SCIENCE CHINA Life Sciences, Volume 60, Issue 3: 249-256(2017) https://doi.org/10.1007/s11427-016-0060-7

Sirtuin 5: a review of structure, known inhibitors and clues for developing new inhibitors

More info
  • ReceivedMar 21, 2016
  • AcceptedMay 23, 2016
  • PublishedNov 17, 2016


Sirtuins (SIRTs) are nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases, which regulate important biological processes ranging from apoptosis, age-associated pathophysiologies, adipocyte and muscle differentiation, and energy expenditure to gluconeogenesis. Very recently, sirtuin 5 (SIRT5) has received considerable attention due to that it was found to have weak deacetylase activity but strong desuccinylase, demalonylase and deglutarylase activities, and it was also found to be associated with several human diseases such as cancer, Alzheimer’s disease, and Parkinson’s disease. In this review, we for the first time summarized the structure characteristics, known peptide and small-molecule inhibitors of SIRT5, extracted some clues from current available information and introduced some feasible, practical in silico methods, which might be useful in further efforts to develop new SIRT5 inhibitors.

Funded by

Chun hui of Ministry of Education Project(Z2015120)

National Natural Science Foundation of China(81502989)

China Postdoctoral Science Foundation Funded Project(2015M570789)


This work was supported by the Chun hui of Ministry of Education Project (Z2015120), the National Natural Science Foundation of China (81502989), and the China Postdoctoral Science Foundation Funded Project (2015M570789).

Open access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Interest statement

The author(s) declare that they have no conflict of interest.


[1] Bell E.L., Guarente L.. The SirT3 divining rod points to oxidative stress. Mol Cell, 2011, 42: 561-568 CrossRef PubMed Google Scholar

[2] Davenport A.M., Huber F.M., Hoelz A.. Structural and functional analysis of human SIRT1. J Mol Biol, 2014, 426: 526-541 CrossRef PubMed Google Scholar

[3] de Graaf C., Kooistra A.J., Vischer H.F., Katritch V., Kuijer M., Shiroishi M., Iwata S., Shimamura T., Stevens R.C., de Esch I.J.P., Leurs R.. Crystal structure-based virtual screening for fragment-like ligands of the human histamine H1 receptor. J Med Chem, 2011, 54: 8195-8206 CrossRef PubMed Google Scholar

[4] Donmez G., Outeiro T.F.. SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med, 2013, 5: 344-352 CrossRef PubMed Google Scholar

[5] Du J., Zhou Y., Su X., Yu J.J., Khan S., Jiang H., Kim J., Woo J., Kim J.H., Choi B.H., He B., Chen W., Zhang S., Cerione R.A., Auwerx J., Hao Q., Lin H.. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science, 2011, 334: 806-809 CrossRef PubMed ADS Google Scholar

[6] Ekins S., Mestres J., Testa B.. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol, 2007, 152: 9-20 CrossRef PubMed Google Scholar

[7] Gertz M., Steegborn C.. Function and regulation of the mitochondrial sirtuin isoform Sirt5 in Mammalia. Biochim Biophys Acta, 2010, 1804: 1658-1665 CrossRef PubMed Google Scholar

[8] Glorioso C., Oh S., Douillard G.G., Sibille E.. Brain molecular aging, promotion of neurological disease and modulation by sirtuin5 longevity gene polymorphism. Neurobiol Dis, 2011, 41: 279-290 CrossRef PubMed Google Scholar

[9] He B., Du J., Lin H.. Thiosuccinyl peptides as Sirt5-specific inhibitors. J Am Chem Soc, 2012, 134: 1922-1925 CrossRef PubMed Google Scholar

[10] Hirschey M.D.. Old enzymes, new tricks: sirtuins are NAD+-dependent de-acylases. Cell Metab, 2011, 14: 718-719 CrossRef PubMed Google Scholar

[11] Jin L., Wei W., Jiang Y., Peng H., Cai J., Mao C., Dai H., Choy W., Bemis J.E., Jirousek M.R., Milne J.C., Westphal C.H., Perni R.B.. Crystal structures of human SIRT3 displaying substrate-induced conformational changes. J Biol Chem, 2009, 284: 24394-24405 CrossRef PubMed Google Scholar

[12] Jing H., Lin H.. Sirtuins in epigenetic regulation. Chem Rev, 2015, 115: 2350-2375 CrossRef PubMed Google Scholar

[13] Kumar S., Lombard D.B.. Mitochondrial sirtuins and their relationships with metabolic disease and cancer. Antioxid Redox Signal, 2015, 22: 1060-1077 CrossRef PubMed Google Scholar

[14] Lai C.C., Lin P.M., Lin S.F., Hsu C.H., Lin H.C., Hu M.L., Hsu C.M., Yang M.Y.. Altered expression of SIRT gene family in head and neck squamous cell carcinoma. Tumor Biol, 2013, 34: 1847-1854 CrossRef PubMed Google Scholar

[15] Li F., He X., Ye D., Lin Y., Yu H., Yao C., Huang L., Zhang J., Wang F., Xu S., Wu X., Liu L., Yang C., Shi J., He X., Liu J., Qu Y., Guo F., Zhao J., Xu W., Zhao S.. NADP+-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance. Mol Cell, 2015a, 60: 661-675 CrossRef PubMed Google Scholar

[16] Li G.B., Ji S., Yang L.L., Zhang R.J., Chen K., Zhong L., Ma S., Yang S.Y.. LEADOPT: an automatic tool for structure-based lead optimization, and its application in structural optimizations of VEGFR2 and SYK inhibitors. Eur J Med Chem, 2015b, 93: 523-538 CrossRef PubMed Google Scholar

[17] Li G.B., Yang L.L., Feng S., Zhou J.P., Huang Q., Xie H.Z., Li L.L., Yang S.Y.. Discovery of novel mGluR1 antagonists: a multistep virtual screening approach based on an SVM model and a pharmacophore hypothesis significantly increases the hit rate and enrichment factor. Bioorg Med Chem Lett, 2011, 21: 1736-1740 CrossRef PubMed Google Scholar

[18] Li G.B., Yang L.L., Wang W.J., Li L.L., Yang S.Y.. ID-score: a new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions. J Chem Inf Model, 2013, 53: 592-600 CrossRef PubMed Google Scholar

[19] Li G.B., Yang L.L., Yuan Y., Zou J., Cao Y., Yang S.Y., Xiang R., Xiang M.. Virtual screening in small molecule discovery for epigenetic targets. Methods, 2015c, 71: 158-166 CrossRef PubMed Google Scholar

[20] Lin Z.F., Xu H.B., Wang J.Y., Lin Q., Ruan Z., Liu F.B., Jin W., Huang H.H., Chen X.. SIRT5 desuccinylates and activates SOD1 to eliminate ROS. Biochem Biophys Res Commun, 2013, 441: 191-195 CrossRef PubMed Google Scholar

[21] Liu L., Peritore C., Ginsberg J., Shih J., Arun S., Donmez G.. Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson’s disease. Behav Brain Res, 2015, 281: 215-221 CrossRef PubMed Google Scholar

[22] Lu W., Zuo Y., Feng Y., Zhang M.. SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer. Tumor Biol, 2014, 35: 10699-10705 CrossRef PubMed Google Scholar

[23] Lutz M.I., Milenkovic I., Regelsberger G., Kovacs G.G.. Distinct patterns of sirtuin expression during progression of Alzheimer’s disease. Neuromol Med, 2014, 16: 405-414 CrossRef PubMed Google Scholar

[24] Maurer B., Rumpf T., Scharfe M., Stolfa D.A., Schmitt M.L., He W., Verdin E., Sippl W., Jung M.. Inhibitors of the NAD+ -dependent protein desuccinylase and demalonylase Sirt5. ACS Med Chem Lett, 2012, 3: 1050-1053 CrossRef PubMed Google Scholar

[25] Mauser H., Guba W.. Recent developments in de novo design and scaffold hopping. Curr Opin Drug Discov Devel, 2008, 11: 365-374. Google Scholar

[26] Mellini P., Valente S., Mai A.. Sirtuin modulators: an updated patent review (2012–2014). Expert Opin Ther Patents, 2015, 25: 5-15 CrossRef PubMed Google Scholar

[27] Moniot S., Schutkowski M., Steegborn C.. Crystal structure analysis of human Sirt2 and its ADP-ribose complex. J Struct Biol, 2013, 182: 136-143 CrossRef PubMed Google Scholar

[28] Muthas D., Sabnis Y.A., Lundborg M., Karlén A.. Is it possible to increase hit rates in structure-based virtual screening by pharmacophore filtering? An investigation of the advantages and pitfalls of post-filtering. J Mol Graph Model, 2008, 26: 1237-1251 CrossRef PubMed Google Scholar

[29] Nakagawa T., Lomb D.J., Haigis M.C., Guarente L.. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell, 2009, 137: 560-570 CrossRef PubMed Google Scholar

[30] Network A.R.. Integrated genomic analyses of ovarian carcinoma. Nature, 2011, 474: 609-615. Google Scholar

[31] Nishida Y., Rardin M.J., Carrico C., He W., Sahu A.K., Gut P., Najjar R., Fitch M., Hellerstein M., Gibson B.W., Verdin E.. SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol Cell, 2015, 59: 321-332 CrossRef PubMed Google Scholar

[32] Pan P.W., Feldman J.L., Devries M.K., Dong A., Edwards A.M., Denu J.M.. Structure and biochemical functions of SIRT6. J Biol Chem, 2011, 286: 14575-14587 CrossRef PubMed Google Scholar

[33] Parihar P., Solanki I., Mansuri M.L., Parihar M.S.. Mitochondrial sirtuins: emerging roles in metabolic regulations, energy homeostasis and diseases. Exp Gerontol, 2015, 61: 130-141 CrossRef PubMed Google Scholar

[34] Park J., Chen Y., Tishkoff D.X., Peng C., Tan M., Dai L., Xie Z., Zhang Y., Zwaans B.M.M., Skinner M.E., Lombard D.B., Zhao Y.. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell, 2013, 50: 919-930 CrossRef PubMed Google Scholar

[35] Polletta L., Vernucci E., Carnevale I., Arcangeli T., Rotili D., Palmerio S., Steegborn C., Nowak T., Schutkowski M., Pellegrini L., Sansone L., Villanova L., Runci A., Pucci B., Morgante E., Fini M., Mai A., Russo M.A., Tafani M.. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy, 2015, 11: 253-270 CrossRef PubMed Google Scholar

[36] Rardin M.J., He W., Nishida Y., Newman J.C., Carrico C., Danielson S.R., Guo A., Gut P., Sahu A.K., Li B., Uppala R., Fitch M., Riiff T., Zhu L., Zhou J., Mulhern D., Stevens R.D., Ilkayeva O.R., Newgard C.B., Jacobson M.P., Hellerstein M., Goetzman E.S., Gibson B.W., Verdin E.. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab, 2013, 18: 920-933 CrossRef PubMed Google Scholar

[37] Ren J.X., Li L.L., Zheng R.L., Xie H.Z., Cao Z.X., Feng S., Pan Y.L., Chen X., Wei Y.Q., Yang S.Y.. Discovery of novel Pim-1 kinase inhibitors by a hierarchical multistage virtual screening approach based on SVM model, pharmacophore, and molecular docking. J Chem Inf Model, 2011, 51: 1364-1375 CrossRef PubMed Google Scholar

[38] Roessler C., Nowak T., Pannek M., Gertz M., Nguyen G.T.T., Scharfe M., Born I., Sippl W., Steegborn C., Schutkowski M.. Chemical probing of the human sirtuin 5 active site reveals its substrate acyl specificity and peptide-based inhibitors. Angew Chem Int Engl, 2014, 53: 10728-10732 CrossRef PubMed Google Scholar

[39] Roessler C., Tüting C., Meleshin M., Steegborn C., Schutkowski M.. A novel continuous assay for the deacylase sirtuin 5 and other deacetylases. J Med Chem, 2015, 58: 7217-7223 CrossRef PubMed Google Scholar

[40] Rumpf T., Schiedel M., Karaman B., Roessler C., North B.J., Lehotzky A., Oláh J., Ladwein K.I., Schmidtkunz K., Gajer M., Pannek M., Steegborn C., Sinclair D.A., Gerhardt S., Ovádi J., Schutkowski M., Sippl W., Einsle O., Jung M.. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Nat Commun, 2015, 6: 6263 CrossRef PubMed ADS Google Scholar

[41] Schneider G., Fechner U.. Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov, 2005, 4: 649-663 CrossRef PubMed Google Scholar

[42] Schuetz A., Min J., Antoshenko T., Wang C.L., Allali-Hassani A., Dong A., Loppnau P., Vedadi M., Bochkarev A., Sternglanz R., Plotnikov A.N.. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure, 2007, 15: 377-389 CrossRef PubMed Google Scholar

[43] Suenkel B., Fischer F., Steegborn C.. Inhibition of the human deacylase Sirtuin 5 by the indole GW5074. Bioorg Med Chem Lett, 2013, 23: 143-146 CrossRef PubMed Google Scholar

[44] Suri C., Naik P.K.. Combined molecular dynamics and continuum solvent approaches (MM-PBSA/GBSA) to predict noscapinoid binding to g-tubulin dimer. SAR QSAR Environ Res, 2015, 26: 507-519 CrossRef PubMed Google Scholar

[45] Szczepankiewicz B.G., Dai H., Koppetsch K.J., Qian D., Jiang F., Mao C., Perni R.B.. Synthesis of carba-NAD and the structures of its ternary complexes with SIRT3 and SIRT5. J Org Chem, 2012, 77: 7319-7329 CrossRef PubMed Google Scholar

[46] Talamas F.X., Ao-Ieong G., Brameld K.A., Chin E., de Vicente J., Dunn J.P., Ghate M., Giannetti A.M., Harris S.F., Labadie S.S., Leveque V., Li J., Lui A.S.T., McCaleb K.L., Nájera I., Schoenfeld R.C., Wang B., Wong A.. De novo fragment design: a medicinal chemistry approach to fragment-based lead generation. J Med Chem, 2013, 56: 3115-3119 CrossRef PubMed Google Scholar

[47] Tan M., Peng C., Anderson K.A., Chhoy P., Xie Z., Dai L., Park J., Chen Y., Huang H., Zhang Y., Ro J., Wagner G.R., Green M.F., Madsen A.S., Schmiesing J., Peterson B.S., Xu G., Ilkayeva O.R., Muehlbauer M.J., Braulke T., Mühlhausen C., Backos D.S., Olsen C.A., McGuire P.J., Pletcher S.D., Lombard D.B., Hirschey M.D., Zhao Y.. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab, 2014, 19: 605-617 CrossRef PubMed Google Scholar

[48] Yang L.L., Li G.B., Yan H.X., Sun Q.Z., Ma S., Ji P., Wang Z.R., Feng S., Zou J., Yang S.Y.. Discovery of N6-phenyl-1H-pyrazolo[3,4-d]pyrimidine-3,6-diamine derivatives as novel CK1 inhibitors using common-feature pharmacophore model based virtual screening and hit-to-lead optimization. Eur J Med Chem, 2012, 56: 30-38 CrossRef PubMed Google Scholar

[49] Yang S.Y.. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today, 2010, 15: 444-450 CrossRef PubMed Google Scholar

[50] Yang X., Liu B.Y., Zhu W.G., Luo J.Y.. SIRT5, functions in cellular metabolism with a multiple enzymatic activities. Sci China Life Sci, 2015, 58: 912-914 CrossRef PubMed Google Scholar

[51] Zang W., Hao Y., Wang Z., Zheng W.. Novel thiourea-based sirtuin inhibitory warheads. Bioorg Med Chem Lett, 2015, 25: 3319-3324 CrossRef PubMed Google Scholar

[52] Zhang Y., Bharathi S.S., Rardin M.J., Uppala R., Verdin E., Gibson B.W., Goetzman E.S., Makishima M.. SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain Acyl-CoA dehydrogenase. PLoS ONE, 2015, 10: e0122297 CrossRef PubMed ADS Google Scholar

[53] Zhou Y., Zhang H., He B., Du J., Lin H., Cerione R.A., Hao Q.. The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5). J Biol Chem, 2012, 287: 28307-28314 CrossRef PubMed Google Scholar

  • Figure 1

    Phylogenetic tree of human HDAC family based on the similarity of their amino acid sequences. The HDAC family consists of four classes (Class I, II, III, and IV, shown in different colors). Class I, II, and IV HDACs are zinc2+-dependent deacetylases, while class III HDACs are nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, called sirtuins.

  • Figure 2

    The overall structure of SIRT5.

  • Figure 3

    Bioinformatics analyses revealed that SIRT5 has a similar overall domain organization and fold to SIRT1, SIRT2, and SIRT3, but different to SIRT6 especially in zinc-binding domain and catalytic site. A, Comparative analysis of SIRT5 with SIRT1, SIRT2, and SIRT3. The catalytic sites of these sirtuins are highlighted in yellow. B, Comparing SIRT5 with SIRT6. SIRT5 is shown in yellow, and SIRT6 is highlighted in blue.

  • Figure 4

    An example of the succinyl-K9 peptide-NAD+ ternary crystal structure (PDB code: 3RIY).

  • Figure 5

    The known peptide inhibitors of SIRT5.

  • Figure 6

    The known small-molecule inhibitors of SIRT5.

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有