logo

Dopant-free hole transporting materials with supramolecular interactions and reverse diffusion for efficient and modular p-i-n perovskite solar cells

More info
  • ReceivedFeb 11, 2020
  • AcceptedApr 9, 2020
  • PublishedMay 8, 2020

Abstract

The rational design of dopant-free organic hole-transporting layer (HTL) materials is still a challenge for realizing high-efficient and stable p-i-n planar perovskite solar cells (pero-SCs). Here, we synthesized two π-conjugated small-molecule HTL materials through tailoring the backbone and conjugated side chain to carefully control molecular conformation. The resultant BDT-TPA-sTh containing a planar fused benzo[1,2-b:4,5-b′]dithiophene (BDT) core and a conjugated thiophene side chain showed the planar conformation. X-ray crystallography showed a favorable stacking model in solid states under the parallel-displaced π-π and additional S-π weak-bond supramolecular interactions, thus achieving an obviously increased hole mobility without dopants. As an HTL material in p-i-n planar pero-SCs, the marginal solubility of BDT-TPA-sTh enabled inverse diffusion into the perovskite precursor solution for assisting the subsequent perovskite film growth and passivating the uncoordinated Pb2+ ion defects. As a result, the planar p-i-n pero-SCs exhibited a champion power conversion efficiency (PCE) of 20.5% and enhanced moisture stability. Importantly, the BDT-TPA-sTh HTL material also showed weak thickness-photovoltaic dependence, and the pero-SCs with blade-coated BDT-TPA-sTh as a HTL achieved a 15.30% PCE for the 1-cm2 modularized device. This HTL material design strategy is expected to pave the way toward high-performance, dopant-free and printing large-area planar p-i-n pero-SCs.


Funded by

the National Natural Science Foundation of China(51922074,51673138,51820105003)

the Tang Scholar

the Priority Academic Program Development of Jiangsu Higher Education Institutions

Collaborative Innovation Center of Suzhou Nano Science and Technology

Collaborative Innovation Center for New-type Urbanization and Social Governance of Jiangsu Province

National Key Research and Development Program 376 of China(2017YFA0207700)

Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX18_2496)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (51922074, 51673138, 51820105003), the Tang Scholar, the Priority Academic Program Development of Jiangsu Higher Education Institutions, Collaborative Innovation Center of Suzhou Nano Science and Technology, Collaborative Innovation Center for New-type Urbanization and Social Governance of Jiangsu Province, National Key Research and Development Program 376 of China (2017YFA0207700), Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_2496).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050-6051 CrossRef PubMed Google Scholar

[2] Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG. Sci Rep, 2012, 2: 591 CrossRef PubMed ADS Google Scholar

[3] Snaith HJ. J Phys Chem Lett, 2013, 4: 3623-3630 CrossRef Google Scholar

[4] Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345: 542-546 CrossRef PubMed ADS Google Scholar

[5] Jeon NJ, Na H, Jung EH, Yang TY, Lee YG, Kim G, Shin HW, Il Seok S, Lee J, Seo J. Nat Energy, 2018, 3: 682-689 CrossRef ADS Google Scholar

[6] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J. Nat Photonics, 2019, 13: 460-466 CrossRef ADS Google Scholar

[7] Chen J, Zhao X, Kim SG, Park NG. Adv Mater, 2019, 31: 1902902 CrossRef PubMed Google Scholar

[8] Cao J, Wu B, Peng J, Feng X, Li C, Tang Y. Sci China Chem, 2019, 62: 363-369 CrossRef Google Scholar

[9] Deng Y, Dong Q, Bi C, Yuan Y, Huang J. Adv Energy Mater, 2016, 6: 1600372 CrossRef Google Scholar

[10] Wu Y, Xie F, Chen H, Yang X, Su H, Cai M, Zhou Z, Noda T, Han L. Adv Mater, 2017, 29: 1701073 CrossRef PubMed Google Scholar

[11] Li Y, Zhao Y, Chen Q, Yang YM, Liu Y, Hong Z, Liu Z, Hsieh YT, Meng L, Li Y, Yang Y. J Am Chem Soc, 2015, 137: 15540-15547 CrossRef PubMed Google Scholar

[12] Xue R, Zhang M, Xu G, Zhang J, Chen W, Chen H, Yang M, Cui C, Li Y, Li Y. J Mater Chem A, 2018, 6: 404-413 CrossRef Google Scholar

[13] Li Y, Meng L, Yang YM, Xu G, Hong Z, Chen Q, You J, Li G, Yang Y, Li Y. Nat Commun, 2016, 7: 10214 CrossRef PubMed ADS Google Scholar

[14] Wang Y, Chen W, Wang L, Tu B, Chen T, Liu B, Yang K, Koh CW, Zhang X, Sun H, Chen G, Feng X, Woo HY, Djurišić AB, He Z, Guo X. Adv Mater, 2019, 31: 1902781 CrossRef PubMed Google Scholar

[15] Zhang J, Sun Q, Chen Q, Wang Y, Zhou Y, Song B, Jia X, Zhu Y, Zhang S, Yuan N, Ding J, Li Y. Sol RRL, 2019, 4: 1900421 CrossRef Google Scholar

[16] Chen H, Fu W, Huang C, Zhang Z, Li S, Ding F, Shi M, Li CZ, Jen AKY, Chen H. Adv Energy Mater, 2017, 7: 1700012 CrossRef Google Scholar

[17] Jasieniak JJ, Seifter J, Jo J, Mates T, Heeger AJ. Adv Funct Mater, 2012, 22: 2594-2605 CrossRef Google Scholar

[18] Bai Y, Lin Y, Ren L, Shi X, Strounina E, Deng Y, Wang Q, Fang Y, Zheng X, Lin Y, Chen ZG, Du Y, Wang L, Huang J. ACS Energy Lett, 2019, 4: 1231-1240 CrossRef Google Scholar

[19] Yang S, Dai J, Yu Z, Shao Y, Zhou Y, Xiao X, Zeng XC, Huang J. J Am Chem Soc, 2019, 141: 5781-5787 CrossRef PubMed Google Scholar

[20] Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade GF, Watts JF, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend RH, Gong Q, Snaith HJ, Zhu R. Science, 2018, 360: 1442-1446 CrossRef PubMed ADS Google Scholar

[21] Liu X, Cheng Y, Liu C, Zhang T, Zhang N, Zhang S, Chen J, Xu Q, Ouyang J, Gong H. Energy Environ Sci, 2019, 12: 1622-1633 CrossRef Google Scholar

[22] Reddy SS, Arivunithi VM, Sree VG, Kwon H, Park J, Kang YC, Zhu H, Noh YY, Jin SH. Nano Energy, 2019, 58: 284-292 CrossRef Google Scholar

[23] Li E, Li W, Li L, Zhang H, Shen C, Wu Z, Zhang W, Xu X, Tian H, Zhu WH, Wu Y. Sci China Chem, 2019, 62: 767-774 CrossRef Google Scholar

[24] Reddy SS, Park HY, Kwon H, Shin J, Kim CS, Song M, Jin SH. Chem Eur J, 2018, 24: 6426-6431 CrossRef PubMed Google Scholar

[25] Gangala S, Misra R. J Mater Chem A, 2018, 6: 18750-18765 CrossRef Google Scholar

[26] Urieta-Mora J, García-Benito I, Molina-Ontoria A, Martín N. Chem Soc Rev, 2018, 47: 8541-8571 CrossRef PubMed Google Scholar

[27] Yu Z, Sun L. Adv Energy Mater, 2015, 5: 1500213 CrossRef Google Scholar

[28] Reddy SS, Gunasekar K, Heo JH, Im SH, Kim CS, Kim DH, Moon JH, Lee JY, Song M, Jin SH. Adv Mater, 2016, 28: 686-693 CrossRef PubMed Google Scholar

[29] Reddy SS, Shin S, Aryal UK, Nishikubo R, Saeki A, Song M, Jin SH. Nano Energy, 2017, 41: 10-17 CrossRef Google Scholar

[30] Chen R, Bu T, Li J, Li W, Zhou P, Liu X, Ku Z, Zhong J, Peng Y, Huang F, Cheng YB, Fu Z. ChemSusChem, 2018, 11: 1467-1473 CrossRef PubMed Google Scholar

[31] Labban A E, Chen H, Kirkus M, Barbe J, Del Gobbo S, Neophytou M, McCulloch I, Eid J. Adv Energy Mater, 2016, 6: 1502101. Google Scholar

[32] Liu F, Wu F, Tu Z, Liao Q, Gong Y, Zhu L, Li Q, Li Z. Adv Funct Mater, 2019, 29: 1901296 CrossRef Google Scholar

[33] Huang C, Fu W, Li CZ, Zhang Z, Qiu W, Shi M, Heremans P, Jen AKY, Chen H. J Am Chem Soc, 2016, 138: 2528-2531 CrossRef PubMed Google Scholar

[34] Sun X, Xue Q, Zhu Z, Xiao Q, Jiang K, Yip HL, Yan H, Li Z. Chem Sci, 2018, 9: 2698-2704 CrossRef PubMed Google Scholar

[35] Yao H, Ye L, Zhang H, Li S, Zhang S, Hou J. Chem Rev, 2016, 116: 7397-7457 CrossRef PubMed Google Scholar

[36] Li Y. Acc Chem Res, 2012, 45: 723-733 CrossRef PubMed Google Scholar

[37] Saliba M, Orlandi S, Matsui T, Aghazada S, Cavazzini M, Correa-Baena JP, Gao P, Scopelliti R, Mosconi E, Dahmen KH, de Angelis F, Abate A, Hagfeldt A, Pozzi G, Graetzel M, Nazeeruddin MK. Nat Energy, 2016, 1: 15017 CrossRef ADS Google Scholar

[38] Li Z, Zhu Z, Chueh CC, Jo SB, Luo J, Jang SH, Jen AKY. J Am Chem Soc, 2016, 138: 11833-11839 CrossRef PubMed Google Scholar

[39] Zhang H, Wu Y, Zhang W, Li E, Shen C, Jiang H, Tian H, Zhu WH. Chem Sci, 2018, 9: 5919-5928 CrossRef PubMed Google Scholar

[40] Liu Y, Zhang Z, Feng S, Li M, Wu L, Hou R, Xu X, Chen X, Bo Z. J Am Chem Soc, 2017, 139: 3356-3359 CrossRef PubMed Google Scholar

[41] Wang Q, Bi C, Huang J. Nano Energy, 2015, 15: 275-280 CrossRef Google Scholar

[42] Liao SH, Jhuo HJ, Cheng YS, Chen SA. Adv Mater, 2013, 25: 4766-4771 CrossRef PubMed Google Scholar

[43] Zhang Y, Zhang D, Tsuboi T, Qiu Y, Duan L. Sci China Chem, 2019, 62: 393-402 CrossRef Google Scholar

[44] Inés GB, Iwan Z, Javier UM, Juan A, Joaquín C, Josefina P, Alvaro S, Agustín MO, Enrique O, Nazario M, Khaja NM. Adv Funct Mater, 2018, 28: 1801734. Google Scholar

[45] Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Nat Commun, 2014, 5: 5784 CrossRef PubMed ADS Google Scholar

[46] Bi D, Yi C, Luo J, Décoppet JD, Zhang F, Zakeeruddin SM, Li X, Hagfeldt A, Grätzel M. Nat Energy, 2016, 1: 16142 CrossRef ADS Google Scholar

[47] Stolterfoht M, Wolff CM, Amir Y, Paulke A, Perdigón-Toro L, Caprioglio P, Neher D. Energy Environ Sci, 2017, 10: 1530-1539 CrossRef Google Scholar

[48] Wu Y, Yang X, Chen W, Yue Y, Cai M, Xie F, Bi E, Islam A, Han L. Nat Energy, 2016, 1: 16148 CrossRef ADS Google Scholar

[49] Cai F, Yan Y, Yao J, Wang P, Wang H, Gurney RS, Liu D, Wang T. Adv Funct Mater, 2018, 28: 1801985 CrossRef Google Scholar

[50] Jiang T, Chen Z, Chen X, Chen X, Xu X, Liu T, Bai L, Yang D, Di D, Sha WEI, Zhu H, Yang YM. ACS Energy Lett, 2019, 4: 1784-1790 CrossRef Google Scholar

[51] Wang S, Chen H, Zhang J, Xu G, Chen W, Xue R, Zhang M, Li Y, Li Y. Adv Mater, 2019, 31: 1903691 CrossRef PubMed Google Scholar

[52] Zhao X, Tao L, Li H, Huang W, Sun P, Liu J, Liu S, Sun Q, Cui Z, Sun L, Shen Y, Yang Y, Wang M. Nano Lett, 2018, 18: 2442-2449 CrossRef PubMed ADS Google Scholar

[53] Park SJ, Jeon S, Lee IK, Zhang J, Jeong H, Park JY, Bang J, Ahn TK, Shin HW, Kim BG, Park HJ. J Mater Chem A, 2017, 5: 13220-13227 CrossRef Google Scholar

[54] Cui P, Wei D, Ji J, Huang H, Jia E, Dou S, Wang T, Wang W, Li M. Nat Energy, 2019, 4: 150-159 CrossRef ADS Google Scholar

[55] Xu G, Xue R, Chen W, Zhang J, Zhang M, Chen H, Cui C, Li H, Li Y, Li Y. Adv Energy Mater, 2018, 8: 1703054 CrossRef Google Scholar

[56] Huang P, Liu Y, Zhang K, Yuan L, Li D, Hou G, Dong B, Zhou Y, Song B, Li Y. J Mater Chem A, 2017, 5: 24275-24281 CrossRef Google Scholar

[57] Li W, Rothmann MU, Liu A, Wang Z, Zhang Y, Pascoe AR, Lu J, Jiang L, Chen Y, Huang F, Peng Y, Bao Q, Etheridge J, Bach U, Cheng YB. Adv Energy Mater, 2017, 7: 1700946 CrossRef Google Scholar

[58] Stolterfoht M, Caprioglio P, Wolff CM, Márquez JA, Nordmann J, Zhang S, Rothhardt D, Hörmann U, Amir Y, Redinger A, Kegelmann L, Zu F, Albrecht S, Koch N, Kirchartz T, Saliba M, Unold T, Neher D. Energy Environ Sci, 2019, 12: 2778-2788 CrossRef Google Scholar

[59] Tu YG, Xu GN, Yang XY, Zhang YF, Li ZJ, Su R, Luo DY, Yang WQ, Miao Y, Cai R, Jiang LH, Du XW, Yang YC, Liu QS, Gao Y, Zhao S, Huang W, Gong QH, Zhu R. Sci China-Phys Mech Astron, 2019, 62: 974221 CrossRef ADS Google Scholar

[60] Tu Y, Yang X, Su R, Luo D, Cao Y, Zhao L, Liu T, Yang W, Zhang Y, Xu Z, Liu Q, Wu J, Gong Q, Mo F, Zhu R. Adv Mater, 2018, 30: 1805085 CrossRef PubMed Google Scholar

[61] Zhuang R, Wang X, Ma W, Wu Y, Chen X, Tang L, Zhu H, Liu J, Wu L, Zhou W, Liu X, Yang YM. Nat Photonics, 2019, 13: 602-608 CrossRef ADS Google Scholar

[62] Cha M, Da P, Wang J, Wang W, Chen Z, Xiu F, Zheng G, Wang ZS. J Am Chem Soc, 2016, 138: 8581-8587 CrossRef PubMed Google Scholar

[63] Cowan SR, Roy A, Heeger AJ. Phys Rev B, 2010, 82: 245207 CrossRef ADS arXiv Google Scholar

[64] Mandoc MM, Kooistra FB, Hummelen JC, de Boer B, Blom PWM. Appl Phys Lett, 2007, 91: 263505 CrossRef ADS Google Scholar

[65] Zhang T, Guo N, Li G, Qian X, Zhao Y. Nano Energy, 2016, 26: 50-56 CrossRef Google Scholar

[66] Fairfield DJ, Sai H, Narayanan A, Passarelli JV, Chen M, Palasz J, Palmer LC, Wasielewski MR, Stupp SI. J Mater Chem A, 2019, 7: 1687-1699 CrossRef Google Scholar

  • Figure 1

    (a) Molecular structures and synthetic routes of BDT-TPA-sTh and BDT-TPA-sTPA. (b) Normalized absorption spectra of BDT-TPA-sTh and BDT-TPA-sTPA. (c) Current density-voltage characteristics of the hole-only devices with the structure of ITO/PEDOT:PSS/BDT-TPA-sTh or BDT-TPA-sTPA/Au. a Without any treatment; b thermal annealing at 200 °C for 10 min. (d) Cyclic voltammograms of BDT-TPA-sTh and BDT-TPA-sTPA (color online).

  • Figure 2

    (a) X-ray molecular structures of BDT-TPA-sTh (top view and side view). (b) Details of π-π interactions in the backbone of BDT-TPA-sTh between one molecule and its two immediate neighbors with distances in range of 4.130–4.867 Å. (c) Details of S-π interactions between thiophene side chains in one molecule and mPh groups in two immediate neighbors with distances in the range of 3.892–3.927 Å (hydrogen atoms and 2-ethylhexyl omitted for clarity). (d) Illustration of interactions between neighboring BDT-TPA-sTh (color online).

  • Figure 3

    (a) Schematic diagrams of deposition methods (green dashed line represents HTL materials allocating along grain boundaries). (b) ToF-SIMS profiles showing I and S elements from the top of perovskite films to bottom. (c) J-V curves of hole-only devices with the structure of ITO/HTL/MAPbI3/MoO3/Ag (color online).

  • Figure 4

    (a) J-V curves of pero-SCs based on BDT-TPA-sTh and BDT-TPA-sTPA HTLs and MAPbI3 as active layers under illumination of AM 1.5 G 100 mW/cm2. Reverse scan: 1.2 V→−0.2 V; forward scan: −0.2 V→1.2 V; scan rate 200 mV/s; delay time: 100 ms. (b) Maximal steady-state photocurrent output of champion devices at the maximum power point (0.87 V for pero-SCs with BDT-TPA-sTh, 0.86 V for pero-SCs with BDT-TPA-sTPA). (c) EQE curves of pero-SCs with different HTLs. (d) J-V curves of pero-SCs based on BDT-TPA-sTh HTLs and SSG-G perovskites (color online).

  • Figure 5

    (a) Steady-state PL spectra and (b) TRPL decay transient spectra of perovskite films prepared on ITO, BDT-TPA-sTh, or BDT-TPA-sTPA HTLs. (c) Light intensity dependence of VOC for pero-SCs based on BDT-TPA-sTh and BDT-TPA-sTPA HTLs. (d) Stability of pero-SCs based on BDT-TPA-sTh and BDT-TPA-sTPA HTLs in the ambient atmosphere with 40%–60% RH (color online).

  • Figure 6

    Pero-SCs based on blade-coated BDT-TPA-sTh HTL and MAPbI3 active layers. (a) J-V curves in the reverse-scan direction (inset: schematic illustrations of blade-coated HTLs); (b) J-V curves of 1-cm2 pero-SC modules in the reverse-scan direction (inset: schematic illustrations of the device structure of modules) (color online).

  • Table 1   Table 1 Photovoltaic performances of pero-SCs using BDT-TPA-sTh and BDT-TPA-sTPA as HTLs under AM 1.5 G illumination (100 mW/cm2)

    HTL

    Perovskite

    Scan direction

    VOC (V)

    JSC (mA/cm2)

    FF (%)

    PCE (%)

    BDT-TPA-sTh

    MAPbI3

    Reverse

    1.03

    21.91

    79.02

    17.83

    Forward

    1.02

    21.91

    78.37

    17.54

    BDT-TPA-sTPA

    MAPbI3

    Reverse

    1.03

    21.78

    74.57

    16.65

    Forward

    1.02

    21.82

    74.19

    16.59

    BDT-TPA-sTh

    SSG-G

    Reverse

    1.15

    22.87

    78

    20.50

    Forward

    1.15

    23.31

    75

    20.07

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号