hu R, Liu J, Zhu M. ACS Appl Mater Interfaces, 2016, 8: 19987-19993 CrossRef Google Scholar

[37] Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. J Am Chem Soc, 2011, 133: 7296-7299 CrossRef PubMed Google Scholar

[38] Chen S. Sci China Chem, 2015, 58: 433 CrossRef Google Scholar

[39] Jia Y, Zhang L, Gao G, Chen H, Wang B, Zhou J, Soo MT, Hong M, Yan X, Qian G, Zou J, Du A, Yao X. Adv Mater, 2017, 29: 1700017 CrossRef PubMed Google Scholar

[40] Rao R, Tishler D, Katoch J, Ishigami M. Phys Rev B, 2011, 84: 113406 CrossRef ADS arXiv Google Scholar

[41] Hu Q, Li G, Liu X, Zhu B, Chai X, Zhang Q, Liu J, He C. Angew Chem Int Ed, 2019, 58: 4318-4322 CrossRef PubMed Google Scholar

[42] Cao Y, Liu H, Bo X, Wang F. Sci China Chem, 2015, 58: 501-507 CrossRef Google Scholar

[43] Wang Y, Cui X, Zhao J, Jia G, Gu L, Zhang Q, Meng L, Shi Z, Zheng L, Wang C, Zhang Z, Zheng W. ACS Catal, 2019, 9: 336-344 CrossRef Google Scholar

[44] Kötz R, Carlen M. Electrochim Acta, 2000, 45: 2483-2498 CrossRef Google Scholar

[45] Grahame DC. Chem Rev, 1947, 41: 441-501 CrossRef PubMed Google Scholar

[46] McCrory CCL, Jung S, Peters JC, Jaramillo TF. J Am Chem Soc, 2013, 135: 16977-16987 CrossRef PubMed Google Scholar

  • Figure 1

    (a) Schematic illustration of Mo2C@3D ultrathin macroporous carbon for N2 fixation in acidic media; (b) SEM image of Mo2C@3DUM-C; (c) TEM and (d) HRTEM image of Mo2C@3DUM-C: the lattice fringes of 0.237, 0.261, and 0.228 nm, corresponding to the 200, 002, and 102 facets of the orthogonal Mo2C (inset of (d): electron diffraction of Mo2C@3DUM-C) (color online).

  • Figure 2

    (a) XRD, (b) TGA of Mo2C@3DUM-C and Mo2C@2D-C; (c) Raman spectrum of Mo2C@3DUM-C; (d) EDS and elemental mapping of Mo2C@3DUM-C (color online).

  • Figure 3

    (a) LSV curves of Mo2C@3DUM-C in N2-saurated and Ar saturated 0.1 M HCl electrolyte (inset: LSV curves from −0.1 to −0.3 V); (b) chronoamperometry test of Mo2C@3DUM-C in N2-saurated 0.1 M HCl electrolyte at different applied potentials; (c) yield rate of NH3 production and Faradic efficiency at different applied potentials; (d) UV-Vis absorption spectra of electrolyte under different testing conditions; (e) yield rate of NH3 production of Mo2C@3DUM-C in N2-saurated and Ar saturated 0.1 M HCl and Mo2C@2D-C in N2-saurated 0.1 M HCl; (f) charging current density differences plotted against scan rates of Mo2C@3DUM-C and Mo2C@2D-C (color online).

  • Figure 4

    (a) Chronoamperometry test of Mo2C@3DUM-C in N2-saurated 0.1 M HCl electrolyte; (b) cycling stability of Mo2C@3DUM-C in N2-saurated saturated 0.1 M HCl electrolyte after 2-h and 4-h NRR test; (c) yield rate of NH3 production of Mo2C@3DUM-C in continuous eight cycles; (d) XRD, (e) Raman and (f) TEM image of Mo2C@3DUM-C after 2-h-NRR test in N2-saurated 0.1 M HCl electrolyte (color online).

  • Figure 5

    (a) Chronoamperometry test, (b) yield rate of NH3 production and Faradic efficiency of Mo2C@3DUM-C in N2-saurated 0.1 M HCl electrolyte at −0.25 V under different temperatures; (c) calculated activation energy of Mo2C@3DUM-C catalyst for NRR (color online).

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号