SCIENCE CHINA Life Sciences, Volume 60 , Issue 1 : 46-56(2017) https://doi.org/10.1007/s11427-016-0322-x

The size matters: regulation of lipid storage by lipid droplet dynamics

More info
  • ReceivedOct 23, 2016
  • AcceptedOct 28, 2016
  • PublishedDec 5, 2016


Adequate energy storage is essential for sustaining healthy life. Lipid droplet (LD) is the subcellular organelle that stores energy in the form of neutral lipids and releases fatty acids under energy deficient conditions. Energy storage capacity of LDs is primarily dependent on the sizes of LDs. Enlargement and growth of LDs is controlled by two molecular pathways: neutral lipid synthesis and atypical LD fusion. Shrinkage of LDs is mediated by the degradation of neutral lipids under energy demanding conditions and is controlled by neutral cytosolic lipases and lysosomal acidic lipases. In this review, we summarize recent progress regarding the regulatory pathways and molecular mechanisms that control the sizes and the energy storage capacity of LDs.

Funded by

National Natural Science Foundation of China(31420040)

National Basic Research Program(2013CB530602 to Peng Li)

China Postdoctoral Science Foundation(2015M581079 to Jinhai Yu)


This work was supported by the National Natural Science Foundation of China (31420040, 31321003 to Peng Li, 31501089 to Jinhai Yu), the National Basic Research Program (2013CB530602 to Peng Li), and the China Postdoctoral Science Foundation (2015M581079 to Jinhai Yu).

Open access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Interest statement

The author(s) declare that they have no conflict of interest.


[1] Anand P., Cermelli S., Li Z., Kassan A., Bosch M., Sigua R., Huang L., Ouellette A.J., Pol A., Welte M.A., Gross S.P.. A novel role for lipid droplets in the organismal antibacterial response. eLife, 2012, 1: e00003 CrossRef PubMed Google Scholar

[2] Baenke F., Peck B., Miess H., Schulze A.. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech, 2013, 6: 1353-1363 CrossRef PubMed Google Scholar

[3] Barbosa A.D., Savage D.B., Siniossoglou S.. Lipid droplet-organelle interactions: emerging roles in lipid metabolism. Curr Opin Cell Biol, 2015, 35: 91-97 CrossRef PubMed Google Scholar

[4] Bartz R., Li W.H., Venables B., Zehmer J.K., Roth M.R., Welti R., Anderson R.G.W., Liu P., Chapman K.D.. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res, 2007, 48: 837-847 CrossRef PubMed Google Scholar

[5] Beller M., Thiel K., Thul P.J., Jäckle H.. Lipid droplets: a dynamic organelle moves into focus. FEBS Lett, 2010, 584: 2176-2182 CrossRef PubMed Google Scholar

[6] Bi J., Wang W., Liu Z., Huang X., Jiang Q., Liu G., Wang Y., Huang X.. Seipin promotes adipose tissue fat storage through the ER Ca2+-ATPase SERCA. Cell Metab, 2014, 19: 861-871 CrossRef PubMed Google Scholar

[7] Bindlish S., Presswala L.S., Schwartz F.. Lipodystrophy: syndrome of severe insulin resistance. Postgrad Med, 2015, 127: 511-516 CrossRef PubMed Google Scholar

[8] Brasaemle D.L., Dolios G., Shapiro L., Wang R.. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem, 2004, 279: 46835-46842 CrossRef PubMed Google Scholar

[9] Brasaemle D.L., Rubin B., Harten I.A., Gruia-Gray J., Kimmel A.R., Londos C.. Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. J Biol Chem, 2000, 275: 38486-38493 CrossRef PubMed Google Scholar

[10] Cai Y., Goodman J.M., Pyc M., Mullen R.T., Dyer J.M., Chapman K.D.. Arabidopsis SEIPIN proteins modulate triacylglycerol accumulation and influence lipid droplet proliferation. Plant Cell, 2015, 27: 2616-2636 CrossRef PubMed Google Scholar

[11] Camus, G., Vogt, D.A., Kondratowicz, A.S., and Ott, M. (2013). Lipid droplets and viral infections. Methods Cell Biol 116, 167–190. Google Scholar

[12] Cartwright B.R., Binns D.D., Hilton C.L., Han S., Gao Q., Goodman J.M.. Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol Biol Cell, 2015, 26: 726-739 CrossRef PubMed Google Scholar

[13] Cartwright B.R., Goodman J.M.. Seipin: from human disease to molecular mechanism. J Lipid Res, 2012, 53: 1042-1055 CrossRef PubMed Google Scholar

[14] Chamoun Z., Vacca F., Parton R.G., Gruenberg J.. PNPLA3/adiponutrin functions in lipid droplet formation. Biol Cell, 2013, 105: 219-233 CrossRef PubMed Google Scholar

[15] Chen Y., Li P.. Fatty acid metabolism and cancer development. Sci Bull, 2016, 61: 1473-1479 CrossRef Google Scholar

[16] Cohen B.C., Shamay A., Argov-Argaman N.. Regulation of lipid droplet size in mammary epithelial cells by remodeling of membrane lipid composition—A potential mechanism. PLoS ONE, 2015, 10: e0121645 CrossRef PubMed ADS Google Scholar

[17] Collins S., Cao W., Robidoux J.. Learning new tricks from old dogs: β-adrenergic receptors teach new lessons on firing up adipose tissue metabolism. Mol Endocrinol, 2004, 18: 2123-2131 CrossRef PubMed Google Scholar

[18] Crawford S.E., Desselberger U.. Lipid droplets form complexes with viroplasms and are crucial for rotavirus replication. Curr Opin Virol, 2016, 19: 11-15 CrossRef PubMed Google Scholar

[19] D’Avila H., Maya-Monteiro C.M., Bozza P.T.. Lipid bodies in innate immune response to bacterial and parasite infections. Int Immunopharmacol, 2008, 8: 1308-1315 CrossRef PubMed Google Scholar

[20] Dichlberger A., Schlager S., Maaninka K., Schneider W.J., Kovanen P.T.. Adipose triglyceride lipase regulates eicosanoid production in activated human mast cells. J Lipid Res, 2014, 55: 2471-2478 CrossRef PubMed Google Scholar

[21] Dupont N., Chauhan S., Arko-Mensah J., Castillo E.F., Masedunskas A., Weigert R., Robenek H., Proikas-Cezanne T., Deretic V.. Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr Biol, 2014, 24: 609-620 CrossRef PubMed Google Scholar

[22] Dwianingsih E.K., Takeshima Y., Itoh K., Yamauchi Y., Awano H., Malueka R.G., Nishida A., Ota M., Yagi M., Matsuo M.. A Japanese child with asymptomatic elevation of serum creatine kinase shows PTRF-CAVIN mutation matching with congenital generalized lipodystrophy type 4. Mol Genets Metab, 2010, 101: 233-237 CrossRef PubMed Google Scholar

[23] Farese R.V.Jr., Walther T.C.. Lipid droplets go nuclear. J Cell Biol, 2016, 212: 7-8 CrossRef PubMed Google Scholar

[24] Fei W., Shui G., Gaeta B., Du X., Kuerschner L., Li P., Brown A.J., Wenk M.R., Parton R.G., Yang H.. Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol, 2008, 180: 473-482 CrossRef PubMed Google Scholar

[25] Ferré P., Foufelle F.. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab, 2010, 12: 83-92 CrossRef PubMed Google Scholar

[26] Filipe A., McLauchlan J.. Hepatitis C virus and lipid droplets: finding a niche. Trends Mol Med, 2015, 21: 34-42 CrossRef PubMed Google Scholar

[27] Fischer J., Lefèvre C., Morava E., Mussini J.M., Laforêt P., Negre-Salvayre A., Lathrop M., Salvayre R.. The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat Genet, 2007, 39: 28-30 CrossRef PubMed Google Scholar

[28] Frayn K.N.. Adipose tissue and the insulin resistance syndrome. Proc Nutr Soc, 2001, 60: 375-380 CrossRef Google Scholar

[29] Fujimoto T., Parton R.G.. Not just fat: the structure and function of the lipid droplet. Cold Spring Harb Perspect Biol, 2011, 3: a004838-a004838 CrossRef PubMed Google Scholar

[30] Fujimoto Y., Itabe H., Kinoshita T., Homma K.J., Onoduka J., Mori M., Yamaguchi S., Makita M., Higashi Y., Yamashita A., Takano T.. Involvement of ACSL in local synthesis of neutral lipids in cytoplasmic lipid droplets in human hepatocyte HuH7. J Lipid Res, 2007, 48: 1280-1292 CrossRef PubMed Google Scholar

[31] Gandotra S., Lim K., Girousse A., Saudek V., O’Rahilly S., Savage D.B.. Human frame shift mutations affecting the carboxyl terminus of perilipin increase lipolysis by failing to sequester the adipose triglyceride lipase (ATGL) coactivator AB-hydrolase-containing 5 (ABHD5). J Biol Chem, 2011, 286: 34998-35006 CrossRef PubMed Google Scholar

[32] Gao Q., Goodman J.M.. The lipid droplet—a well-connected organelle. Front Cell Dev Biol, 2015, 3: 49 CrossRef Google Scholar

[33] Gong J., Sun Z., Li P.. CIDE proteins and metabolic disorders. Curr Opin Lipidol, 2009, 20: 121-126 CrossRef PubMed Google Scholar

[34] Gong J., Sun Z., Wu L., Xu W., Schieber N., Xu D., Shui G., Yang H., Parton R.G., Li P.. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J Cell Biol, 2011, 195: 953-963 CrossRef PubMed Google Scholar

[35] Grippa A., Buxó L., Mora G., Funaya C., Idrissi F.Z., Mancuso F., Gomez R., Muntanyà J., Sabidó E., Carvalho P.. The seipin complex Fld1/Ldb16 stabilizes ER-lipid droplet contact sites. J Cell Biol, 2015, 211: 829-844 CrossRef PubMed Google Scholar

[36] Gross D.A., Silver D.L.. Cytosolic lipid droplets: from mechanisms of fat storage to disease. Crit Rev Biochem Mol Biol, 2014, 49: 304-326 CrossRef PubMed Google Scholar

[37] Grundy S.M.. Adipose tissue and metabolic syndrome: too much, too little or neither. Eur J Clin Invest, 2015, 45: 1209-1217 CrossRef PubMed Google Scholar

[38] Haemmerle G., Lass A., Zimmermann R., Gorkiewicz G., Meyer C., Rozman J., Heldmaier G., Maier R., Theussl C., Eder S., Kratky D., Wagner E.F., Klingenspor M., Hoefler G., Zechner R.. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science, 2006, 312: 734-737 CrossRef PubMed ADS Google Scholar

[39] Han S., Binns D.D., Chang Y.F., Goodman J.M.. Dissecting seipin function: the localized accumulation of phosphatidic acid at ER/LD junctions in the absence of seipin is suppressed by Sei1pΔNterm only in combination with Ldb16p. BMC Cell Biol, 2015, 16: 29 CrossRef PubMed Google Scholar

[40] Herman, I.P. (2016). Physics of the Human Body. (Berlin: Springer). Google Scholar

[41] Hinson E.R., Cresswell P.. The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic α-helix. Proc Natl Acad Sci USA, 2009, 106: 20452-20457 CrossRef PubMed ADS Google Scholar

[42] Holm C.. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochm Soc Trans, 2003, 31: 1120-1124 CrossRef Google Scholar

[43] Jacquier N., Choudhary V., Mari M., Toulmay A., Reggiori F., Schneiter R.. Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci, 2011, 124: 2424-2437 CrossRef PubMed Google Scholar

[44] Kassan A., Herms A., Fernández-Vidal A., Bosch M., Schieber N.L., Reddy B.J.N., Fajardo A., Gelabert-Baldrich M., Tebar F., Enrich C., Gross S.P., Parton R.G., Pol A.. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. J Cell Biol, 2013, 203: 985-1001 CrossRef PubMed Google Scholar

[45] Kaushik S., Cuervo A.M.. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol, 2015, 17: 759-770 CrossRef PubMed Google Scholar

[46] Khelef N., Buton X., Beatini N., Wang H., Meiner V., Chang T.Y., Farese R.V., Maxfield F.R., Tabas I.. Immunolocalization of acyl-coenzyme A:cholesterol O-acyltransferase in macrophages. J Biol Chem, 1998, 273: 11218-11224 CrossRef Google Scholar

[47] Kimmel A.R., Sztalryd C.. The perilipins: major cytosolic lipid droplet-associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Annu Rev Nutr, 2016, 36: 471-509 CrossRef PubMed Google Scholar

[48] Knoblach B., Rachubinski R.A.. Transport and retention mechanisms govern lipid droplet inheritance in Saccharomyces cerevisiae. Traffic, 2015, 16: 298-309 CrossRef PubMed Google Scholar

[49] Kory, N., Farese, R.V., Jr., and Walther, T.C. (2016). Targeting fat: mechanisms of protein localization to lipid droplets. Trends Cell Biol 26, 535–546. Google Scholar

[50] Krahmer N., Farese Jr R.V., Walther T.C.. Balancing the fat: lipid droplets and human disease. EMBO Mol Med, 2013, 5: 973-983 CrossRef PubMed Google Scholar

[51] Kuerschner L., Moessinger C., Thiele C.. Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic, 2008, 9: 338-352 CrossRef PubMed Google Scholar

[52] Lafontan, M., and Berlan, M. (1993). Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res 34, 1057–1091. Google Scholar

[53] Large V., Peroni O., Letexier D., Ray H., Beylot M.. Metabolism of lipids in human white adipocyte. Diabetes Metab, 2004, 30: 294-309 CrossRef Google Scholar

[54] Lass A., Zimmermann R., Haemmerle G., Riederer M., Schoiswohl G., Schweiger M., Kienesberger P., Strauss J.G., Gorkiewicz G., Zechner R.. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab, 2006, 3: 309-319 CrossRef PubMed Google Scholar

[55] Li J.Z., Ye J., Xue B., Qi J., Zhang J., Zhou Z., Li Q., Wen Z., Li P.. Cideb regulates diet-induced obesity, liver steatosis, and insulin sensitivity by controlling lipogenesis and fatty acid oxidation. Diabetes, 2007, 56: 2523-2532 CrossRef PubMed Google Scholar

[56] Liu L., Zhang K., Sandoval H., Yamamoto S., Jaiswal M., Sanz E., Li Z., Hui J., Graham B.H., Quintana A., Bellen H.J.. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell, 2015, 160: 177-190 CrossRef PubMed Google Scholar

[57] Liu P., Bartz R., Zehmer J.K., Ying Y., Zhu M., Serrero G., Anderson R.G.W.. Rab-regulated interaction of early endosomes with lipid droplets. Biochim Biophys Acta, 2007, 1773: 784-793 CrossRef PubMed Google Scholar

[58] Liu P., Ying Y., Zhao Y., Mundy D.I., Zhu M., Anderson R.G.W.. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem, 2004, 279: 3787-3792 CrossRef PubMed Google Scholar

[59] Lodhi I.J., Semenkovich C.F.. Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab, 2014, 19: 380-392 CrossRef Google Scholar

[60] Lu X., Yang X., Liu J.. Differential control of ATGL-mediated lipid droplet degradation by CGI-58 and G0S2. Cell Cycle, 2010, 9: 2791-2797 CrossRef PubMed Google Scholar

[61] Macpherson R.E.K., Vandenboom R., Roy B.D., Peters S.J.. Skeletal muscle PLIN3 and PLIN5 are serine phosphorylated at rest and following lipolysis during adrenergic or contractile stimulation. Physiol Rep, 2013, 1: e00084 CrossRef PubMed Google Scholar

[62] Magré J., Delépine M., Khallouf E., Gedde-Dahl T., Van Maldergem L., Sobel E., Papp J., Meier M., Mégarbané A., Bachy A., Verloes A., d’Abronzo F.H., Seemanova E., Assan R., Baudic N., Bourut C., Czernichow P., Huet F., Grigorescu F., de Kerdanet M., Lacombe D., Labrune P., Lanza M., Loret H., Matsuda F., Navarro J., Nivelon-Chevalier A., Polak M., Robert J.J., Tric P., Tubiana-Rufi N., Vigouroux C., Weissenbach J., Savasta S., Maassen J.A., Trygstad O., Bogalho P., Freitas P., Medina J.L., Bonnicci F., Joffe B.I., Loyson G., Panz V.R., Raal F.J., O’Rahilly S., Stephenson T., Kahn C.R., Lathrop M., Capeau J., Capeau J.. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet, 2001, 28: 365-370 CrossRef PubMed Google Scholar

[63] Martinez-Botas J., Anderson J.B., Tessier D., Lapillonne A., Chang B.H.J., Quast M.J., Gorenstein D., Chen K.H., Chan L.. Absence of perilipin results in leanness and reverses obesity in Lepr(db/db) mice. Nat Genet, 2000, 26: 474-479 CrossRef PubMed Google Scholar

[64] Mason R.R., Mokhtar R., Matzaris M., Selathurai A., Kowalski G.M., Mokbel N., Meikle P.J., Bruce C.R., Watt M.J.. PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle. Mol Metab, 2014, 3: 652-663 CrossRef PubMed Google Scholar

[65] Mason R.R., Watt M.J.. Unraveling the roles of PLIN5: linking cell biology to physiology. Trends Endocrinol Metab, 2015, 26: 144-152 CrossRef PubMed Google Scholar

[66] Matsusue K., Kusakabe T., Noguchi T., Takiguchi S., Suzuki T., Yamano S., Gonzalez F.J.. Hepatic steatosis in leptin-deficient mice is promoted by the PPARγ target gene Fsp27. Cell Metab, 2008, 7: 302-311 CrossRef PubMed Google Scholar

[67] Melo R.C.N., Weller P.F.. Lipid droplets in leukocytes: organelles linked to inflammatory responses. Exp Cell Res, 2016, 340: 193-197 CrossRef PubMed Google Scholar

[68] Miyoshi H., Perfield Ii J.W., Obin M.S., Greenberg A.S.. Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes. J Cell Biochem, 2008, 105: 1430-1436 CrossRef PubMed Google Scholar

[69] Miyoshi H., Souza S.C., Zhang H.H., Strissel K.J., Christoffolete M.A., Kovsan J., Rudich A., Kraemer F.B., Bianco A.C., Obin M.S., Greenberg A.S.. Perilipin promotes hormone-sensitive lipase-mediated adipocyte lipolysis via phosphorylation-dependent and -independent mechanisms. J Biol Chem, 2006, 281: 15837-15844 CrossRef PubMed Google Scholar

[70] Murphy D.J.. The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma, 2012, 249: 541-585 CrossRef PubMed Google Scholar

[71] Murphy S., Martin S., Parton R.G.. Lipid droplet-organelle interactions; sharing the fats. Biochim Biophys Acta, 2009, 1791: 441-447 CrossRef PubMed Google Scholar

[72] Nishino N., Tamori Y., Tateya S., Kawaguchi T., Shibakusa T., Mizunoya W., Inoue K., Kitazawa R., Kitazawa S., Matsuki Y., Hiramatsu R., Masubuchi S., Omachi A., Kimura K., Saito M., Amo T., Ohta S., Yamaguchi T., Osumi T., Cheng J., Fujimoto T., Nakao H., Nakao K., Aiba A., Okamura H., Fushiki T., Kasuga M.. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest, 2008, 118: 2808 CrossRef PubMed Google Scholar

[73] Nomura D.K., Long J.Z., Niessen S., Hoover H.S., Ng S.W., Cravatt B.F.. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell, 2010, 140: 49-61 CrossRef PubMed Google Scholar

[74] Ohsaki Y., Suzuki M., Fujimoto T.. Open questions in lipid droplet biology. Chem Biol, 2014, 21: 86-96 CrossRef PubMed Google Scholar

[75] Pol A., Gross S.P., Parton R.G.. Biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. J Cell Biol, 2014, 204: 635-646 CrossRef PubMed Google Scholar

[76] Pollak N.M., Jaeger D., Kolleritsch S., Zimmermann R., Zechner R., Lass A., Haemmerle G.. The interplay of protein kinase A and perilipin 5 regulates cardiac lipolysis. J Biol Chem, 2015, 290: 1295-1306 CrossRef PubMed Google Scholar

[77] Poppelreuther M., Rudolph B., Du C., Grossmann R., Becker M., Thiele C., Ehehalt R., Fullekrug J.. The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake. J Lipid Res, 2012, 53: 888-900 CrossRef PubMed Google Scholar

[78] Pu J., Ha C.W., Zhang S., Jung J.P., Huh W.K., Liu P.. Interactomic study on interaction between lipid droplets and mitochondria. Protein Cell, 2011, 2: 487-496 CrossRef PubMed Google Scholar

[79] Qiu B., Ackerman D., Sanchez D.J., Li B., Ochocki J.D., Grazioli A., Bobrovnikova-Marjon E., Diehl J.A., Keith B., Simon M.C.. HIF2α-dependent lipid storage promotes endoplasmic reticulum homeostasis in clear-cell renal cell carcinoma. Cancer Discov, 2015, 5: 652-667 CrossRef PubMed Google Scholar

[80] Rambold A.S., Cohen S., Lippincott-Schwartz J.. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell, 2015, 32: 678-692 CrossRef PubMed Google Scholar

[81] Robenek H., Buers I., Hofnagel O., Robenek M.J., Troyer D., Severs N.J.. Compartmentalization of proteins in lipid droplet biogenesis. Biochim Biophys Acta, 2009, 1791: 408-418 CrossRef PubMed Google Scholar

[82] Romeo S., Kozlitina J., Xing C., Pertsemlidis A., Cox D., Pennacchio L.A., Boerwinkle E., Cohen J.C., Hobbs H.H.. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet, 2008, 40: 1461-1465 CrossRef PubMed Google Scholar

[83] Rubio-Cabezas O., Puri V., Murano I., Saudek V., Semple R.K., Dash S., Hyden C.S.S., Bottomley W., Vigouroux C., Magré J., Raymond-Barker P., Murgatroyd P.R., Chawla A., Skepper J.N., Chatterjee V.K., Suliman S., Patch A.M., Agarwal A.K., Garg A., Barroso I., Cinti S., Czech M.P., Argente J., O’Rahilly S., Savage D.B., Savage D.B.. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol Med, 2009, 1: 280-287 CrossRef PubMed Google Scholar

[84] Rutkowski J.M., Stern J.H., Scherer P.E.. The cell biology of fat expansion. J Cell Biol, 2015, 208: 501-512 CrossRef PubMed Google Scholar

[85] Saka H.A., Valdivia R.. Emerging roles for lipid droplets in immunity and host-pathogen interactions. Annu Rev Cell Dev Biol, 2012, 28: 411-437 CrossRef PubMed Google Scholar

[86] Schrader M.. Tubulo-reticular clusters of peroxisomes in living COS-7 cells: dynamic behavior and association with lipid droplets. J Histochem Cytochem, 2001, 49: 1421-1429 CrossRef Google Scholar

[87] Schroeder B., Schulze R.J., Weller S.G., Sletten A.C., Casey C.A., McNiven M.A.. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology, 2015, 61: 1896-1907 CrossRef PubMed Google Scholar

[88] Schweiger M., Zechner R.. Breaking the barrier—chaperone-mediated autophagy of perilipins regulates the lipolytic degradation of fat. Cell Metab, 2015, 22: 60-61 CrossRef PubMed Google Scholar

[89] Sell H., Habich C., Eckel J.. Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol, 2012, 8: 709-716 CrossRef PubMed Google Scholar

[90] Shastry S., Delgado M.R., Dirik E., Turkmen M., Agarwal A.K., Garg A.. Congenital generalized lipodystrophy, type 4 (CGL4) associated with myopathy due to novel PTRF mutations. Am J Med Genet, 2010, 152A: 2245-2253 CrossRef PubMed Google Scholar

[91] Singh R., Kaushik S., Wang Y., Xiang Y., Novak I., Komatsu M., Tanaka K., Cuervo A.M., Czaja M.J.. Autophagy regulates lipid metabolism. Nature, 2009, 458: 1131-1135 CrossRef PubMed ADS Google Scholar

[92] Smirnova E., Goldberg E.B., Makarova K.S., Lin L., Brown W.J., Jackson C.L.. ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells. EMBO Rep, 2006, 7: 106-113 CrossRef PubMed Google Scholar

[93] Stone S.J., Levin M.C., Zhou P., Han J., Walther T.C., Farese R.V.. The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria. J Biol Chem, 2009, 284: 5352-5361 CrossRef PubMed Google Scholar

[94] Strable M.S., Ntambi J.M.. Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit Rev Biochem Mol Biol, 2010, 45: 199-214 CrossRef PubMed Google Scholar

[95] Su W., Wang Y., Jia X., Wu W., Li L., Tian X., Li S., Wang C., Xu H., Cao J., Han Q., Xu S., Chen Y., Zhong Y., Zhang X., Liu P., Gustafsson J.Å., Guan Y.. Comparative proteomic study reveals 17β-HSD13 as a pathogenic protein in nonalcoholic fatty liver disease. Proc Natl Acad Sci USA, 2014, 111: 11437-11442 CrossRef PubMed ADS Google Scholar

[96] Sun Z., Gong J., Wu H., Xu W., Wu L., Xu D., Gao J., Wu J.W., Yang H., Yang M., Li P.. Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat Commun, 2013, 4: 1594 CrossRef PubMed ADS Google Scholar

[97] Suzuki M., Shinohara Y., Ohsaki Y., Fujimoto T.. Lipid droplets: size matters. Microscopy, 2011, 60: S101-S116 CrossRef PubMed Google Scholar

[98] Sztalryd C., Kimmel A.R.. Perilipins: lipid droplet coat proteins adapted for tissue-specific energy storage and utilization, and lipid cytoprotection. Biochimie, 2014, 96: 96-101 CrossRef PubMed Google Scholar

[99] Szymanski K.M., Binns D., Bartz R., Grishin N.V., Li W.P., Agarwal A.K., Garg A., Anderson R.G.W., Goodman J.M.. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc Natl Acad Sci USA, 2007, 104: 20890-20895 CrossRef PubMed ADS Google Scholar

[100] Tansey J.T., Sztalryd C., Gruia-Gray J., Roush D.L., Zee J.V., Gavrilova O., Reitman M.L., Deng C.X., Li C., Kimmel A.R., Londos C.. Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci USA, 2001, 98: 6494-6499 CrossRef PubMed ADS Google Scholar

[101] Tauchi-Sato K., Ozeki S., Houjou T., Taguchi R., Fujimoto T.. The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem, 2002, 277: 44507-44512 CrossRef PubMed Google Scholar

[102] Tian Y., Bi J., Shui G., Liu Z., Xiang Y., Liu Y., Wenk M.R., Yang H., Huang X.. Tissue-autonomous function of drosophila seipin in preventing ectopic lipid droplet formation. PLoS Genet, 2011, 7: e1001364 CrossRef PubMed Google Scholar

[103] Toh S.Y., Gong J., Du G., Li J.Z., Yang S., Ye J., Yao H., Zhang Y., Xue B., Li Q., Yang H., Wen Z., Li P.. Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of Fsp27 deficient mice. PLoS ONE, 2008, 3: e2890 CrossRef ADS Google Scholar

[104] Valdearcos M., Esquinas E., Meana C., Gil-de-Gomez L., Guijas C., Balsinde J., Balboa M.A.. Subcellular localization and role of lipin-1 in human macrophages. J Immunol, 2011, 186: 6004-6013 CrossRef Google Scholar

[105] Walther T.C., Farese Jr R.V.. Lipid droplets and cellular lipid metabolism. Annu Rev Biochem, 2012, 81: 687-714 CrossRef PubMed Google Scholar

[106] Wan H.C., Melo R.C.N., Jin Z., Dvorak A.M., Weller P.F.. Roles and origins of leukocyte lipid bodies: proteomic and ultrastructural studies. FASEB J, 2007, 21: 167-178 CrossRef PubMed Google Scholar

[107] Wang C.W.. Lipid droplets, lipophagy, and beyond. Biochim Biophys Acta, 2016, 1861: 793-805 CrossRef PubMed Google Scholar

[108] Wang H., Becuwe M., Housden B.E., Chitraju C., Porras A.J., Graham M.M., Liu X.N., Thiam A.R., Savage D.B., Agarwal A.K., Garg A., Olarte M.J., Lin Q., Fröhlich F., Hannibal-Bach H.K., Upadhyayula S., Perrimon N., Kirchhausen T., Ejsing C.S., Walther T.C., Farese R.V.. Seipin is required for converting nascent to mature lipid droplets. eLife, 2016, 5: e16582 CrossRef PubMed Google Scholar

[109] Wang H., Hu L., Dalen K., Dorward H., Marcinkiewicz A., Russell D., Gong D., Londos C., Yamaguchi T., Holm C., Rizzo M.A., Brasaemle D., Sztalryd C.. Activation of hormone-sensitive lipase requires two steps, protein phosphorylation and binding to the PAT-1 domain of lipid droplet coat proteins. J Biol Chem, 2009, 284: 32116-32125 CrossRef PubMed Google Scholar

[110] Wang H., Zhang J., Qiu W., Han G.S., Carman G.M., Adeli K.. Lipin-1γ isoform is a novel lipid droplet-associated protein highly expressed in the brain. FEBS Lett, 2011, 585: 1979-1984 CrossRef PubMed Google Scholar

[111] Wang W., Lv N., Zhang S., Shui G., Qian H., Zhang J., Chen Y., Ye J., Xie Y., Shen Y., Wenk M.R., Li P.. Cidea is an essential transcriptional coactivator regulating mammary gland secretion of milk lipids. Nat Med, 2012, 18: 235-243 CrossRef PubMed Google Scholar

[112] Watt M.J., Holmes A.G., Pinnamaneni S.K., Garnham A.P., Steinberg G.R., Kemp B.E., Febbraio M.A.. Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. AJP-Endocrinol Metab, 2006, 290: E500-E508 CrossRef Google Scholar

[113] Watt M.J., Steinberg G.R.. Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem J, 2008, 414: 313-325 CrossRef PubMed Google Scholar

[114] Welte M.A.. Expanding roles for lipid droplets. Curr Biol, 2015, 25: R470-R481 CrossRef PubMed Google Scholar

[115] Wilfling F., Haas J.T., Walther T.C., Farese R.V.. Lipid droplet biogenesis. Curr Opin Cell Biol, 2014, 29: 39-45 CrossRef PubMed Google Scholar

[116] Wilfling F., Wang H., Haas J.T., Krahmer N., Gould T.J., Uchida A., Cheng J.X., Graham M., Christiano R., Fröhlich F., Liu X., Buhman K.K., Coleman R.A., Bewersdorf J., Farese Jr. R.V., Walther T.C.. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell, 2013, 24: 384-399 CrossRef PubMed Google Scholar

[117] Wolinski H., Hofbauer H.F., Hellauer K., Cristobal-Sarramian A., Kolb D., Radulovic M., Knittelfelder O.L., Rechberger G.N., Kohlwein S.D.. Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast. Biochim Biophys Acta, 2015, 1851: 1450-1464 CrossRef PubMed Google Scholar

[118] Wu L., Xu D., Zhou L., Xie B., Yu L., Yang H., Huang L., Ye J., Deng H., Yuan Y.A., Chen S., Li P.. Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth. Dev Cell, 2014a, 30: 378-393 CrossRef PubMed Google Scholar

[119] Wu L.Z., Zhou L.K., Chen C., Gong J.Y., Xu L., Ye J., Li D., Li P.. Cidea controls lipid droplet fusion and lipid storage in brown and white adipose tissue. Sci China Life Sci, 2014b, 57: 107-116 CrossRef PubMed Google Scholar

[120] Xu L., Zhou L., Li P.. CIDE proteins and lipid metabolism. Arterioscler Thromb Vasc Biol, 2012, 32: 1094-1098 CrossRef PubMed Google Scholar

[121] Xu W., Wu L., Yu M., Chen F.J., Arshad M., Xia X., Ren H., Yu J., Xu L., Xu D., Li J.Z., Li P., Zhou L.. Differential roles of cell death-inducing DNA fragmentation factor-α-like effector (CIDE) proteins in promoting lipid droplet fusion and growth in subpopulations of hepatocytes. J Biol Chem, 2016, 291: 4282-4293 CrossRef PubMed Google Scholar

[122] Yamaguchi T., Omatsu N., Matsushita S., Osumi T.. CGI-58 interacts with perilipin and is localized to lipid droplets: possible involvement of CGI-58 mislocalization in chanarin-dorfman syndrome. J Biol Chem, 2004, 279: 30490-30497 CrossRef PubMed Google Scholar

[123] Yang X., Lu X., Lombès M., Rha G.B., Chi Y.I., Guerin T.M., Smart E.J., Liu J.. The G0/G1 switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab, 2010, 11: 194-205 CrossRef PubMed Google Scholar

[124] Ye J.. Mechanisms of insulin resistance in obesity. Front Med, 2013, 7: 14-24 CrossRef PubMed Google Scholar

[125] Yu J., Zhang S., Cui L., Wang W., Na H., Zhu X., Li L., Xu G., Yang F., Christian M., Liu P.. Lipid droplet remodeling and interaction with mitochondria in mouse brown adipose tissue during cold treatment. Biochim Biophys Acta, 2015, 1853: 918-928 CrossRef PubMed Google Scholar

[126] Zechner R.. FAT FLUX: enzymes, regulators, and pathophysiology of intracellular lipolysis. EMBO Mol Med, 2015, 7: 359-362 CrossRef PubMed Google Scholar

[127] Zechner R., Kienesberger P.C., Haemmerle G., Zimmermann R., Lass A.. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res, 2009, 50: 3-21 CrossRef PubMed Google Scholar

[128] Zechner R., Zimmermann R., Eichmann T.O., Kohlwein S.D., Haemmerle G., Lass A., Madeo F.. FAT SIGNALS—lipases and lipolysis in lipid metabolism and signaling. Cell Metab, 2012, 15: 279-291 CrossRef PubMed Google Scholar

[129] Zehmer J.K., Huang Y., Peng G., Pu J., Anderson R.G.W., Liu P.. A role for lipid droplets in inter-membrane lipid traffic. Proteomics, 2009, 9: 914-921 CrossRef PubMed Google Scholar

[130] Zhang S., Shui G., Wang G., Wang C., Sun S., Zouboulis C.C., Xiao R., Ye J., Li W., Li P.. Cidea control of lipid storage and secretion in mouse and human sebaceous glands. Mol Cell Biol, 2014, 34: 1827-1838 CrossRef PubMed Google Scholar

[131] Zhou Z., Yon Toh S., Chen Z., Guo K., Peng Ng C., Ponniah S., Lin S.C., Hong W., Li P.. Cidea-deficient mice have lean phenotype and are resistant to obesity. Nat Genet, 2003, 35: 49-56 CrossRef PubMed Google Scholar

[132] Zimmermann R., Strauss J.G., Haemmerle G., Schoiswohl G., Birner-Gruenberger R., Riederer M., Lass A., Neuberger G., Eisenhaber F., Hermetter A., Zechner R.. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science, 2004, 306: 1383-1386 CrossRef PubMed ADS Google Scholar

  • Figure 1

    The structure and function of LDs. LD is composed of a neutral lipid core, a monolayer phospholipid membrane and its associated surface proteins. The major components of neutral lipids in mammalian LD are triacylglycerols (TAGs) and sterol esters (SEs). Dysregulated LD homeostasis is closely connected to many pathological conditions and the development of various diseases reactive oxygen species (ROS).

  • Figure 2

    Two major mechanisms of LD growth. A, Many enzymes are localized to LD surface and TAG is synthesized locally to promoted LD growth. B, Atypical fusion of LDs mediated by CIDE proteins that promote LD growth and lipid storage. FFA, free fatty acid; LPA, lyso-phosphatidic acid; PA, phosphatidic acid; DAG, diacylglycerol; TAG, triacylglycerol.

  • Figure 3

    Model of CIDE-mediated atypical fusion of LD that includes LD movement; enrichment of CIDEs at LD contact site (LDCS) and stabilization of CIDE protein complex by Rab8a; formation of fusion pore that is stabilized by Plin1, and initiation of lipid transfer from smaller to larger LDs that is dependent on internal pressure and other unknown factors; and the final completion of LD fusion and redistribution or recycling of CIDE protein complex.

  • Figure 4

    The regulation of LD degradation by cytosolic lipases under basal (A), hormone or starvation conditions (B) or LD degradation by lysosomal lipases under starvation condition (C). CA, catecholamine; β-AR, β-adrenergic receptor; Gs, stimulative regulative G-protein.

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号