logo

SCIENCE CHINA Life Sciences, Volume 61, Issue 4: 373-379(2018) https://doi.org/10.1007/s11427-017-9257-1

Nanomedicine for obesity treatment

Yuqi Zhang1,2, Jicheng Yu1,2, Li Qiang3,*, Zhen Gu1,2,4,*
More info
  • ReceivedOct 10, 2017
  • AcceptedNov 20, 2017
  • PublishedMar 29, 2018

Abstract

Obesity, as a chronic condition, has been a serious public health issue over the last decades both in the affluent Western world and developing countries. As reported, the risk of several serious diseases increases with weight gain, including type 2 diabetes, coronary heart disease, cancer, and respiratory diseases. In addition to lifestyle modifications, pharmacotherapy has become an important strategy to control weight gain. However, most of the anti-obesity drugs often show poor outcome for weight-loss and cause severe adverse effects. This review surveys recent advances in nanomedicine as an emerging strategy for obesity treatment with an emphasis on the enhanced therapeutic efficiency and minimized side effects. The insights for future development are also discussed.


Funded by

the grants from Sloan Research Fellowship

NC TraCS

National Institute of Health’s Clinical and Translational Science Awards(CTSA,NIH,grant,1UL1TR001111)


Acknowledgment

This work was supported by the grant from Sloan Research Fellowship.


Interest statement

The author(s) declare that they have no conflict of interest.


References

[1] Ahima R.S., Prabakaran D., Mantzoros C., Qu D., Lowell B., Maratos-Flier E., Flier J.S.. Role of leptin in the neuroendocrine response to fasting. Nature, 1996, 382: 250-252 CrossRef PubMed ADS Google Scholar

[2] Almeida M.A., Nadal J.M., Grassiolli S., Paludo K.S., Zawadzki S.F., Cruz L., Paula J.P., Farago P.V.. Enhanced gastric tolerability and improved anti-obesity effect of capsaicinoids-loaded PCL microparticles. Mater Sci Eng-C, 2014, 40: 345-356 CrossRef PubMed Google Scholar

[3] Andrade S., Pinho F., Ribeiro A., Carreira M., Casanueva F., Roy P., Monteiro M.. Immunization against active ghrelin using virus-like particles for obesity treatment. Curr Pharm Des, 2013, 19: 6551-6558 CrossRef Google Scholar

[4] Atasoy D., Betley J.N., Li W.P., Su H.H., Sertel S.M., Scheffer L.K., Simpson J.H., Fetter R.D., Sternson S.M.. A genetically specified connectomics approach applied to long-range feeding regulatory circuits. Nat Neurosci, 2014, 17: 1830-1839 CrossRef PubMed Google Scholar

[5] Bakh N.A., Cortinas A.B., Weiss M.A., Langer R.S., Anderson D.G., Gu Z., Dutta S., Strano M.S.. Glucose-responsive insulin by molecular and physical design. Nat Chem, 2017, 9: 937-943 CrossRef PubMed Google Scholar

[6] Ballinger A., Peikin S.R.. Orlistat: its current status as an anti-obesity drug. Eur J Pharmacol, 2002, 440: 109-117 CrossRef Google Scholar

[7] Barnhart K.F., Christianson D.R., Hanley P.W., Driessen W.H.P., Bernacky B.J., Baze W.B., Wen S., Tian M., Ma J., Kolonin M.G., et al. A peptidomimetic targeting white fat causes weight loss and improved insulin resistance in obese monkeys. Sci Transl Med, 2011, 3: 108ra112 CrossRef PubMed Google Scholar

[8] Bartelt A., Heeren J.. Adipose tissue browning and metabolic health. Nat Rev Endocrinol, 2014, 10: 24-36 CrossRef PubMed Google Scholar

[9] Cao Y.. Angiogenesis modulates adipogenesis and obesity. J Clin Invest, 2007, 117: 2362-2368 CrossRef PubMed Google Scholar

[10] Cao Y.. Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab, 2013, 18: 478-489 CrossRef PubMed Google Scholar

[11] Carmeliet P., Jain R.K.. Angiogenesis in cancer and other diseases. Nature, 2000, 407: 249-257 CrossRef PubMed Google Scholar

[12] Chen Y.L., Zhu S., Zhang L., Feng P.J., Yao X.K., Qian C.G., Zhang C., Jiang X.Q., Shen Q.D.. Smart conjugated polymer nanocarrier for healthy weight loss by negative feedback regulation of lipase activity. Nanoscale, 2016, 8: 3368-3375 CrossRef PubMed ADS Google Scholar

[13] Clemmensen C., Chabenne J., Finan B., Sullivan L., Fischer K., Küchler D., Sehrer L., Ograjsek T., Hofmann S.M., Schriever S.C., et al. GLP-1/glucagon coagonism restores leptin responsiveness in obese mice chronically maintained on an obesogenic diet. Diabetes, 2014, 63: 1422-1427 CrossRef PubMed Google Scholar

[14] des Rieux A., Pourcelle V., Cani P.D., Marchand-Brynaert J., Préat V.. Targeted nanoparticles with novel non-peptidic ligands for oral delivery. Adv Drug Deliver Rev, 2013, 65: 833-844 CrossRef PubMed Google Scholar

[15] Friedman J.M.. Causes and control of excess body fat. Nature, 2009, 459: 340-342 CrossRef PubMed ADS Google Scholar

[16] George M., Rajaram M., Shanmugam E.. New and emerging drug molecules against obesity. J Cardiovasc Pharmacol Ther, 2014, 19: 65-76 CrossRef PubMed Google Scholar

[17] Ghamari-Langroudi M., Digby G.J., Sebag J.A., Millhauser G.L., Palomino R., Matthews R., Gillyard T., Panaro B.L., Tough I.R., Cox H.M., et al. G-protein-independent coupling of MC4R to Kir7.1 in hypothalamic neurons. Nature, 2015, 520: 94-98 CrossRef PubMed ADS Google Scholar

[18] Gu Z., Aimetti A.A., Wang Q., Dang T.T., Zhang Y., Veiseh O., Cheng H., Langer R.S., Anderson D.G.. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano, 2013a, 7: 4194-4201 CrossRef PubMed Google Scholar

[19] Gu Z., Dang T.T., Ma M., Tang B.C., Cheng H., Jiang S., Dong Y., Zhang Y., Anderson D.G.. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano, 2013b, 7: 6758-6766 CrossRef PubMed Google Scholar

[20] Harms M., Seale P.. Brown and beige fat: development, function and therapeutic potential. Nat Med, 2013, 19: 1252-1263 CrossRef PubMed Google Scholar

[21] Haslam D.. Weight management in obesity—past and present. Int J Clin Pract, 2016, 70: 206-217 CrossRef PubMed Google Scholar

[22] Heymsfield S.B., Wadden T.A.. Mechanisms, pathophysiology, and management of obesity. N Engl J Med, 2017, 376: 254-266 CrossRef PubMed Google Scholar

[23] Hossen M.N., Kajimoto K., Akita H., Hyodo M., Ishitsuka T., Harashima H.. Ligand-based targeted delivery of a peptide modified nanocarrier to endothelial cells in adipose tissue. J Control Release, 2010, 147: 261-268 CrossRef PubMed Google Scholar

[24] Hossen M.N., Kajimoto K., Akita H., Hyodo M., Harashima H.. Vascular-targeted nanotherapy for obesity: unexpected passive targeting mechanism to obese fat for the enhancement of active drug delivery. J Control Release, 2012, 163: 101-110 CrossRef PubMed Google Scholar

[25] Hossen M.N., Kajimoto K., Akita H., Hyodo M., Harashima H.. A comparative study between nanoparticle-targeted therapeutics and bioconjugates as obesity medication. J Control Release, 2013, 171: 104-112 CrossRef PubMed Google Scholar

[26] Jackson V.M., Breen D.M., Fortin J.P., Liou A., Kuzmiski J.B., Loomis A.K., Rives M.L., Shah B., Carpino P.A.. Latest approaches for the treatment of obesity. Expert Opin Drug Discov, 2015, 10: 825-839 CrossRef PubMed Google Scholar

[27] Jiang C., Kuang L., Merkel M.P., Yue F., Cano-Vega M.A., Narayanan N., Kuang S., Deng M.. Biodegradable polymeric microsphere-based drug delivery for inductive browning of fat. Front Endocrinol, 2015, 6: 169 CrossRef Google Scholar

[28] Jiang C., Cano-Vega M.A., Yue F., Kuang L., Narayanan N., Uzunalli G., Merkel M.P., Kuang S., Deng M.. Dibenzazepine-loaded nanoparticles induce local browning of white adipose tissue to counteract obesity. Mol Ther, 2017, 25: 1718-1729 CrossRef PubMed Google Scholar

[29] Kajimura S., Spiegelman B.M., Seale P.. Brown and beige fat: physiological roles beyond heat generation. Cell Metab, 2015, 22: 546-559 CrossRef PubMed Google Scholar

[30] Kakkar A.K., Dahiya N.. Drug treatment of obesity: current status and future prospects. Eur J Intern Med, 2015, 26: 89-94 CrossRef PubMed Google Scholar

[31] Kang J.G., Park C.Y.. Anti-obesity drugs: a review about their effects and safety. Diabetes Metab J, 2012, 36: 13-25 CrossRef PubMed Google Scholar

[32] Kolonin M.G., Saha P.K., Chan L., Pasqualini R., Arap W.. Reversal of obesity by targeted ablation of adipose tissue. Nat Med, 2004, 10: 625-632 CrossRef PubMed Google Scholar

[33] Kupferschmidt N., Csikasz R.I., Ballell L., Bengtsson T., Garcia-Bennett A.E.. Large pore mesoporous silica induced weight loss in obese mice. Nanomedicine, 2014, 9: 1353-1362 CrossRef PubMed Google Scholar

[34] Kushner R.F.. Anti-obesity drugs. Expert Opin Pharmacother, 2008, 9: 1339-1350 CrossRef PubMed Google Scholar

[35] Kushner R.F., Ryan D.H.. Assessment and lifestyle management of patients with obesity. JAMA, 2014, 312: 943-952 CrossRef PubMed Google Scholar

[36] Ledoux S., Queguiner I., Msika S., Calderari S., Rufat P., Gasc J.M., Corvol P., Larger E.. Angiogenesis associated with visceral and subcutaneous adipose tissue in severe human obesity. Diabetes, 2008, 57: 3247-3257 CrossRef PubMed Google Scholar

[37] Lu Y., Aimetti A.A., Langer R., Gu Z.. Bioresponsive materials. Nat Rev Mater, 2016, 2: 16075 CrossRef ADS Google Scholar

[38] Ma L., Liu T.W., Wallig M.A., Dobrucki I.T., Dobrucki L.W., Nelson E.R., Swanson K.S., Smith A.M.. Efficient targeting of adipose tissue macrophages in obesity with polysaccharide nanocarriers. ACS Nano, 2016, 10: 6952-6962 CrossRef Google Scholar

[39] Malik V.S., Willett W.C., Hu F.B.. Global obesity: trends, risk factors and policy implications. Nat Rev Endocrinol, 2013, 9: 13-27 CrossRef PubMed Google Scholar

[40] Marrache S., Dhar S.. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Acad Sci USA, 2012, 109: 16288-16293 CrossRef PubMed ADS Google Scholar

[41] Mun E.C., Blackburn G.L., Matthews J.B.. Current status of medical and surgical therapy for obesity. Gastroenterology, 2001, 120: 669-681 CrossRef Google Scholar

[42] Mura S., Couvreur P.. Nanotheranostics for personalized medicine. Adv Drug Deliver Rev, 2012, 64: 1394-1416 CrossRef PubMed Google Scholar

[43] Musthaba S., Ahmad S., Ahuja A., Ali J., Baboota S.. Nano approaches to enhance pharmacokinetic and pharmacodynamic activity of plant origin drugs. Curr Nanosci, 2009, 5: 344-352 CrossRef Google Scholar

[44] World Health Organization. (2014). Obesity and overweight. J Physiother 60, 114. Google Scholar

[45] Parveen S., Misra R., Sahoo S.K.. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine, 2012, 8: 147-166 CrossRef PubMed Google Scholar

[46] Rodgers R.J., Tschöp M.H., Wilding J.P.H.. Anti-obesity drugs: past, present and future. Dis Model Mech, 2012, 5: 621-626 CrossRef PubMed Google Scholar

[47] Rucker D., Padwal R., Li S.K., Curioni C., Lau D.C.W.. Long term pharmacotherapy for obesity and overweight: updated meta-analysis. BMJ, 2007, 335: 1194-1199 CrossRef PubMed Google Scholar

[48] Sangwai M., Sardar S., Vavia P.. Nanoemulsified orlistat-embedded multi-unit pellet system (MUPS) with improved dissolution and pancreatic lipase inhibition. Pharmaceut Dev Tech, 2014, 19: 31-41 CrossRef PubMed Google Scholar

[49] Schneider B.E., Mun E.C.. Surgical management of morbid obesity. Diabetes Care, 2005, 28: 475-480 CrossRef Google Scholar

[50] Sohn J.W., Harris L.E., Berglund E.D., Liu T., Vong L., Lowell B.B., Balthasar N., Williams K.W., Elmquist J.K.. Melanocortin 4 receptors reciprocally regulate sympathetic and parasympathetic preganglionic neurons. Cell, 2013, 152: 612-619 CrossRef PubMed Google Scholar

[51] Sun W., Hu Q., Ji W., Wright G., Gu Z.. Leveraging physiology for precision drug delivery. Physiol Rev, 2017, 97: 189-225 CrossRef Google Scholar

[52] Thovhogi N., Sibuyi N., Meyer M., Onani M., Madiehe A.. Targeted delivery using peptide-functionalised gold nanoparticles to white adipose tissues of obese rats. J Nanopart Res, 2015, 17: 112 CrossRef ADS Google Scholar

[53] Trayhurn P., Beattie J.H.. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc, 2001, 60: 329-339 CrossRef Google Scholar

[54] Voros G., Maquoi E., Demeulemeester D., Clerx N., Collen D., Lijnen H.R.. Modulation of angiogenesis during adipose tissue development in murine models of obesity. Endocrinology, 2005, 146: 4545-4554 CrossRef PubMed Google Scholar

[55] Wadden T.A., Butryn M.L., Wilson C.. Lifestyle modification for the management of obesity. Gastroenterology, 2007, 132: 2226-2238 CrossRef PubMed Google Scholar

[56] Wiedmer P., Nogueiras R., Broglio F., D’Alessio D., Tschöp M.H.. Ghrelin, obesity and diabetes. Nat Rev Endocrinol, 2007, 3: 705-712 CrossRef PubMed Google Scholar

[57] Won Y.W., Adhikary P.P., Lim K.S., Kim H.J., Kim J.K., Kim Y.H.. Oligopeptide complex for targeted non-viral gene delivery to adipocytes. Nat Mater, 2014, 13: 1157-1164 CrossRef PubMed ADS Google Scholar

[58] Wu, J., Cohen, P., and Spiegelman, B.M. (2013). Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev 27, 234–250. Google Scholar

[59] Xue Y., Xu X., Zhang X.Q., Farokhzad O.C., Langer R.. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proc Natl Acad Sci USA, 2016, 113: 5552-5557 CrossRef PubMed ADS Google Scholar

[60] Yameen B., Choi W.I., Vilos C., Swami A., Shi J., Farokhzad O.C.. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release, 2014, 190: 485-499 CrossRef PubMed Google Scholar

[61] Yanovski, S., Dietz, W., Goodwin, N., Hill, J., PiSunyer, F., Rolls, B., Stern, J., Weinsier, R., Wilson, G., and Wing, R. (1996). Long-term pharmacotherapy in the management of obesity. JAMA 276, 1907–1915. Google Scholar

[62] Yu J., Zhang Y., Ye Y., DiSanto R., Sun W., Ranson D., Ligler F.S., Buse J.B., Gu Z.. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci USA, 2015, 112: 8260-8265 CrossRef PubMed ADS Google Scholar

[63] Yu J., Zhang Y., Kahkoska A.R., Gu Z.. Bioresponsive transcutaneous patches. Curr Opin Biotech, 2017, 48: 28-32 CrossRef PubMed Google Scholar

[64] Zhang Y., Chan H.F., Leong K.W.. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliver Rev, 2013, 65: 104-120 CrossRef PubMed Google Scholar

[65] Zhang Y., Liu Q., Yu J., Yu S., Wang J., Qiang L., Gu Z.. Locally induced adipose tissue browning by microneedle patch for obesity treatment. ACS Nano, 2017a, 11: 9223-9230 CrossRef Google Scholar

[66] Zhang Y., Yu J., Wang J., Hanne N.J., Cui Z., Qian C., Wang C., Xin H., Cole J.H., Gallippi C.M., Zhu Y., Gu Z.. Thrombin-responsive transcutaneous patch for auto-anticoagulant regulation. Adv Mater, 2017b, 29: 1604043 CrossRef PubMed Google Scholar

  • Figure 1

    (Color online) Schematic of nanomedicine for obesity treatment with different mechanisms, including suppression of digestibility and enhancement of energy expenditure.

  • Figure 2

    (Color online) Mechanism of the targeted gene delivery to adipocytes by ATS-9R (Figure adapted and modified from Won et al., 2014).

  • Figure 3

    (Color online) Chemical structure of browning agent-loaded nanoparticles and schematic of the WAT browning process through a positive feedback drug delivery system (Figure adapted and modified from Xue et al., 2016).

  • Figure 4

    (Color online) Schematic illustration of the browning reagents-loaded transcutaneous MN patch for the brown remodeling of the white fat (Figure adapted and modified from Zhang et al., 2017a).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1