logo

SCIENCE CHINA Life Sciences, Volume 61, Issue 4: 400-414(2018) https://doi.org/10.1007/s11427-017-9271-1

Magnetic nanoparticles based cancer therapy: current status and applications

More info
  • ReceivedDec 23, 2017
  • AcceptedJan 15, 2018
  • PublishedApr 3, 2018

Abstract

Nanotechnology holds a promising potential for developing biomedical nanoplatforms in cancer therapy. The magnetic nanoparticles, which integrate uniquely appealing features of magnetic manipulation, nanoscale heat generator, localized magnetic field and enzyme-mimics, prompt the development and application of magnetic nanoparticles-based cancer medicine. Considerable success has been achieved in improving the magnetic resonance imaging (MRI) sensitivity, and the therapeutic function of the magnetic nanoparticles should be given adequate attention. This work reviews the current status and applications of magnetic nanoparticles based cancer therapy. The advantages of magnetic nanoparticles that may contribute to improved therapeutics efficacy of clinic cancer treatment are highlighted here.


Acknowledgment

The authors acknowledge financial support provided by the National Natural Science Foundation of China (81571809, 81771981, 31400663, and 21376192) and the Natural Science Foundation of Shaanxi Province (2015JM2063 and 2017JM2031).


Interest statement

The author(s) declare that they have no conflict of interest.


References

[1] Ahmed M., Goldberg S.N.. Basic science research in thermal ablation. Surg Oncol Clin North Am, 2011, 20: 237-258 CrossRef PubMed Google Scholar

[2] Alivisatos A.P.. Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem, 1996, 100: 13226-13239 CrossRef Google Scholar

[3] Arruebo M., Fernández-Pacheco R., Ibarra M.R., Santamaría J.. Magnetic nanoparticles for drug delivery. Nano Today, 2007, 2: 22-32 CrossRef Google Scholar

[4] Arvizo R.R., Bhattacharyya S., Kudgus R.A., Giri K., Bhattacharya R., Mukherjee P.. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev, 2012, 41: 2943-2970 CrossRef PubMed Google Scholar

[5] Ballatori N., Krance S.M., Notenboom S., Shi S., Tieu K., Hammond C.L.. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem, 2009, 390: 191-214 CrossRef PubMed Google Scholar

[6] Banchereau J., Briere F., Caux C., Davoust J., Lebecque S., Liu Y.J., Pulendran B., Palucka K.. Immunobiology of dendritic cells. Annu Rev Immunol, 2000, 18: 767-811 CrossRef Google Scholar

[7] Blanco E., Shen H., Ferrari M.. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol, 2015, 33: 941-951 CrossRef PubMed Google Scholar

[8] Chen H., Zhang W., Zhu G., Xie J., Chen X.. Rethinking cancer nanotheranostics. Nat Rev Mater, 2017, 2: 17024 CrossRef PubMed ADS Google Scholar

[9] Chen Q., Xu L., Liang C., Wang C., Peng R., Liu Z.. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun, 2016, 7: 13193 CrossRef PubMed ADS Google Scholar

[10] Chen R., Romero G., Christiansen M.G., Mohr A., Anikeeva P.. Wireless magnetothermal deep brain stimulation. Science, 2015, 347: 1477-1480 CrossRef PubMed ADS Google Scholar

[11] Cheng K., Peng S., Xu C., Sun S.. Porous hollow Fe3 O4 nanoparticles for targeted delivery and controlled release of cisplatin. J Am Chem Soc, 2009, 131: 10637-10644 CrossRef PubMed Google Scholar

[12] Cheng Z., Al Zaki A., Hui J.Z., Muzykantov V.R., Tsourkas A.. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science, 2012, 338: 903-910 CrossRef PubMed ADS Google Scholar

[13] Cho K., Wang X., Nie S., Chen Z.G., Shin D.M.. Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Res, 2008, 14: 1310-1316 CrossRef PubMed Google Scholar

[14] Cho N.H., Cheong T.C., Min J.H., Wu J.H., Lee S.J., Kim D., Yang J.S., Kim S., Kim Y.K., Seong S.Y.. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotech, 2011, 6: 675-682 CrossRef PubMed ADS Google Scholar

[15] Chu M., Shao Y., Peng J., Dai X., Li H., Wu Q., Shi D.. Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials, 2013, 34: 4078-4088 CrossRef PubMed Google Scholar

[16] Chung T.H., Hsiao J.K., Hsu S.C., Yao M., Chen Y.C., Wang S.W., Kuo M.Y.P., Yang C.S., Huang D.M.. Iron oxide nanoparticle-induced epidermal growth factor receptor expression in human stem cells for tumor therapy. ACS Nano, 2011, 5: 9807-9816 CrossRef PubMed Google Scholar

[17] DeNardo S.J., DeNardo G.L., Miers L.A., Natarajan A., Foreman A.R., Gruettner C., Adamson G.N., Ivkov R.. Development of tumor targeting bioprobes (111In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin Cancer Res, 2005, 11: 7087s-7092s CrossRef PubMed Google Scholar

[18] Dobson J.. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther, 2006, 13: 283-287 CrossRef PubMed Google Scholar

[19] Espinosa A., Di Corato R., Kolosnjaj-Tabi J., Flaud P., Pellegrino T., Wilhelm C.. Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano, 2016, 10: 2436-2446 CrossRef Google Scholar

[20] Fan W., Yung B., Huang P., Chen X.. Nanotechnology for multimodal synergistic cancer therapy. Chem Rev, 2017, 117: 13566-13638 CrossRef PubMed Google Scholar

[21] Fortin J.P., Wilhelm C., Servais J., Ménager C., Bacri J.C., Gazeau F.. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc, 2007, 129: 2628-2635 CrossRef PubMed Google Scholar

[22] Gautam B., Parsai E.I., Shvydka D., Feldmeier J., Subramanian M.. Dosimetric and thermal properties of a newly developed thermobrachytherapy seed with ferromagnetic core for treatment of solid tumors. Med Phys, 2012, 39: 1980-1990 CrossRef PubMed ADS Google Scholar

[23] Gilchrist R.K., Medal R., Shorey W.D., Hanselman R.C., Parrott J.C., Taylor C.B.. Selective inductive heating of lymph nodes. Ann Surgery, 1957, 146: 596-606 CrossRef Google Scholar

[24] Giri S., Trewyn B.G., Stellmaker M.P., Lin V.S.Y.. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew Chem Int Ed, 2005, 44: 5038-5044 CrossRef PubMed Google Scholar

[25] Gordon R.T., Hines J.R., Gordon D.. Intracellular hyperthermia a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med Hypotheses, 1979, 5: 83-102 CrossRef Google Scholar

[26] Guo X., Wu Z., Li W., Wang Z., Li Q., Kong F., Zhang H., Zhu X., Du Y.P., Jin Y., et al. Appropriate size of magnetic nanoparticles for various bioapplications in cancer diagnostics and therapy. ACS Appl Mater Interfaces, 2016, 8: 3092-3106 CrossRef Google Scholar

[27] Hanahan D., Weinberg R.A.. Hallmarks of cancer: the next generation. Cell, 2011, 144: 646-674 CrossRef PubMed Google Scholar

[28] Harmon B.V., Takano Y.S., Winterford C.M., Gobé G.C.. The role of apoptosis in the response of cells and tumours to mild hyperthermia. Int J Radiat Biol, 1991, 59: 489-501 CrossRef Google Scholar

[29] Hauff, K.M., Ulrich, F., Nestler, D., Niehoff, H., Wust, P., Thiesen, B., Orawa, H., Budach, V., and Jordan, A. (2011). Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol 103, 317-324.. Google Scholar

[30] Hayashi K., Sakamoto W., Yogo T.. Smart ferrofluid with quick gel transformation in tumors for MRI-guided local magnetic thermochemotherapy. Adv Funct Mater, 2016, 26: 1708-1718 CrossRef Google Scholar

[31] Hergt R., Dutz S.. Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J Magn Magn Mater, 2007, 311: 187-192 CrossRef ADS Google Scholar

[32] Hervault A., Thanh N.T.K.. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale, 2014, 6: 11553-11573 CrossRef PubMed ADS Google Scholar

[33] Ho D., Sun X., Sun S.. Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res, 2011, 44: 875-882 CrossRef PubMed Google Scholar

[34] Horsman M.R., Overgaard J.. Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol, 2007, 19: 418-426 CrossRef PubMed Google Scholar

[35] Hu F. ., Wei L., Zhou Z., Ran Y. ., Li Z., Gao M. .. Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv Mater, 2006, 18: 2553-2556 CrossRef Google Scholar

[36] Hu S.H., Chen S.Y., Liu D.M., Hsiao C.S.. Core/single-crystal-shell nanospheres for controlled drug release via a magnetically triggered rupturing mechanism. Adv Mater, 2008, 20: 2690-2695 CrossRef PubMed Google Scholar

[37] Hu S.H., Liu T.Y., Huang H.Y., Liu D.M., Chen S.Y.. Magnetic-sensitive silica nanospheres for controlled drug release. Langmuir, 2008, 24: 239-244 CrossRef PubMed Google Scholar

[38] Huang H., Delikanli S., Zeng H., Ferkey D.M., Pralle A.. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat Nanotech, 2010, 5: 602-606 CrossRef PubMed ADS Google Scholar

[39] Huang X., El-Sayed I.H., Qian W., El-Sayed M.A.. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc, 2006, 128: 2115-2120 CrossRef PubMed Google Scholar

[40] Huh Y.M., Jun Y., Song H.T., Kim S., Choi J., Lee J.H., Yoon S., Kim K.S., Shin J.S., Suh J.S., et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc, 2005, 127: 12387-12391 CrossRef PubMed Google Scholar

[41] Ito A., Tanaka K., Kondo K., Shinkai M., Honda H., Matsumoto K., Saida T., Kobayashi T.. Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Sci, 2003, 94: 308-313 CrossRef Google Scholar

[42] Jang J., Nah H., Lee J.H., Moon S.H., Kim M.G., Cheon J.. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem, 2009, 121: 1260-1264 CrossRef Google Scholar

[43] Johannsen M., Gneveckow U., Eckelt L., Feussner A., WaldÖFner N., Scholz R., Deger S., Wust P., Loening S.A., Jordan A.. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int J Hyperthermia, 2005, 21: 637-647 CrossRef Google Scholar

[44] Johannsen M., Gneveckow U., Taymoorian K., Thiesen B., Waldöfner N., Scholz R., Jung K., Jordan A., Wust P., Loening S.A.. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial. Int J Hyperthermia, 2007, 23: 315-323 CrossRef PubMed Google Scholar

[45] Johannsen M., Gneveckow U., Thiesen B., Taymoorian K., Cho C.H., Waldöfner N., Scholz R., Jordan A., Loening S.A., Wust P.. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urology, 2007, 52: 1653-1662 CrossRef PubMed Google Scholar

[46] Johannsen M., Thiesen B., Wust P., Jordan A.. Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperthermia, 2010, 26: 790-795 CrossRef PubMed Google Scholar

[47] Jun Y.W., Huh Y.M., Choi J.S., Lee J.H., Song H.T., Kim S., Yoon S., Kim K.S., Shin J.S., Suh J.S., et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc, 2005, 127: 5732-5733 CrossRef PubMed Google Scholar

[48] Jun Y.W., Seo J.W., Cheon J.. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res, 2008, 41: 179-189 CrossRef PubMed Google Scholar

[49] Jung H.S., Han J., Lee J.H., Lee J.H., Choi J.M., Kweon H.S., Han J.H., Kim J.H., Byun K.M., Jung J.H., et al. Enhanced NIR radiation-triggered hyperthermia by mitochondrial targeting. J Am Chem Soc, 2015, 137: 3017-3023 CrossRef PubMed Google Scholar

[50] Kampinga H.H., Dikomey E.. Hyperthermic radiosensitization: mode of action and clinical relevance. Int J Radiat Biol, 2001, 77: 399-408 CrossRef PubMed Google Scholar

[51] Kampinga H.H., Dynlacht J.R., Dikomey E.. Mechanism of radiosensitization by hyperthermia (43°C) as derived from studies with DNA repair defective mutant cell lines. Int J Hyperthermia, 2004, 20: 131-139 CrossRef Google Scholar

[52] Kievit F.M., Veiseh O., Bhattarai N., Fang C., Gunn J.W., Lee D., Ellenbogen R.G., Olson J.M., Zhang M.. PEI-PEG-chitosan-copolymer-coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv Funct Mater, 2009, 19: 2244-2251 CrossRef PubMed Google Scholar

[53] Kievit F.M., Veiseh O., Fang C., Bhattarai N., Lee D., Ellenbogen R.G., Zhang M.. Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano, 2010, 4: 4587-4594 CrossRef PubMed Google Scholar

[54] Kim B.H., Lee N., Kim H., An K., Park Y.I., Choi Y., Shin K., Lee Y., Kwon S.G., Na H.B., et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolutionT1 magnetic resonance imaging contrast agents. J Am Chem Soc, 2011, 133: 12624-12631 CrossRef PubMed Google Scholar

[55] Kim J., Cho H.R., Jeon H., Kim D., Song C., Lee N., Choi S.H., Hyeon T.. Continuous O2-evolving MnFe2 O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J Am Chem Soc, 2017, 139: 10992-10995 CrossRef PubMed Google Scholar

[56] Kumar A., Kim S., Nam J.M.. Plasmonically engineered nanoprobes for biomedical applications. J Am Chem Soc, 2016, 138: 14509-14525 CrossRef PubMed Google Scholar

[57] Laurent S., Dutz S., Häfeli U.O., Mahmoudi M.. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci, 2011, 166: 8-23 CrossRef PubMed Google Scholar

[58] Lee J.H., Jang J.T., Choi J.S., Moon S.H., Noh S.H., Kim J.W., Kim J.G., Kim I.S., Park K.I., Cheon J.. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotech, 2011, 6: 418-422 CrossRef PubMed ADS Google Scholar

[59] Lee J.H., Lee K., Moon S.H., Lee Y., Park T.G., Cheon J.. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed, 2009, 48: 4174-4179 CrossRef PubMed Google Scholar

[60] Lee J.H., Huh Y.M., Jun Y., Seo J., Jang J., Song H.T., Kim S., Cho E.J., Yoon H.G., Suh J.S., et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med, 2007, 13: 95-99 CrossRef PubMed Google Scholar

[61] Lee N., Yoo D., Ling D., Cho M.H., Hyeon T., Cheon J.. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev, 2015, 115: 10637-10689 CrossRef PubMed Google Scholar

[62] Li Z., Wei L., Gao M.Y., Lei H.. One-pot reaction to synthesize biocompatible magnetite nanoparticles. Adv Mater, 2005, 17: 1001-1005 CrossRef Google Scholar

[63] Liao M.Y., Lai P.S., Yu H.P., Lin H.P., Huang C.C.. Innovative ligand-assisted synthesis of NIR-activated iron oxide for cancer theranostics. Chem Commun, 2012, 48: 5319-5321 CrossRef PubMed Google Scholar

[64] Lim E.K., Kim T., Paik S., Haam S., Huh Y.M., Lee K.. Nanomaterials for theranostics: recent advances and future challenges. Chem Rev, 2014, 115: 327-394 CrossRef PubMed Google Scholar

[65] Link S., El-Sayed M.A.. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B, 1999, 103: 8410-8426 CrossRef Google Scholar

[66] Liu T.Y., Hu S.H., Liu K.H., Shaiu R.S., Liu D.M., Chen S.Y.. Instantaneous drug delivery of magnetic/thermally sensitive nanospheres by a high-frequency magnetic field. Langmuir, 2008, 24: 13306-13311 CrossRef PubMed Google Scholar

[67] Liu X.L., Fan H.M., Yi J.B., Yang Y., Choo E.S.G., Xue J.M., Fan D.D., Ding J.. Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. J Mater Chem, 2012, 22: 8235-8244 CrossRef Google Scholar

[68] Liu X.L., Ng C.T., Chandrasekharan P., Yang H.T., Zhao L.Y., Peng E., Lv Y.B., Xiao W., Fang J., Yi J.B., et al. Synthesis of ferromagnetic Fe0.6 Mn0.4 O nanoflowers as a new class of magnetic theranostic platform for in vivo T1-T2 dual-mode magnetic resonance imaging and magnetic hyperthermia therapy. Adv Healthcare Mater, 2016, 5: 2092-2104 CrossRef PubMed Google Scholar

[69] Liu X.L., Yang Y., Ng C.T., Zhao L.Y., Zhang Y., Bay B.H., Fan H.M., Ding J.. Magnetic vortex nanorings: a new class of hyperthermia agent for highly efficient in vivo regression of tumors. Adv Mater, 2015, 27: 1939-1944 CrossRef PubMed Google Scholar

[70] Liu Z., Cai W., He L., Nakayama N., Chen K., Sun X., Chen X., Dai H.. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotech, 2007, 2: 47-52 CrossRef PubMed ADS Google Scholar

[71] Lu Y., Xu Y.J., Zhang G., Ling D., Wang M., Zhou Y., Wu Y.D., Wu T., Hackett M.J., Hyo Kim B., et al. Iron oxide nanoclusters for T 1 magnetic resonance imaging of non-human primates. Nat Biomed Eng, 2017, 1: 637-643 CrossRef Google Scholar

[72] Lübbe, A.S., Bergemann, C., Huhnt, W., Fricke, T., Riess, H., Brock, J.W., and Huhn, D. (1996) Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res 56, 4694-4701. Google Scholar

[73] Maier-Hauff K., Rothe R., Scholz R., Gneveckow U., Wust P., Thiesen B., Feussner A., von Deimling A., Waldoefner N., Felix R., et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol, 2007, 81: 53-60 CrossRef PubMed Google Scholar

[74] McGill S.L., Cuylear C.L., Adolphi N.L., Osiński M., Smyth H.D.C.. Magnetically responsive nanoparticles for drug delivery applications using low magnetic field strengths. IEEE Transon NanoBiosci, 2009, 8: 33-42 CrossRef PubMed Google Scholar

[75] Meng F., Hennink W.E., Zhong Z.. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials, 2009, 30: 2180-2198 CrossRef PubMed Google Scholar

[76] Mienkina M.P., Friedrich C.S., Hensel K., Gerhardt N.C., Hofmann M.R., Schmitz G.. Evaluation of Ferucarbotran (Resovist®) as a photoacoustic contrast agent/Evaluation von Ferucarbotran (Resovist®) als photoakustisches Kontrastmittel. Biomedizinische Technik/BioMed Eng, 2009, 54: 83-88 CrossRef PubMed Google Scholar

[77] Mikhaylov G., Mikac U., Magaeva A.A., Itin V.I., Naiden E.P., Psakhye I., Babes L., Reinheckel T., Peters C., Zeiser R., et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotech, 2011, 6: 594-602 CrossRef PubMed ADS Google Scholar

[78] Mura S., Nicolas J., Couvreur P.. Stimuli-responsive nanocarriers for drug delivery. Nat Mater, 2013, 12: 991-1003 CrossRef PubMed ADS Google Scholar

[79] Muthana, M., Kennerley, A.J., Hughes, R., Fagnano, E., Richardson, J., Paul, M., Murdoch, C., Wright, F., Payne, C., Lythgoe, M.F., Farrow, N., Dobson, J., Conner, J., Wild, J.M., and Lewis, C. (2015). Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nat Commun 6, 8009. Google Scholar

[80] Na H.B., Hyeon T.. Nanostructured T1 MRI contrast agents. J Mater Chem, 2009, 19: 6267-6273 CrossRef Google Scholar

[81] Namiki Y., Namiki T., Yoshida H., Ishii Y., Tsubota A., Koido S., Nariai K., Mitsunaga M., Yanagisawa S., Kashiwagi H., et al. A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat Nanotech, 2009, 4: 598-606 CrossRef PubMed ADS Google Scholar

[82] Ni D., Bu W., Ehlerding E.B., Cai W., Shi J.. Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem Soc Rev, 2017, 46: 7438-7468 CrossRef PubMed Google Scholar

[83] Noh S.H., Na W., Jang J.T., Lee J.H., Lee E.J., Moon S.H., Lim Y., Shin J.S., Cheon J.. Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett, 2012, 12: 3716-3721 CrossRef PubMed ADS Google Scholar

[84] O′Neal, D.P., Hirsch, L.R., Halas, N.J., Payne, J.D., and West, J.L. (2004). Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209, 171-176. Google Scholar

[85] Palucka K., Banchereau J.. Cancer immunotherapy via dendritic cells. Nat Rev Cancer, 2012, 12: 265-277 CrossRef PubMed Google Scholar

[86] Pankhurst Q.A., Connolly J., Jones S.K., Dobson J.. Applications of magnetic nanoparticles in biomedicine. J Phys D-Appl Phys, 2003, 36: R167-R181 CrossRef ADS Google Scholar

[87] Peer D., Karp J.M., Hong S., Farokhzad O.C., Margalit R., Langer R.. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotech, 2007, 2: 751-760 CrossRef PubMed ADS Google Scholar

[88] Pradhan P., Giri J., Rieken F., Koch C., Mykhaylyk O., Döblinger M., Banerjee R., Bahadur D., Plank C.. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J Control Release, 2011, 142: 108-121 CrossRef PubMed Google Scholar

[89] Rand R.W., Snow H.D., Brown W.J.. Thermomagnetic surgery for cancer. J Surg Res, 1982, 33: 177-183 CrossRef Google Scholar

[90] Salunkhe A.B., Khot V.M., Pawar S.H.. Magnetic hyperthermia with magnetic nanoparticles: a status review. CTMC, 2014, 14: 572-594 CrossRef Google Scholar

[91] Sanson C., Diou O., Thévenot J., Ibarboure E., Soum A., Brûlet A., Miraux S., Thiaudière E., Tan S., Brisson A., et al. Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano, 2011, 5: 1122-1140 CrossRef PubMed Google Scholar

[92] Santra S., Kaittanis C., Grimm J., Perez J.M.. Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small, 2009, 5: 1862-1868 CrossRef PubMed Google Scholar

[93] Shen S., Kong F., Guo X., Wu L., Shen H., Xie M., Wang X., Jin Y., Ge Y.. CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation. Nanoscale, 2013, 5: 8056-8066 CrossRef PubMed ADS Google Scholar

[94] Shen S., Wang S., Zheng R., Zhu X., Jiang X., Fu D., Yang W.. Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials, 2015, 39: 67-74 CrossRef PubMed Google Scholar

[95] Shen Z., Chen T., Ma X., Ren W., Zhou Z., Zhu G., Zhang A., Liu Y., Song J., Li Z., et al. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles forT1-weighted magnetic resonance imaging and chemotherapy. ACS Nano, 2017, 11: 10992-11004 CrossRef Google Scholar

[96] Shi J., Kantoff P.W., Wooster R., Farokhzad O.C.. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer, 2017, 17: 20-37 CrossRef PubMed Google Scholar

[97] Song X., Gong H., Yin S., Cheng L., Wang C., Li Z., Li Y., Wang X., Liu G., Liu Z.. Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv Funct Mater, 2014, 24: 1194-1201 CrossRef Google Scholar

[98] Soukup D., Moise S., Céspedes E., Dobson J., Telling N.D.. In situ measurement of magnetization relaxation of internalized nanoparticles in live cells. ACS Nano, 2015, 9: 231-240 CrossRef PubMed Google Scholar

[99] Stanley S.A., Gagner J.E., Damanpour S., Yoshida M., Dordick J.S., Friedman J.M.. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science, 2012, 336: 604-608 CrossRef PubMed ADS Google Scholar

[100] Tao W., Ji X., Xu X., Islam M.A., Li Z., Chen S., Saw P.E., Zhang H., Bharwani Z., Guo Z., et al. Antimonene quantum dots: synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew Chem Int Ed, 2017, 56: 11896-11900 CrossRef PubMed Google Scholar

[101] Tarangelo A., Dixon S.J.. An iron age for cancer therapy. Nat Nanotech, 2016, 11: 921-922 CrossRef PubMed ADS Google Scholar

[102] van der Zee J.. Heating the patient: a promising approach?. Ann Oncol, 2002, 13: 1173-1184 CrossRef Google Scholar

[103] van Landeghem F.K.H., Maier-Hauff K., Jordan A., Hoffmann K.T., Gneveckow U., Scholz R., Thiesen B., Brück W., von Deimling A.. Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials, 2009, 30: 52-57 CrossRef PubMed Google Scholar

[104] Wang P., Chen C., Zeng K., Pan W., Song T.. Magnetic nanoparticles trigger cell proliferation arrest of neuro-2a cells and ROS-mediated endoplasmic reticulum stress response. J Nanopart Res, 2014, 16: 2718 CrossRef ADS Google Scholar

[105] Wu L., Mendoza-Garcia A., Li Q., Sun S.. Organic phase syntheses of magnetic nanoparticles and their applications. Chem Rev, 2016, 116: 10473-10512 CrossRef PubMed Google Scholar

[106] Wust P., Hildebrandt B., Sreenivasa G., Rau B., Gellermann J., Riess H., Felix R., Schlag P.. Hyperthermia in combined treatment of cancer. Lancet Oncol, 2002, 3: 487-497 CrossRef Google Scholar

[107] Yanase, M., Shinkai, M., Honda, H., Wakabayashi, T., Yoshida, J., and Kobayashi, T. (1998). Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes. Cancer Sci 89, 775-782. Google Scholar

[108] Yang K., Zhang S., Zhang G., Sun X., Lee S.T., Liu Z.. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett, 2010, 10: 3318-3323 CrossRef PubMed ADS Google Scholar

[109] Yoo D., Jeong H., Noh S.H., Lee J.H., Cheon J.. Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia. Angew Chem Int Ed, 2013, 52: 13047-13051 CrossRef PubMed Google Scholar

[110] Yoo D., Lee J.H., Shin T.H., Cheon J.. Theranostic magnetic nanoparticles. Acc Chem Res, 2011, 44: 863-874 CrossRef PubMed Google Scholar

[111] Yu M.K., Jeong Y.Y., Park J., Park S., Kim J.W., Min J.J., Kim K., Jon S.. Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem, 2008, 120: 5442-5445 CrossRef Google Scholar

[112] Zanganeh S., Hutter G., Spitler R., Lenkov O., Mahmoudi M., Shaw A., Pajarinen J.S., Nejadnik H., Goodman S., Moseley M., et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotech, 2016, 11: 986-994 CrossRef PubMed ADS Google Scholar

[113] Zhang H., Li L., Liu X.L., Jiao J., Ng C.T., Yi J.B., Luo Y.E., Bay B.H., Zhao L.Y., Peng M.L., et al. Ultrasmall ferrite nanoparticles synthesizedvia dynamic simultaneous thermal decomposition for high-performance and multifunctionalT1 magnetic resonance imaging contrast agent. ACS Nano, 2017, 11: 3614-3631 CrossRef Google Scholar

  • Figure 1

    (Color online) The fundamentals of the magnetic nanoparticles.

  • Figure 2

    (Color online) The hysteresis loop for the (A) superparamagnetic (B) ferrimagnetic vortex-domain and (C) multi-domain nanoparticle.

  • Figure 3

    (Color online) The FDA-approved iron oxide nanoparticle drug (ferumoxytol) changes the polarization of tumour-associated macrophages from an anti-inflammatory M2 phenotype to a pro-inflammatory M1 phenotype. M1 polarized macrophages potentially release ROS, which may induce apoptotic cell death characterized by an increase in cleaved caspase-3 (with permission from Tarangelo and Dixon, 2016).

  • Figure 4

    (Color online) Magnetic nanoparticles as drug carriers. A, Formation of Dox@TCL-SPIONs (with permission from Yu et al., 2008). B, Schematic illustration of cisplatin loading into a PHNP and functionalization of Herceptin (with permission from Cheng et al., 2009). C, Proposed mechanism for drug encapsulation and release process of iron oxide nanoparticles coated with thermosensitive hydrogel shell (with permission from Liu et al., 2008). D, Schematic illustration of the thin shell with a proposed mechanism for controlled release of the fluorescence dye (with permission from Hu et al., 2008).

  • Figure 5

    (Color online) Exchange-coupled magnetic nanoparticle as high-performance magnetic hyperthermia agent. A, (Left) Schematic drawing of core-shell nanoparticle with an exchange-coupled magnetism, and (Right) M-H curve of 15 nm CoFe2O4@MnFe2O4, 15 nm MnFe2O4 and 9 nm CoFe2O4 nanoparticles measured at 5 K using a SQUID magnetometer. The magnetization curve of the core-shell nanoparticle (red curve) shows the hard-soft exchange-coupled magnetism with a smooth hysteresis curve. Inset: M-H curve of CoFe2O4@MnFe2O4 at 300 K, showing its superparamagnetic nature with zero coercivity. B, Schematic of 15 nm CoFe2O4@MnFe2O4 nanoparticle and its SLP value compared with the values for its components (9 nm CoFe2O4 and 15 nm MnFe2O4). C, Schematics of in vivo magnetic hyperthermia treatment in a mouse. Magnetic nanoparticles were directly injected into the tumour of a mouse and an AC magnetic field was applied. D, Nude mice xenografted with cancer cells (U87MG) before treatment (upper row, dotted circle) and 18 days after treatment (lower row) with untreated control, CoFe2O4@MnFe2O4 hyperthermia, Feridex hyperthermia and doxorubicin, respectively. The same amounts (75 mg) of nanoparticles and doxorubicin were injected into the tumour (tumour volume, 100 mm3,n=3). (with permission from Lee et al., 2011)

  • Figure 6

    Ferrimagnetic vortex-domain iron oxide nanoparticle as a promising hyperthermia therapeutic agent. A, TEM image of FVIOs dyed with ruthenium tetroxide (RuO4) in order to obtain a sufficient contrast for surface coating mPEG layer. B, Lorentz TEM image of FVIOs. C, Graph showing experimental and calculated average hysteresis loops for FVIOs. D, Schematics showing the effect of magnetic hyperthermia treatment on tumor cells in a mouse model. Magnetic nanoparticles were directly injected into the tumor of a mouse and an AC magnetic field was applied. E, Nude mice xenografted with breast cancer cells (MCF-7) before treatment (upper row, dotted circle) and 40 days after treatment (lower row) with untreated control, Resovist hyperthermia and FVIOs hyperthermia, respectively. F, Plot of tumor volume (V/Vinitial) versus days after treatment with FVIOs hyperthermia, Resovist hyperthermia, and untreated control. (with permission from Liu et al., 2015)

  • Figure 7

    Magnetic nanoparticle as photothermal therapeutic agents. A, Whole body and tumor fluorescence images in tumor-bearing mice after intravenous injection of 200 μL of indocyanine green-labeled Fe3O4 nanoparticles at a concentration of 5 mg mL−1 Fe3O4. B, Thermographs of tumor-bearing mice that received photothermal treatment for different periods of time (with permission from Guo et al., 2016). C, Thermal images obtained with the IR camera in mice, after intratumoral injection of nanocubes (50 μL at [Fe]=250 mmol L−1), in the left-hand tumor, and after 10 min application of magnetic hyperthermia (MHT, 110 kHz, 12 mT), NIR-laser irradiation (LASER, 808 nm at 0.3 W cm−2), or DUAL (both effects). D, Average tumor growth (groups of six tumors each in non-injected mice submitted to no treatment (control) and in nanocube-injected mice exposed to MHT, LASER, and DUAL during the 8 days following the 3 days of treatment (with permission from Espinosa et al., 2016). E, Schematic representation of enhanced hyperthermia by using mitochondria-targeting iron oxide nanoparticles (with permission from Jung et al., 2015).

  • Figure 8

    (Color online) Magnetic nanoparticle as theranostic nanoplatform. A, In vivo ultrasmall MnFe2O4 nanoparticles enhanced MR images (with permission from Fan et al., 2017). B, Schematic illustration of MFMSNs (with permission from Kim et al., 2017). C, Schematic showing the fabrication process of IONP@PPy-PEG nanocomposite (with permission from Song et al., 2014).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1