Highly efficient modulation of the electronic properties of organic semiconductors by surface doping with 2D molecular crystals

More info
  • ReceivedFeb 4, 2020
  • AcceptedMay 6, 2020
  • PublishedMay 14, 2020


Doping is a critically important strategy to modulate the properties of organic semiconductors (OSCs) to improve their optoelectrical performances. Conventional bulk doping involves the incorporation of foreign molecular species (i.e., dopants) into the lattice of the host OSCs, and thus disrupts the packing of the host OSCs and induces structural defects, which tends to reduce the mobility and (or) the on/off ratio in organic field-effect transistors (OFETs). In this article, we report a highly efficient and highly controllable surface doping strategy utilizing 2D molecular crystals (2DMCs) as dopants to boost the mobility and to modulate the threshold voltage of OFETs. The amount of dopants, i.e., the thickness of the 2DMCs, is controlled at monolayer precision, enabling fine tuning of the electrical properties of the OSCs at unprecedented accuracy. As a result, a prominent increase of the average mobility from 1.31 to 4.71 cm2 V−1 s−1 and a substantial reduction of the threshold voltage from −18.5 to −1.8 V are observed. Meanwhile, high on/off ratios of up to 108 are retained.

Funded by

the National Natural Science Foundation of China(51873148,61674116,51633006)

the Ministry of Science and Technology of China(2016YFA0202302)

the the Natural Science Foundation of Tianjin City(18JC-YBJC18400)


This work was supported by the National Natural Science Foundation of China (51873148, 61674116, 51633006), the Ministry of Science and Technology of China (2016YFA0202302) and the Natural Science Foundation of Tianjin City (18JC-YBJC18400).

Interest statement

The authors declare that they have no conflict of interest.

Contributions statement

These authors contributed equally to this work


The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Yang F, Cheng S, Zhang X, Ren X, Li R, Dong H, Hu W. Adv Mater, 2018, 30: 1702415 CrossRef PubMed Google Scholar

[2] Park SK, Kim JH, Park SY. Adv Mater, 2018, 30: 1704759 CrossRef PubMed Google Scholar

[3] Paterson AF, Singh S, Fallon KJ, Hodsden T, Han Y, Schroeder BC, Bronstein H, Heeney M, McCulloch I, Anthopoulos TD. Adv Mater, 2018, 30: 1801079 CrossRef PubMed Google Scholar

[4] Zhang X, Dong H, Hu W. Adv Mater, 2018, 30: 1801048 CrossRef PubMed Google Scholar

[5] Sirringhaus H. Adv Mater, 2014, 26: 1319-1335 CrossRef PubMed Google Scholar

[6] Yao Y, Zhang L, Leydecker T, Samorì P. J Am Chem Soc, 2018, 140: 6984-6990 CrossRef PubMed Google Scholar

[7] Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dötz F, Kastler M, Facchetti A. Nature, 2009, 457: 679-686 CrossRef PubMed ADS Google Scholar

[8] Huang K, Wu J, Chen Z, Xu H, Wu Z, Tao K, Yang T, Wu Q, Zhou H, Huang B, Chen H, Chen J, Liu C. ACS Nano, 2019, 13: 6618-6630 CrossRef Google Scholar

[9] Kim JH, Yun SW, An BK, Han YD, Yoon SJ, Joo J, Park SY. Adv Mater, 2013, 25: 719-724 CrossRef PubMed Google Scholar

[10] Xu Y, Sun H, Li W, Lin YF, Balestra F, Ghibaudo G, Noh YY. Adv Mater, 2017, 29: 1702729 CrossRef PubMed Google Scholar

[11] Kano M, Minari T, Tsukagoshi K. Appl Phys Lett, 2009, 94: 143304 CrossRef ADS Google Scholar

[12] Zhang F, Dai X, Zhu W, Chung H, Diao Y. Adv Mater, 2017, 29: 1700411 CrossRef PubMed Google Scholar

[13] Xu Y, Sun H, Liu A, Zhu HH, Li W, Lin YF, Noh YY. Adv Mater, 2018, 30: 1801830 CrossRef PubMed Google Scholar

[14] Salzmann I, Heimel G, Oehzelt M, Winkler S, Koch N. Acc Chem Res, 2016, 49: 370-378 CrossRef PubMed Google Scholar

[15] Lüssem B, Keum CM, Kasemann D, Naab B, Bao Z, Leo K. Chem Rev, 2016, 116: 13714-13751 CrossRef PubMed Google Scholar

[16] Lüssem B, Tietze ML, Kleemann H, Hoßbach C, Bartha JW, Zakhidov A, Leo K. Nat Commun, 2013, 4: 2775 CrossRef PubMed ADS Google Scholar

[17] Jiang H, Hu P, Ye J, Zhang KK, Long Y, Hu W, Kloc C. J Mater Chem C, 2018, 6: 1884-1902 CrossRef Google Scholar

[18] Shin N, Zessin J, Lee MH, Hambsch M, Mannsfeld SCB. Adv Funct Mater, 2018, 28: 1802265 CrossRef Google Scholar

[19] Aghamohammadi M, Rödel R, Zschieschang U, Ocal C, Boschker H, Weitz RT, Barrena E, Klauk H. ACS Appl Mater Interfaces, 2015, 7: 22775-22785 CrossRef Google Scholar

[20] Gao J, Roehling JD, Li Y, Guo H, Moulé AJ, Grey JK. J Mater Chem C, 2013, 1: 5638 CrossRef Google Scholar

[21] Zessin J, Xu Z, Shin N, Hambsch M, Mannsfeld SCB. ACS Appl Mater Interfaces, 2019, 11: 2177-2188 CrossRef Google Scholar

[22] Tietze ML, Pahner P, Schmidt K, Leo K, Lüssem B. Adv Funct Mater, 2015, 25: 2701-2707 CrossRef Google Scholar

[23] Khim D, Baeg KJ, Caironi M, Liu C, Xu Y, Kim DY, Noh YY. Adv Funct Mater, 2014, 24: 6252-6261 CrossRef Google Scholar

[24] Chen W, Gao X , Qi D , Chen S, Chen Z , Wee A  . Adv Funct Mater, 2007, 17: 1339-1344 CrossRef Google Scholar

[25] Ito Y, Virkar AA, Mannsfeld S, Oh JH, Toney M, Locklin J, Bao Z. J Am Chem Soc, 2009, 131: 9396-9404 CrossRef PubMed Google Scholar

[26] Asadi K, Wu Y, Gholamrezaie F, Rudolf P, Blom PWM. Adv Mater, 2009, 21: 4109-4114 CrossRef Google Scholar

[27] Mityashin A, Roscioni OM, Muccioli L, Zannoni C, Geskin V, Cornil J, Janssen D, Steudel S, Genoe J, Heremans P. ACS Appl Mater Interfaces, 2014, 6: 15372-15378 CrossRef PubMed Google Scholar

[28] Chew AR, Ghosh R, Shang Z, Spano FC, Salleo A. J Phys Chem Lett, 2017, 8: 4974-4980 CrossRef PubMed Google Scholar

[29] Erker S, Hofmann OT. J Phys Chem Lett, 2019, 10: 848-854 CrossRef PubMed Google Scholar

[30] Arramel , Pan H, Xie A, Hou S, Yin X, Tang CS, Hoa NT, Birowosuto MD, Wang H, Dang C, Rusydi A, Wee ATS, Wu J. Nano Res, 2018, 12: 77-84 CrossRef Google Scholar

[31] Chen W, Qi D, Gao X, Wee ATS. Prog Surf Sci, 2009, 84: 279-321 CrossRef ADS Google Scholar

[32] Hein MP, Zakhidov AA, Lüssem B, Jankowski J, Tietze ML, Riede MK, Leo K. Appl Phys Lett, 2014, 104: 013507 CrossRef ADS Google Scholar

[33] Ma L, Lee WH, Park YD, Kim JS, Lee HS, Cho K. Appl Phys Lett, 2008, 92: 063310 CrossRef ADS Google Scholar

[34] Oh JH, Wei P, Bao Z. Appl Phys Lett, 2010, 97: 243305 CrossRef ADS Google Scholar

[35] Lu G, Blakesley J, Himmelberger S, Pingel P, Frisch J, Lieberwirth I, Salzmann I, Oehzelt M, Di Pietro R, Salleo A, Koch N, Neher D. Nat Commun, 2013, 4: 1588 CrossRef PubMed ADS Google Scholar

[36] Wang H, Wang J, Huang H, Yan X, Yan D. Org Electron, 2006, 7: 369-374 CrossRef Google Scholar

[37] Ante F, Kälblein D, Zschieschang U, Canzler TW, Werner A, Takimiya K, Ikeda M, Sekitani T, Someya T, Klauk H. Small, 2011, 7: 1186-1191 CrossRef PubMed Google Scholar

[38] Kyndiah A, Cramer T, Albonetti C, Liscio F, Chiodini S, Murgia M, Biscarini F. Adv Electron Mater, 2015, 1: 1400036 CrossRef Google Scholar

[39] Hählen T, Vanoni C, Wäckerlin C, Jung TA, Tsujino S. Appl Phys Lett, 2012, 101: 033305 CrossRef ADS Google Scholar

[40] Liu C, Jang J, Xu Y, Kim HJ, Khim D, Park WT, Noh YY, Kim JJ. Adv Funct Mater, 2015, 25: 758-767 CrossRef Google Scholar

[41] Yao J, Zhang Y, Tian X, Zhang X, Zhao H, Zhang X, Jie J, Wang X, Li R, Hu W. Angew Chem Int Ed, 2019, 58: 16082-16086 CrossRef PubMed Google Scholar

[42] Wang Q, Yang F, Zhang Y, Chen M, Zhang X, Lei S, Li R, Hu W. J Am Chem Soc, 2018, 140: 5339-5342 CrossRef PubMed Google Scholar

[43] Anthony JE, Brooks JS, Eaton DL, Parkin SR. J Am Chem Soc, 2001, 123: 9482-9483 CrossRef PubMed Google Scholar

[44] Sharifzadeh S, Wong CY, Wu H, Cotts BL, Kronik L, Ginsberg NS, Neaton JB. Adv Funct Mater, 2015, 25: 2038-2046 CrossRef Google Scholar

[45] Zhang Y, Zhu X, Yang S, Zhai F, Zhang F, Niu Z, Feng Y, Feng W, Zhang X, Li L, Li R, Hu W. Nanoscale, 2019, 11: 12781-12787 CrossRef PubMed Google Scholar

[46] Zhu X, Zhang Y, Ren X, Yao J, Guo S, Zhang L, Wang D, Wang G, Zhang X, Li R, Hu W. Small, 2019, 15: 1902187 CrossRef PubMed Google Scholar

[47] Kim D , Lee D , Lee H , Lee W , Kim Y , Han J , Cho K. Adv Mater, 2007, 19: 678-682 CrossRef Google Scholar

[48] Bae I, Kang SJ, Shin YJ, Park YJ, Kim RH, Mathevet F, Park C. Adv Mater, 2011, 23: 3398-3402 CrossRef PubMed Google Scholar

[49] Wang Y, Li Y, Zhu W, Liu J, Zhang X, Li R, Zhen Y, Dong H, Hu W. Nanoscale, 2016, 8: 14920-14924 CrossRef PubMed Google Scholar

[50] Jiang L, Dong H, Meng Q, Li H, He M, Wei Z, He Y, Hu W. Adv Mater, 2011, 23: 2059-2063 CrossRef PubMed Google Scholar

[51] Diao Y, Tee BCK, Giri G, Xu J, Kim DH, Becerril HA, Stoltenberg RM, Lee TH, Xue G, Mannsfeld SCB, Bao Z. Nat Mater, 2013, 12: 665-671 CrossRef PubMed ADS Google Scholar

[52] Dodabalapur A, Torsi L, Katz HE. Science, 1995, 268: 270-271 CrossRef PubMed ADS Google Scholar

[53] Dinelli F, Murgia M, Levy P, Cavallini M, Biscarini F, de Leeuw DM. Phys Rev Lett, 2004, 92: 116802 CrossRef PubMed ADS Google Scholar

[54] Horowitz G, Hajlaoui R, Bouchriha H, Bourguiga R, Hajlaoui M. Adv Mater, 1998, 10: 923-927 CrossRef Google Scholar

  • Figure 1

    Schematic illustrations of the procedures for the preparation of microribbons of TIPS-pentacene and 2DMCs of C6-DPA. The preparation of uniaxial microribbons of TIPS-pentacene by the thermal-assisted self-assembly (TASA) approach (a–c). The growth of 2DMCs of C6-DPA (d, e). The transfer of the 2DMCs on the top of the uniaxial microribbons (f) (color online).

  • Figure 2

    (a, d, g) OM images of a 2DMC of C6-DPA, microribbons of TIPS-pentacene, and their combination (2DMCs on microribbons). (b, c, e, f, h, i) POM images of a 2DMC of C6-DPA, microribbons of TIPS-pentacene, and their combination (color online).

  • Figure 3

    (a–c) AFM images of a 2DMC of C6-DPA, microribbons of TIPS-pentacene, and their combination. (d, e) TEM image and the corresponding SAED patterns of a 2DMC of C6-DPA. (f, g) TEM image and the corresponding SAED patterns of a microribbon of TIPS-pentacene. XRD (h), PL spectra (i) and UV-Vis-NIR spectra (j) of 2DMCs of C6-DPA, microribbons of TIPS-pentacene, and their combination. The excitation wavelength was 380 nm in the PL spectra (color online).

  • Figure 4

    (a, d) Schematics of the bottom gate, top contact OFETs based on pristine and doped TIPS-pentacene. Typical transfer and output characteristics of OFETs based on pristine (b, c) and doped (e, f) TIPS-pentacene (color online).

  • Figure 5

    (a) Threshold voltages as a function of C6-DPA layer numbers; (b) mobilities as a function of C6-DPA layer numbers (color online).

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号