logo

SCIENCE CHINA Life Sciences, Volume 61, Issue 4: 415-426(2018) https://doi.org/10.1007/s11427-017-9262-x

Sonodynamic therapy (SDT): a novel strategy for cancer nanotheranostics

More info
  • ReceivedNov 20, 2017
  • AcceptedDec 15, 2017
  • PublishedApr 2, 2018

Abstract

Sonodynamic therapy (SDT) is a promising non-invasive therapeutic modality. Compared to photo-inspired therapy, SDT provides many opportunities and benefits, including deeper tissue penetration, high precision, less side effects, and good patient compliance. Thanks to the facile engineerable nature of nanotechnology, nanoparticles-based sonosensitizers exhibit predominant advantages, such as increased SDT efficacy, binding avidity, and targeting specificity. This review aims to summarize the possible mechanisms of SDT, which can be expected to provide the theoretical basis for SDT development in the future. We also extensively discuss nanoparticle-assisted sonosensitizers to enhance the outcome of SDT. Additionally, we focus on the potential strategy of combinational SDT with other therapeutic modalities and discuss the limitations and challenges of SDT toward clinical applications.


Funded by

the National Natural Science Foundation of China(51572271,51772018)

National Basic Research Program of China(2016YFA0201500)

Fundamental Research Funds for the Central Universities(buctrc201610,JD1609,PYBZ1705)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (51572271, 51772018), National Basic Research Program of China (2016YFA0201500) and Fundamental Research Funds for the Central Universities (buctrc201610, JD1609, PYBZ1705).


Interest statement

The author(s) declare that they have no conflict of interest.


References

[1] Alekseev S., Korytko D., Iazykov M., Khainakov S., Lysenko V.. Electrochemical synthesis of carbon fluorooxide nanoparticles from 3C-SiC substrates. J Phys Chem C, 2015, 119: 20503-20514 CrossRef Google Scholar

[2] Ando H., Feril Jr. L.B., Kondo T., Tabuchi Y., Ogawa R., Zhao Q.L., Cui Z.G., Umemura S., Yoshikawa H., Misaki T.. An echo-contrast agent, Levovist, lowers the ultrasound intensity required to induce apoptosis of human leukemia cells. Cancer Lett, 2006, 242: 37-45 CrossRef PubMed Google Scholar

[3] Ashush, H., Rozenszajn, L.A., Blass, M., Barda-Saad, M., Azimov, D., Radnay, J., Zipori, D., and Rosenschein, U. (2000). Apoptosis induction of human myeloid leukemic cells by ultrasound exposure. Cancer Res 60, 1014–1020. Google Scholar

[4] Bai W.K., Shen E., Hu B.. Induction of the apoptosis of cancer cell by sonodynamic therapy: a review. Chin J Cancer Res, 2012, 24: 368-373 CrossRef Google Scholar

[5] Bertrand N., Wu J., Xu X., Kamaly N., Farokhzad O.C.. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliver Rev, 2014, 66: 2-25 CrossRef PubMed Google Scholar

[6] Canaparo, R., Varchi, G., Ballestri, M., Foglietta, F., Sotgiu, G., Guerrini, A., Francovich, A., Civera, P., Frairia, R., and Serpe, L. (2013). Polymeric nanoparticles enhance the sonodynamic activity of meso-tetrakis (4-sulfonatophenyl) porphyrin in an in vitro neuroblastoma model. Int J Nanomed 8, 4247–4263. Google Scholar

[7] Chen H., Zhou X., Gao Y., Zheng B., Tang F., Huang J.. Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discov Today, 2014, 19: 502-509 CrossRef PubMed Google Scholar

[8] Chen M.J., Xu A., He W., Ma W., Shen S.. Ultrasound triggered drug delivery for mitochondria targeted sonodynamic therapy. J Drug Deliver Sci Tech, 2017, 39: 501-507 CrossRef Google Scholar

[9] Chen W.S., Brayman A.A., Matula T.J., Crum L.A., Miller M.W.. The pulse length-dependence of inertial cavitation dose and hemolysis. Ultrasound Med Biol, 2003, 29: 739-748 CrossRef Google Scholar

[10] Chen Y.W., Liu T.Y., Chang P.H., Hsu P.H., Liu H.L., Lin H.C., Chen S.Y.. A theranostic nrGO@MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor. Nanoscale, 2016, 8: 12648-12657 CrossRef PubMed ADS Google Scholar

[11] Cheng L., Wang C., Feng L., Yang K., Liu Z.. Functional nanomaterials for phototherapies of cancer. Chem Rev, 2014, 114: 10869-10939 CrossRef PubMed Google Scholar

[12] Dai C., Zhang S., Liu Z., Wu R., Chen Y.. Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. ACS Nano, 2017, 11: 9467-9480 CrossRef Google Scholar

[13] Deepagan V.G., You D.G., Um W., Ko H., Kwon S., Choi K.Y., Yi G.R., Lee J.Y., Lee D.S., Kim K., et al. Long-circulating Au-TiO2 nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. Nano Lett, 2016, 16: 6257-6264 CrossRef PubMed ADS Google Scholar

[14] Ding Y., Song Z., Liu Q., Wei S., Zhou L., Zhou J., Shen J.. An enhanced chemotherapeutic effect facilitated by sonication of MSN. Dalton Trans, 2017, 46: 11875-11883 CrossRef PubMed Google Scholar

[15] Duvshani-Eshet M., Benny O., Morgenstern A., Machluf M.. Therapeutic ultrasound facilitates antiangiogenic gene delivery and inhibits prostate tumor growth. Mol Cancer Therapeut, 2007, 6: 2371-2382 CrossRef PubMed Google Scholar

[16] Escoffre J.M., Zeghimi A., Novell A., Bouakaz A.. In-vivo gene delivery by sonoporation: recent progress and prospects. Curr Gene Ther, 2013, 13: 2-14 CrossRef Google Scholar

[17] Fan C.H., Ting C.Y., Lin H.J., Wang C.H., Liu H.L., Yen T.C., Yeh C.K.. SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery. Biomaterials, 2013, 34: 3706-3715 CrossRef PubMed Google Scholar

[18] Feril L.B.Jr., Kondo T., Ogawa R., Zhao Q.L.. Dose-dependent inhibition of ultrasound-induced cell killing and free radical production by carbon dioxide. Ultrasons Sonochem, 2003a, 10: 81-84 CrossRef Google Scholar

[19] Feril L.B.Jr., Kondo T., Zhao Q.L., Ogawa R., Tachibana K., Kudo N., Fujimoto S., Nakamura S.. Enhancement of ultrasound-induced apoptosis and cell lysis by echo-contrast agents. Ultrasound Med Biol, 2003b, 29: 331-337 CrossRef Google Scholar

[20] Feril L.B., Tsuda Y., Kondo T., Zhao Q.L., Ogawa R., Cui Z.G., Tsukada K., Riesz P.. Ultrasound-induced killing of monocytic U937 cells enhanced by 2,2′-azobis(2-amidinopropane) dihydrochloride. Cancer Sci, 2004b, 95: 181-185 CrossRef Google Scholar

[21] Feril L.B.Jr., Kondo T., Takaya K., Riesz P.. Enhanced ultrasound-induced apoptosis and cell lysis by a hypotonic medium. Int J Radiat Biol, 2004a, 80: 165-175 CrossRef Google Scholar

[22] Gordon M.S., Mendelson D.S., Kato G.. Tumor angiogenesis and novel antiangiogenic strategies. Int J Cancer, 2010, 126: 1777-1787 CrossRef PubMed Google Scholar

[23] Grüll, H., and Langereis, S. (2012). Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. J Control Release 161, 317–327. Google Scholar

[24] Harada A., Ono M., Yuba E., Kono K.. Titanium dioxide nanoparticle-entrapped polyion complex micelles generate singlet oxygen in the cells by ultrasound irradiation for sonodynamic therapy. Biomater Sci, 2013, 1: 65-73 CrossRef Google Scholar

[25] Harada Y., Ogawa K., Irie Y., Endo H., Feril Jr. L.B., Uemura T., Tachibana K.. Ultrasound activation of TiO2 in melanoma tumors. J Control Release, 2011, 149: 190-195 CrossRef PubMed Google Scholar

[26] Harrison G.H., Balcer-Kubiczek E.K., Gutierrez P.L.. In vitro mechanisms of chemopotentiation by tone-burst ultrasound. Ultrasound Med Biol, 1996, 22: 355-362 CrossRef Google Scholar

[27] Huang P., Qian X., Chen Y., Yu L., Lin H., Wang L., Zhu Y., Shi J.. Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J Am Chem Soc, 2017, 139: 1275-1284 CrossRef PubMed Google Scholar

[28] Huang Z., Moseley H., Bown S.. Rationale of combined PDT and SDT modalities for treating cancer patients in terminal stage: the proper use of photosensitizer. Integr Cancer Ther, 2010, 9: 317-319 CrossRef PubMed Google Scholar

[29] Hutcheson J.D., Schlicher R.K., Hicks H.K., Prausnitz M.R.. Saving cells from ultrasound-induced apoptosis: quantification of cell death and uptake following sonication and effects of targeted calcium chelation. Ultrasound Med Biol, 2010, 36: 1008-1021 CrossRef PubMed Google Scholar

[30] Hwang J.H., Brayman A.A., Reidy M.A., Matula T.J., Kimmey M.B., Crum L.A.. Vascular effects induced by combined 1-MHz ultrasound and microbubble contrast agent treatments in vivo. Ultrasound Med Biol, 2005, 31: 553-564 CrossRef PubMed Google Scholar

[31] Inui, T., Makita, K., Miura, H., Matsuda, A., Kuchiike, D., Kubo, K., Mette, M., Uto, Y., Nishikata, T., and Hori, H. (2014). Case report: a breast cancer patient treated with GcMAF, sonodynamic therapy and hormone therapy. Anticancer Res 34, 4589–4593. Google Scholar

[32] Jia G., Wang H., Yan L., Wang X., Pei R., Yan T., Zhao Y., Guo X.. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol, 2005, 39: 1378-1383 CrossRef ADS Google Scholar

[33] Jin Z., Miyoshi N., Ishiguro K., Umemura S., Kawabata K., Yumita N., Sakata I., Takaoka K., Udagawa T., Nakajima S., et al. Combination effect of photodynamic and sonodynamic therapy on experimental skin squamous cell carcinoma in C3H/HeN mice. J Dermatol, 2000, 27: 294-306 CrossRef Google Scholar

[34] Juffermans L.J.M., Dijkmans P.A., Musters R.J.P., Visser C.A., Kamp O.. Transient permeabilization of cell membranes by ultrasound-exposed microbubbles is related to formation of hydrogen peroxide. Am J Physiol Heart Circ Physiol, 2006, 291: H1595-H1601 CrossRef PubMed Google Scholar

[35] Konan Y.N., Gurny R., Allémann E.. State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B, 2002, 66: 89-106 CrossRef Google Scholar

[36] Konofagou E.E.. Optimization of the ultrasound-induced blood-brain barrier opening. Theranostics, 2012, 2: 1223-1237 CrossRef PubMed Google Scholar

[37] Kotopoulis S., Dimcevski G., Helge Gilja O., Hoem D., Postema M.. Treatment of human pancreatic cancer using combined ultrasound, microbubbles, and gemcitabine: a clinical case study. Med Phys, 2013, 40: 072902 CrossRef PubMed ADS Google Scholar

[38] Kumon R.E., Aehle M., Sabens D., Parikh P., Han Y.W., Kourennyi D., Deng C.X.. Spatiotemporal effects of sonoporation measured by real-time calcium imaging. Ultrasound Med Biol, 2009, 35: 494-506 CrossRef PubMed Google Scholar

[39] Lagneaux L., de Meulenaer E.C., Delforge A., Dejeneffe M., Massy M., Moerman C., Hannecart B., Canivet Y., Lepeltier M.F., Bron D.. Ultrasonic low-energy treatment. Exp Hematol, 2002, 30: 1293-1301 CrossRef Google Scholar

[40] Li S.Q., Zhu R.R., Zhu H., Xue M., Sun X.Y., Yao S.D., Wang S.L.. Nanotoxicity of TiO2 nanoparticles to erythrocyte in vitro. Food Chem Toxicol, 2008, 46: 3626-3631 CrossRef PubMed Google Scholar

[41] Liu R., Zhang Q., Lang Y., Peng Z., Li L.. Sonodynamic therapy, a treatment developing from photodynamic therapy. Photodiagnosis Photodynamic Ther, 2017, 19: 159-166 CrossRef PubMed Google Scholar

[42] Madanshetty S.I., Apfel R.E.. Acoustic microcavitation: enhancement and applications. J Acoust Soc Am, 1991, 90: 1508-1514 CrossRef ADS Google Scholar

[43] Mano S.S., Kanehira K., Sonezaki S., Taniguchi A.. Effect of polyethylene glycol modification of TiO2 nanoparticles on cytotoxicity and gene expressions in human cell lines. Int J Mol Sci, 2012, 13: 3703-3717 CrossRef PubMed Google Scholar

[44] McDannold N., Arvanitis C.D., Vykhodtseva N., Livingstone M.S.. Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques. Cancer Res, 2012, 72: 3652-3663 CrossRef PubMed Google Scholar

[45] Meidani A.R.N., Hasan M.. Mathematical and physical modelling of bubble growth due to ultrasound. Appl Math Model, 2004, 28: 333-351 CrossRef Google Scholar

[46] Miller M.W., Luque A.E., Battaglia L.F., Mazza S., Everbach E.C.. Biological and environmental factors affecting ultrasound-induced hemolysis in vitro: 1. HIV macrocytosis (cell size). Ultrasound Med Biol, 2003a, 29: 77-91 CrossRef Google Scholar

[47] Miller M.W., Battaglia L.F., Mazza S.. Biological and environmental factors affecting ultrasound-induced hemolysis in vitro: medium tonicity. Ultrasound Med Biol, 2003b, 29: 713-724 CrossRef Google Scholar

[48] Miller M.W., Everbach E.C., Miller W.M., Battaglia L.F.. Biological and environmental factors affecting ultrasound-induced hemolysis in vitro: 2. medium dissolved gas (pO2) content. Ultrasound Med Biol, 2003c, 29: 93-102 CrossRef Google Scholar

[49] Miyoshi N., Mišík V., Fukuda M., Riesz P., Misik V.. Effect of gallium-porphyrin analogue ATX-70 on nitroxide formation from a cyclic secondary amine by ultrasound: on the mechanism of sonodynamic activation. Radiat Res, 1995, 143: 194-202 CrossRef Google Scholar

[50] Miyoshi N., Kundu S.K., Tuziuti T., Yasui K., Shimada I., Ito Y.. Combination of sonodynamic and photodynamic therapy against cancer would be effective through using a regulated size of nanoparticles. Nanosci Nanoeng, 2016, 4: 1-11 CrossRef PubMed Google Scholar

[51] Mizrahi N., Zhou E.H., Lenormand G., Krishnan R., Weihs D., Butler J.P., Weitz D.A., Fredberg J.J., Kimmel E.. Low intensity ultrasound perturbs cytoskeleton dynamics. Soft Matter, 2012, 8: 2438-2443 CrossRef PubMed ADS Google Scholar

[52] Mo S., Coussios C.C., Seymour L., Carlisle R.. Ultrasound-enhanced drug delivery for cancer. Expert Opin Drug Deliver, 2012, 9: 1525-1538 CrossRef PubMed Google Scholar

[53] Naghibi S., Madaah Hosseini H.R., Faghihi Sani M.A.. Colloidal stability of dextran and dextran/poly ethylene glycol coated TiO2 nanoparticles by hydrothermal assisted sol-gel method. Ceramics Int, 2013, 39: 8377-8384 CrossRef Google Scholar

[54] Naghibi S., Madaah Hosseini H.R., Faghihi Sani M.A., Shokrgozar M.A., Mehrjoo M.. Mortality response of folate receptor-activated, PEG-functionalized TiO2 nanoparticles for doxorubicin loading with and without ultraviolet irradiation. Ceramics Int, 2014, 40: 5481-5488 CrossRef Google Scholar

[55] Nie F., Xu H.X., Lu M.D., Wang Y., Tang Q.. Anti-angiogenic gene therapy for hepatocellular carcinoma mediated by microbubble-enhanced ultrasound exposure: an in vivo experimental study. J Drug Target, 2008, 16: 389-395 CrossRef PubMed Google Scholar

[56] Nishimori H., Kondoh M., Isoda K., Tsunoda S.I., Tsutsumi Y., Yagi K.. Silica nanoparticles as hepatotoxicants. Eur J Pharm BioPharm, 2009, 72: 496-501 CrossRef PubMed Google Scholar

[57] Osaki T., Yokoe I., Uto Y., Ishizuka M., Tanaka T., Yamanaka N., Kurahashi T., Azuma K., Murahata Y., Tsuka T., et al. Bleomycin enhances the efficacy of sonodynamic therapy using aluminum phthalocyanine disulfonate. Ultrasons Sonochem, 2016, 28: 161-168 CrossRef PubMed Google Scholar

[58] Osminkina L.A., Nikolaev A.L., Sviridov A.P., Andronova N.V., Tamarov K.P., Gongalsky M.B., Kudryavtsev A.A., Treshalina H.M., Timoshenko V.Y.. Porous silicon nanoparticles as efficient sensitizers for sonodynamic therapy of cancer. Microporous Mesoporous Mater, 2015, 210: 169-175 CrossRef Google Scholar

[59] Ozawa K., Emori M., Yamamoto S., Yukawa R., Yamamoto S., Hobara R., Fujikawa K., Sakama H., Matsuda I.. Electron-hole recombination time at TiO2 single-crystal surfaces: influence of surface band bending. J Phys Chem Lett, 2014, 5: 1953-1957 CrossRef PubMed Google Scholar

[60] Pecha R., Gompf B.. Microimplosions: cavitation collapse and shock wave emission on a nanosecond time scale. Phys Rev Lett, 2000, 84: 1328-1330 CrossRef PubMed ADS Google Scholar

[61] Qian X., Zheng Y., Chen Y.. Micro/nanoparticle-augmented sonodynamic therapy (SDT): breaking the depth shallow of photoactivation. Adv Mater, 2016, 28: 8097-8129 CrossRef PubMed Google Scholar

[62] Riesz, P., and Christman, C. (1986). Sonochemical free radical formation in aqueous solutions. In: Federation Proceedings, P., Riesz, and C., Christman. (Maryland, The Federation), pp. 2485–2492. Google Scholar

[63] Rosenthal, I., Sostaric, J.Z., and Riesz, P. (2004). Sonodynamic therapy-a review of the synergistic effects of drugs and ultrasound. Ultrason Sonochem 11, 349–363. Google Scholar

[64] Saad A.H., Hahn G.M.. Ultrasound-enhanced effects of adriamycin against murine tumors. Ultrasound Med Biol, 1992, 18: 715-723 CrossRef Google Scholar

[65] Sazgarnia A., Shanei A., Eshghi H., Hassanzadeh-Khayyat M., Esmaily H., Shanei M.M.. Detection of sonoluminescence signals in a gel phantom in the presence of Protoporphyrin IX conjugated to gold nanoparticles. Ultrasonics, 2013, 53: 29-35 CrossRef PubMed Google Scholar

[66] Shanei, A., Sazgarnia, A., Meibodi, N.T., Eshghi, H., Hassanzadeh-Khayyat, M., Esmaily, H., and Kakhki, N.A. (2012). Sonodynamic therapy using protoporphyrin IX conjugated to gold nanoparticles: an in vivo study on a colon tumor model. Iran J Basic Med Sci 15, 759–767. Google Scholar

[67] Shi J., Chen Z., Wang B., Wang L., Lu T., Zhang Z.. Reactive oxygen species-manipulated drug release from a smart envelope-type mesoporous titanium nanovehicle for tumor sonodynamic-chemotherapy. ACS Appl Mater Interfaces, 2015, 7: 28554-28565 CrossRef Google Scholar

[68] Shi W.T., Forsberg F., Vaidyanathan P., Tornes A., Østensen J., Goldberg B.B.. The influence of acoustic transmit parameters on the destruction of contrast microbubbles in vitro. Phys Med Biol, 2006, 51: 4031-4045 CrossRef PubMed ADS Google Scholar

[69] Shibaguchi, H., Tsuru, H., Kuroki, M., and Kuroki, M. (2011). Sonodynamic cancer therapy: a non-invasive and repeatable approach using low-intensity ultrasound with a sonosensitizer. Anticancer Res 31, 2425–2429. Google Scholar

[70] Shimizu N., Ogino C., Dadjour M.F., Murata T.. Sonocatalytic degradation of methylene blue with TiO2 pellets in water. Ultrasons Sonochem, 2007, 14: 184-190 CrossRef PubMed Google Scholar

[71] Siegel R.L., Miller K.D., Jemal A.. Cancer statistics, 2017. CA Cancer J Clin, 2017, 67: 7-30 CrossRef PubMed Google Scholar

[72] Sirsi S.R., Borden M.A.. State-of-the-art materials for ultrasound-triggered drug delivery. Adv Drug Deliver Rev, 2014, 72: 3-14 CrossRef PubMed Google Scholar

[73] Sun, T., Zhang, Y.S., Pang, B., Hyun, D.C., Yang, M., and Xia, Y. (2014). Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53, 12320–12364. Google Scholar

[74] Sundaram J., Mellein B.R., Mitragotri S.. An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophys J, 2003, 84: 3087-3101 CrossRef ADS Google Scholar

[75] Suslick, K.S., (1988). Ultrasound: Its Chemical, Physical, and Biological Effects. (New York: VCH Publishers). Google Scholar

[76] Sviridov A.P., Andreev V.G., Ivanova E.M., Osminkina L.A., Tamarov K.P., Timoshenko V.Y.. Porous silicon nanoparticles as sensitizers for ultrasonic hyperthermia. Appl Phys Lett, 2013, 103: 193110 CrossRef ADS Google Scholar

[77] Sviridov A.P., Osminkina L.A., Kharin A.Y., Gongansky M.B., Kargina J.V., Kudryavtsev A.A., Bezsudnova Y.I., Perova T.S., Geloen A., Lysenko V., et al. Cytotoxicity control of silicon nanoparticles by biopolymer coating and ultrasound irradiation for cancer theranostic applications. Nanotechnology, 2017, 28: 105102 CrossRef PubMed ADS Google Scholar

[78] Tabuchi Y., Takasaki I., Zhao Q.L., Wada S., Hori T., Feril Jr. L.B., Tachibana K., Nomura T., Kondo T.. Genetic networks responsive to low-intensity pulsed ultrasound in human lymphoma U937 cells. Cancer Lett, 2008, 270: 286-294 CrossRef PubMed Google Scholar

[79] Tachibana K., Feril Jr. L.B., Ikeda-Dantsuji Y.. Sonodynamic therapy. Ultrasonics, 2008, 48: 253-259 CrossRef PubMed Google Scholar

[80] Tang W., Liu Q., Zhang J., Cao B., Zhao P., Qin X.. In vitro activation of mitochondria-caspase signaling pathway in sonodynamic therapy-induced apoptosis in sarcoma 180 cells. Ultrasonics, 2010, 50: 567-576 CrossRef PubMed Google Scholar

[81] Tinkov S., Coester C., Serba S., Geis N.A., Katus H.A., Winter G., Bekeredjian R.. New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: in-vivo characterization. J Control Release, 2010, 148: 368-372 CrossRef PubMed Google Scholar

[82] Trepat X., Deng L., An S.S., Navajas D., Tschumperlin D.J., Gerthoffer W.T., Butler J.P., Fredberg J.J.. Universal physical responses to stretch in the living cell. Nature, 2007, 447: 592-595 CrossRef PubMed ADS Google Scholar

[83] Umemura, S., Kawabata, K., Yumita, N., Nishigaki, R., and Umemura, K. (1992). Sonodynamic approach to tumor treatment. In: Proceedings of Ultrasonics Symposium, S., Umemura, K., Kawabata, and N., Yumita, eds. (Arizona, USA), pp. 1231–1240. Google Scholar

[84] Umemura, S.I., Yumita, N., Nishigaki, R., and Umemura, K. (1990). Mechanism of cell damage by ultrasound in combination with hematoporphyrin. Cancer Sci 81, 962–966. Google Scholar

[85] Umemura, S.I., Yumita, N., and Nishigaki, R. (1993). Enhancement of ultrasonically induced cell damage by a gallium-porphyrin complex, ATX-70. Cancer Sci 84, 582–588. Google Scholar

[86] Vargas A., Pegaz B., Debefve E., Konan-Kouakou Y., Lange N., Ballini J.P., van den Bergh H., Gurny R., Delie F.. Improved photodynamic activity of porphyrin loaded into nanoparticles: an in vivo evaluation using chick embryos. Int J Pharm, 2004, 286: 131-145 CrossRef PubMed Google Scholar

[87] Wang H., Yang Y., Chen H., Dan J., Cheng J., Guo S., Sun X., Wang W., Ai Y., Li S., et al. The predominant pathway of apoptosis in THP-1 macrophage-derived foam cells induced by 5-aminolevulinic acid-mediated sonodynamic therapy is the mitochondria-caspase pathway despite the participation of endoplasmic reticulum stress. Cell Physiol Biochem, 2014, 33: 1789-1801 CrossRef PubMed Google Scholar

[88] Wang X.B., Liu Q.H., Wang P., Zhang K., Tang W., Wang B.L.. Enhancement of apoptosis by sonodynamic therapy with protoporphyrin IX in isolate sarcoma 180 cells. Cancer Biother Radiopharmaceut, 2008, 23: 238-246 CrossRef PubMed Google Scholar

[89] Wang X., Zhang W., Xu Z., Luo Y., Mitchell D., Moss R.W.. Sonodynamic and photodynamic therapy in advanced breast carcinoma: a report of 3 cases. Integr Cancer Ther, 2009, 8: 283-287 CrossRef PubMed Google Scholar

[90] Wang X., Wang W., Yu L., Tang Y., Cao J., Chen Y.. Site-specific sonocatalytic tumor suppression by chemically engineered single-crystalline mesoporous titanium dioxide sonosensitizers. J Mater Chem B, 2017, 5: 4579-4586 CrossRef Google Scholar

[91] Wood A.K.W., Bunte R.M., Price H.E., Deitz M.S., Tsai J.H., Lee W.M.F., Sehgal C.M.. The disruption of murine tumor neovasculature by low-intensity ultrasound-comparison between 1- and 3-MHz sonication frequencies. Academic Rad, 2008, 15: 1133-1141 CrossRef PubMed Google Scholar

[92] Worthington, A., Thompson, J., Rauth, A., and Hunt, J. (1997). Mechanism of ultrasound enhanced porphyrin cytotoxicity. Part I: a search for free radical effects. Ultrasound Med Biol 23, 1095–1105. Google Scholar

[93] Wu J., Nyborg W.L.. Ultrasound, cavitation bubbles and their interaction with cells. Adv Drug Deliver Rev, 2008, 60: 1103-1116 CrossRef PubMed Google Scholar

[94] Xu H., Zhang X., Han R., Yang P., Ma H., Song Y., Lu Z., Yin W., Wu X.X., Wang H.. Nanoparticles in sonodynamic therapy: state of the art review. RSC Adv, 2016, 6: 50697-50705 CrossRef Google Scholar

[95] Xu Z.Y., Wang K., Li X.Q., Chen S., Deng J.M., Cheng Y., Wang Z.G.. The ABCG2 transporter is a key molecular determinant of the efficacy of sonodynamic therapy with Photofrin in glioma stem-like cells. Ultrasonics, 2013, 53: 232-238 CrossRef PubMed Google Scholar

[96] Yamaguchi S., Kobayashi H., Narita T., Kanehira K., Sonezaki S., Kudo N., Kubota Y., Terasaka S., Houkin K.. Sonodynamic therapy using water-dispersed TiO2-polyethylene glycol compound on glioma cells: comparison of cytotoxic mechanism with photodynamic therapy. Ultrasons Sonochem, 2011, 18: 1197-1204 CrossRef PubMed Google Scholar

[97] Yamamoto S., Yuba E., Harada A., Kono K.. Effective condensation of multivalent anions into polyion complex micelles prepared from TiO2 nanoparticles and polyallylamine bearing poly(ethylene glycol) grafts. Langmuir, 2015, 31: 8583-8588 CrossRef PubMed Google Scholar

[98] Yu T., Wang Z., Jiang S.. Potentiation of cytotoxicity of adriamycin on human ovarian carcinoma cell line 3AO by low-level ultrasound. Ultrasonics, 2001, 39: 307-309 CrossRef Google Scholar

[99] Yu T., Wang Z., Mason T.J.. A review of research into the uses of low level ultrasound in cancer therapy. Ultrasons Sonochem, 2004, 11: 95-103 CrossRef Google Scholar

[100] Yumita, N., Nishigaki, R., Umemura, K., and Umemura, S.I. (1989). Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound. Cancer Sci 80, 219–222. Google Scholar

[101] Yumita, N., Nishigaki, R., Umemura, K., and Umemura, S.I. (1990). Synergistic effect of ultrasound and hematoporphyrin on sarcoma 180. Cancer Sci 81, 304–308. Google Scholar

[102] Yumita, N., Iwase, Y., Nishi, K., Ikeda, T., Umemura, S.I., Sakata, I., and Momose, Y. (2010a). Sonodynamically induced cell damage and membrane lipid peroxidation by novel porphyrin derivative, DCPH-P-Na (I). Anticancer Res 30, 2241–2246. Google Scholar

[103] Yumita N., Okudaira K., Momose Y., Umemura S.I.. Sonodynamically induced apoptosis and active oxygen generation by gallium-porphyrin complex, ATX-70. Cancer Chemother Pharmacol, 2010b, 66: 1071-1078 CrossRef PubMed Google Scholar

[104] Zeghimi A., Escoffre J.M., Bouakaz A.. Role of endocytosis in sonoporation-mediated membrane permeabilization and uptake of small molecules: an electron microscopy study. Phys Biol, 2015, 12: 066007 CrossRef PubMed ADS Google Scholar

[105] Zhang J., Liang Y.C., Lin X., Zhu X., Yan L., Li S., Yang X., Zhu G., Rogach A.L., Yu P.K.N., et al. Self-monitoring and self-delivery of photosensitizer-doped nanoparticles for highly effective combination cancer therapy in vitro and in vivo. ACS Nano, 2015, 9: 9741-9756 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1