SCIENCE CHINA Life Sciences, Volume 60, Issue 5: 468-475(2017) https://doi.org/10.1007/s11427-017-9057-2

CRISPR/Cas9 system: a powerful technology for in vivo and ex vivo gene therapy

More info
  • ReceivedNov 29, 2016
  • AcceptedFeb 16, 2017
  • PublishedApr 20, 2017


CRISPR/Cas9 is a versatile genome-editing tool which is widely used for modifying the genome of both prokaryotic and eukaryotic organisms for basic research and applications. An increasing number of reports have demonstrated that CRISPR/Cas9-mediated genome editing is a powerful technology for gene therapy. Here, we review the recent advances in CRISPR/Cas9-mediated gene therapy in animal models via different strategies and discuss the challenges as well as future prospects.

Funded by

National Natural Science Foundation of China(31371455,31171318 to Dali Li,81330049 to Mingyao Liu)

Science and Technology Commission of Shanghai Municipality(14140900300 to Dali Li)


This work was supported by the National Natural Science Foundation of China (31371455, 31171318 to Dali Li, 81330049 to Mingyao Liu), the Science and Technology Commission of Shanghai Municipality (14140900300 to Dali Li).

Interest statement

The author(s) declare that they have no conflict of interest.


[1] Abifadel M., Varret M., Rabès J.P., Allard D., Ouguerram K., Devillers M., Cruaud C., Benjannet S., Wickham L., Erlich D., Derré A., Villéger L., Farnier M., Beucler I., Bruckert E., Chambaz J., Chanu B., Lecerf J.M., Luc G., Moulin P., Weissenbach J., Prat A., Krempf M., Junien C., Seidah N.G., Boileau C.. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet, 2003, 34: 154-156 CrossRef PubMed Google Scholar

[2] Bakondi B., Lv W., Lu B., Jones M.K., Tsai Y., Kim K.J., Levy R., Akhtar A.A., Breunig J.J., Svendsen C.N., Wang S.. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther, 2016, 24: 556-563 CrossRef PubMed Google Scholar

[3] Bengtsson N.E., Hall J.K., Odom G.L., Phelps M.P., Andrus C.R., Hawkins R.D., Hauschka S.D., Chamberlain J.R., Chamberlain J.S.. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun, 2017, 8: 14454 CrossRef PubMed Google Scholar

[4] Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F.. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339: 819-823 CrossRef PubMed ADS Google Scholar

[5] Cox D.B.T., Platt R.J., Zhang F.. Therapeutic genome editing: prospects and challenges. Nat Med, 2015, 21: 121-131 CrossRef PubMed Google Scholar

[6] Cyranoski D.. Chinese scientists to pioneer first human CRISPR trial. Nature, 2016, 535: 476-477 CrossRef PubMed ADS Google Scholar

[7] Dever D.P., Bak R.O., Reinisch A., Camarena J., Washington G., Nicolas C.E., Pavel-Dinu M., Saxena N., Wilkens A.B., Mantri S., Uchida N., Hendel A., Narla A., Majeti R., Weinberg K.I., Porteus M.H.. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature, 2016, 539: 384-389 CrossRef PubMed ADS Google Scholar

[8] DeWitt M.A., Magis W., Bray N.L., Wang T., Berman J.R., Urbinati F., Heo S.J., Mitros T., Muñoz D.P., Boffelli D., Kohn D.B., Walters M.C., Carroll D., Martin D.I.K., Corn J.E.. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med, 2016, 8: 360ra134-360ra134 CrossRef PubMed Google Scholar

[9] Ding Q., Strong A., Patel K.M., Ng S.L., Gosis B.S., Regan S.N., Cowan C.A., Rader D.J., Musunuru K.. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circul Res, 2014, 115: 488-492 CrossRef PubMed Google Scholar

[10] Doudna J.A., Charpentier E.. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346: 1258096-1258096 CrossRef PubMed Google Scholar

[11] Friedmann T., Roblin R.. Gene therapy for human genetic disease?. Science, 1972, 175: 949-955 CrossRef ADS Google Scholar

[12] Fu Y., Foden J.A., Khayter C., Maeder M.L., Reyon D., Joung J.K., Sander J.D.. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013, 31: 822-826 CrossRef PubMed Google Scholar

[13] Guan Y., Ma Y., Li Q., Sun Z., Ma L., Wu L., Wang L., Zeng L., Shao Y., Chen Y., Ma N., Lu W., Hu K., Han H., Yu Y., Huang Y., Liu M., Li D.. CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol Med, 2016, 8: 477-488 CrossRef PubMed Google Scholar

[14] Hsu P.D., Lander E.S., Zhang F.. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157: 1262-1278 CrossRef PubMed Google Scholar

[15] Kim D., Bae S., Park J., Kim E., Kim S., Yu H.R., Hwang J., Kim J.I., Kim J.S.. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Meth, 2015, 12: 237-243 CrossRef PubMed Google Scholar

[16] Kim K., Park S.W., Kim J.H., Lee S.H., Kim D., Koo T., Kim K.E., Kim J.H., Kim J.S.. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res, 2017, 27: 419-426 CrossRef PubMed Google Scholar

[17] Kotterman M.A., Schaffer D.V.. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet, 2014, 15: 445-451 CrossRef PubMed Google Scholar

[18] Kuscu C., Arslan S., Singh R., Thorpe J., Adli M.. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol, 2014, 32: 677-683 CrossRef PubMed Google Scholar

[19] Li D., Qiu Z., Shao Y., Chen Y., Guan Y., Liu M., Li Y., Gao N., Wang L., Lu X., Zhao Y., Liu M.. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol, 2013, 31: 681-683 CrossRef PubMed Google Scholar

[20] Long C., Amoasii L., Mireault A.A., McAnally J.R., Li H., Sanchez-Ortiz E., Bhattacharyya S., Shelton J.M., Bassel-Duby R., Olson E.N.. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science, 2016, 351: 400-403 CrossRef PubMed ADS Google Scholar

[21] Long C., McAnally J.R., Shelton J.M., Mireault A.A., Bassel-Duby R., Olson E.N.. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science, 2014, 345: 1184-1188 CrossRef PubMed ADS Google Scholar

[22] Ma H., Tu L.C., Naseri A., Huisman M., Zhang S., Grunwald D., Pederson T.. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol, 2016, 34: 528-530 CrossRef PubMed Google Scholar

[23] Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Norville J.E., Church G.M.. RNA-guided human genome engineering via Cas9. Science, 2013, 339: 823-826 CrossRef PubMed ADS Google Scholar

[24] Maruyama T., Dougan S.K., Truttmann M.C., Bilate A.M., Ingram J.R., Ploegh H.L.. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol, 2015, 33: 538-542 CrossRef PubMed Google Scholar

[25] Naldini L.. Ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet, 2011, 12: 301-315 CrossRef PubMed Google Scholar

[26] Nelson C.E., Hakim C.H., Ousterout D.G., Thakore P.I., Moreb E.A., Castellanos Rivera R.M., Madhavan S., Pan X., Ran F.A., Yan W.X., Asokan A., Zhang F., Duan D., Gersbach C.A.. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science, 2016, 351: 403-407 CrossRef PubMed ADS Google Scholar

[27] Nguyen T.H., Anegon I.. Successful correction of hemophilia by CRISPR/Cas9 genome editing in vivo: delivery vector and immune responses are the key to success. EMBO Mol Med, 2016, 8: 439-441 CrossRef PubMed Google Scholar

[28] Nygaard S., Barzel A., Haft A., Major A., Finegold M., Kay M.A., Grompe M.. A universal system to select gene-modified hepatocytes in vivo. Sci Transl Med, 2016, 8: 342ra79-342ra79 CrossRef PubMed Google Scholar

[29] Ou Z., Niu X., He W., Chen Y., Song B., Xian Y., Fan D., Tang D., Sun X.. The combination of CRISPR/Cas9 and iPSC technologies in the gene therapy of human β-thalassemia in mice. Sci Rep, 2016, 6: 32463 CrossRef PubMed ADS Google Scholar

[30] Pankowicz F.P., Barzi M., Legras X., Hubert L., Mi T., Tomolonis J.A., Ravishankar M., Sun Q., Yang D., Borowiak M., Sumazin P., Elsea S.H., Bissig-Choisat B., Bissig K.D.. Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia. Nat Commun, 2016, 7: 12642 CrossRef PubMed ADS Google Scholar

[31] Park C.Y., Kim D.H., Son J.S., Sung J.J., Lee J., Bae S., Kim J.H., Kim D.W., Kim J.S.. Functional correction of large factor VIII Gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell, 2015, 17: 213-220 CrossRef PubMed Google Scholar

[32] Pattanayak V., Lin S., Guilinger J.P., Ma E., Doudna J.A., Liu D.R.. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol, 2013, 31: 839-843 CrossRef PubMed Google Scholar

[33] Prakash V., Moore M., Yáñez-Muñoz R.J.. Current progress in therapeutic gene editing for monogenic diseases. Mol Ther, 2016, 24: 465-474 CrossRef PubMed Google Scholar

[34] Ran F.A., Cong L., Yan W.X., Scott D.A., Gootenberg J.S., Kriz A.J., Zetsche B., Shalem O., Wu X., Makarova K.S., Koonin E.V., Sharp P.A., Zhang F.. In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015, 520: 186-191 CrossRef PubMed ADS Google Scholar

[35] Ran F.A., Hsu P.D., Lin C.Y., Gootenberg J.S., Konermann S., Trevino A.E., Scott D.A., Inoue A., Matoba S., Zhang Y., Zhang F.. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 154: 1380-1389 CrossRef PubMed Google Scholar

[36] Schwank G., Koo B.K., Sasselli V., Dekkers J.F., Heo I., Demircan T., Sasaki N., Boymans S., Cuppen E., van der Ent C.K., Nieuwenhuis E.E.S., Beekman J.M., Clevers H.. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 2013, 13: 653-658 CrossRef PubMed Google Scholar

[37] Song J., Yang D., Xu J., Zhu T., Chen Y.E., Zhang J.. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun, 2016, 7: 10548 CrossRef PubMed ADS Google Scholar

[38] Staahl B.T., Benekareddy M., Coulon-Bainier C., Banfal A.A., Floor S.N., Sabo J.K., Urnes C., Munares G.A., Ghosh A., Doudna J.A.. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat Biotechnol, 2017, : in press doi: 10.1038/nbt.3806 CrossRef PubMed Google Scholar

[39] Suzuki K., Tsunekawa Y., Hernandez-Benitez R., Wu J., Zhu J., Kim E.J., Hatanaka F., Yamamoto M., Araoka T., Li Z., Kurita M., Hishida T., Li M., Aizawa E., Guo S., Chen S., Goebl A., Soligalla R.D., Qu J., Jiang T., Fu X., Jafari M., Esteban C.R., Berggren W.T., Lajara J., Nuñez-Delicado E., Guillen P., Campistol J.M., Matsuzaki F., Liu G.H., Magistretti P., Zhang K., Callaway E.M., Zhang K., Belmonte J.C.I.. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature, 2016, 540: 144-149 CrossRef PubMed ADS Google Scholar

[40] Tabebordbar M., Zhu K., Cheng J.K.W., Chew W.L., Widrick J.J., Yan W.X., Maesner C., Wu E.Y., Xiao R., Ran F.A., Cong L., Zhang F., Vandenberghe L.H., Church G.M., Wagers A.J.. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science, 2016, 351: 407-411 CrossRef PubMed ADS Google Scholar

[41] Tsai S.Q., Zheng Z., Nguyen N.T., Liebers M., Topkar V.V., Thapar V., Wyvekens N., Khayter C., Iafrate A.J., Le L.P., Aryee M.J., Joung J.K.. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol, 2015, 33: 187-197 CrossRef PubMed Google Scholar

[42] Wang C.X., Sather B.D., Wang X., Adair J., Khan I., Singh S., Lang S., Adams A., Curinga G., Kiem H.P., Miao C.H., Rawlings D.J., Torbett B.E.. Rapamycin relieves lentiviral vector transduction resistance in human and mouse hematopoietic stem cells. Blood, 2014, 124: 913-923 CrossRef PubMed Google Scholar

[43] Wang L., Shao Y., Guan Y., Li L., Wu L., Chen F., Liu M., Chen H., Ma Y., Ma X., Liu M., Li D.. Large genomic fragment deletion and functional gene cassette knock-in via Cas9 protein mediated genome editing in one-cell rodent embryos. Sci Rep, 2015, 5: 17517 CrossRef PubMed ADS Google Scholar

[44] Wu X., Scott D.A., Kriz A.J., Chiu A.C., Hsu P.D., Dadon D.B., Cheng A.W., Trevino A.E., Konermann S., Chen S., Jaenisch R., Zhang F., Sharp P.A.. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol, 2014, 32: 670-676 CrossRef PubMed Google Scholar

[45] Wu Y., Liang D., Wang Y., Bai M., Tang W., Bao S., Yan Z., Li D., Li J.. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, 2013, 13: 659-662 CrossRef PubMed Google Scholar

[46] Wu Y., Zhou H., Fan X., Zhang Y., Zhang M., Wang Y., Xie Z., Bai M., Yin Q., Liang D., Tang W., Liao J., Zhou C., Liu W., Zhu P., Guo H., Pan H., Wu C., Shi H., Wu L., Tang F., Li J.. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res, 2015, 25: 67-79 CrossRef PubMed Google Scholar

[47] Xie C., Zhang Y.P., Song L., Luo J., Qi W., Hu J., Lu D., Yang Z., Zhang J., Xiao J., Zhou B., Du J.L., Jing N., Liu Y., Wang Y., Li B.L., Song B.L., Yan Y.. Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Res, 2016, 26: 1099-1111 CrossRef PubMed Google Scholar

[48] Yang Y., Wang L., Bell P., McMenamin D., He Z., White J., Yu H., Xu C., Morizono H., Musunuru K., Batshaw M.L., Wilson J.M.. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol, 2016, 34: 334-338 CrossRef PubMed Google Scholar

[49] Yin H., Song C.Q., Dorkin J.R., Zhu L.J., Li Y., Wu Q., Park A., Yang J., Suresh S., Bizhanova A., Gupta A., Bolukbasi M.F., Walsh S., Bogorad R.L., Gao G., Weng Z., Dong Y., Koteliansky V., Wolfe S.A., Langer R., Xue W., Anderson D.G.. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol, 2016, 34: 328-333 CrossRef PubMed Google Scholar

[50] Yin H., Xue W., Chen S., Bogorad R.L., Benedetti E., Grompe M., Koteliansky V., Sharp P.A., Jacks T., Anderson D.G.. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol, 2014, 32: 551-553 CrossRef PubMed Google Scholar

[51] Zhang X.H., Tee L.Y., Wang X.G., Huang Q.S., Yang S.H.. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids, 2015, 4: e264 CrossRef PubMed Google Scholar

  • Figure 1

    Schematic diagram of current gene therapy strategies. A, In vivo. B, Ex vivo.

  • Table 1   Disease models tested by CRISPR/Cas9 mediated and gene therapy



    Delivery systems

    Delivery methods

    Therapeutic efficiency




    tyrosinemia type I

    Fah−/− mice

    pX330 vector (co-expressing one sgRNA and SpCas9), ssDNA oligo




    (Yin et al., 2014)

    Coronary heart disease



    Adenoviruses (co-expressing Cas9 and a guide RNA)




    (Ding et al., 2014)


    tyrosinemia type I

    Fah−/− mice

    delivery of Cas9 mRNA by lipid

    nanoparticles and sgRNA/HDR template by AAV




    (Yin et al., 2016)


    Newborn mice

    two AAVs, one expressing SaCas9 and the other expressing a guide RNA and the donor DNA




    (Yang et al., 2016)


    mdx mice

    two AAVs, one expressing SaCas9 and the other expressing two guide RNA




    (Nelson et al., 2016)


    Newborn mdx mice

    two AAVs, one expressing SpCas9 and the other expressing a guide RNA








    (Long et al., 2016)


    mdx mice

    two AAVs, one expressing SaCas9 and the other expressing two guide RNA


    39% ±1.8%

    Not detected

    (Tabebordbar et al., 2016)

    Retinal dystrophy

    Transgenic S334ter rats

    Px330 (co-expresses one sgRNA and SpCas9)

    USI followed by ET



    (Bakondi et al., 2016)

    hemophilia B

    F9 mutant mice

    px458 (co-expresses one sgRNA and SpCas9), donor: ssODN or plasmid



    Not detected

    (Guan et al., 2016)

    PRKAG2 cardiac syndrome

    H530R PRKAG2 transgenic and knock-in mice,

    two AAV9s, one expressing SpCas9 and the other expressing one guide RNA

    HDI or IV



    (Xie et al., 2016)


    AMD mice


    Ribonucleoproteins and sgRNA




    (Kim et al., 2017)


    tyrosinemia type I

    Fah−/− mice

    Px330 (co-expresses one sgRNA and SpCas9)




    (Pankowicz et al., 2016)

    Retinitis pigmentosa

    RCS rat

    two AAVs, one expressing spCas9 and the other expressing a guide RNA and HITI cassette




    (Suzuki et al., 2016)

    Hemophilia A

    F8 deficient hemophilia A mice

    Endothelial cells differentiated from corrected iPSCs




    (Park et al., 2015)

    Sickle cell disease

    NSG mice

    pools of WT CD34+

    HSPCs edited by CRISPR/Cas9




    (DeWitt et al., 2016)


    NSG mice

    GFP+ and tNGFR+ HSCs edited by CRISPR/Cas9


    49% (GFP+ HSCs);

    84% (tNGFR+ HSCs)

    Not detected

    (Dever et al., 2016)

    AMD, age-related macular degeneration; NSG, NOD/SCID/IL-2rgnull; WT, wild type; RCS, royal college of surgeons; HITI, homology-independent targeted integration; HDI, hydrodynamic injection; IVI, intravenous injection; SD, systemic delivery; IM, intra-muscular; IP, intra-peritoneal; RO, retro-orbital; USI, unilateral subretinal injection; ET, electroporation; IV, intraventricular; SRI, subretinal injection; AAV, adeno-associated viral; SCI, subcutaneous injection; XG, xenografting; HSPCs, hematopoietic stem/progenitor cells.

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有