logo

SCIENCE CHINA Life Sciences, Volume 61, Issue 6: 625-632(2018) https://doi.org/10.1007/s11427-018-9294-4

Behavioral interventions to eliminate fear responses

More info
  • ReceivedJan 22, 2018
  • AcceptedFeb 26, 2018
  • PublishedMay 7, 2018

Abstract

Fear memory underlies anxiety-related disorders, including posttraumatic stress disorder (PTSD). PTSD is a fear-based disorder, characterized by difficulties in extinguishing the learned fear response and maintaining extinction. Currently, the first-line treatment for PTSD is exposure therapy, which forms an extinction memory to compete with the original fear memory. However, the extinguished fear often returns under numerous circumstances, suggesting that novel methods are needed to eliminate fear memory or facilitate extinction memory. This review discusses research that targeted extinction and reconsolidation to manipulate fear memory. Recent studies indicate that sleep is an active state that can regulate memory processes. We also discuss the influence of sleep on fear memory. For each manipulation, we briefly summarize the neural mechanisms that have been identified in human studies. Finally, we highlight potential limitations and future directions in the field to better translate existing interventions to clinical settings.


Funded by

the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2015BAI13B01)


Acknowledgment

This work was supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2015BAI13B01).


Interest statement

The author(s) declare that they have no conflict of interest.


References

[1] Abel T., Havekes R., Saletin J.M., Walker M.P.. Sleep, plasticity and memory from molecules to whole-brain networks. Curr Biol, 2013, 23: R774-R788 CrossRef PubMed Google Scholar

[2] Abend R., Jalon I., Gurevitch G., Sar-El R., Shechner T., Pine D.S., Hendler T., Bar-Haim Y.. Modulation of fear extinction processes using transcranial electrical stimulation. Transl Psychiatry, 2016, 6: e913 CrossRef PubMed Google Scholar

[3] Agren T., Engman J., Frick A., Björkstrand J., Larsson E.M., Furmark T., Fredrikson M.. Disruption of reconsolidation erases a fear memory trace in the human amygdala. Science, 2012, 337: 1550-1552 CrossRef PubMed ADS Google Scholar

[4] Åhs F., Kragel P.A., Zielinski D.J., Brady R., LaBar K.S.. Medial prefrontal pathways for the contextual regulation of extinguished fear in humans. NeuroImage, 2015, 122: 262-271 CrossRef PubMed Google Scholar

[5] Alberini C.M., Ledoux J.E.. Memory reconsolidation. Curr Biol, 2013, 23: R746-R750 CrossRef PubMed Google Scholar

[6] Antony J.W., Gobel E.W., O’Hare J.K., Reber P.J., Paller K.A.. Cued memory reactivation during sleep influences skill learning. Nat Neurosci, 2012, 15: 1114-1116 CrossRef PubMed Google Scholar

[7] Arzi A., Holtzman Y., Samnon P., Eshel N., Harel E., Sobel N.. Olfactory aversive conditioning during sleep reduces cigarette-smoking behavior. J Neurosci, 2014, 34: 15382-15393 CrossRef Google Scholar

[8] Arzi A., Shedlesky L., Ben-Shaul M., Nasser K., Oksenberg A., Hairston I.S., Sobel N.. Humans can learn new information during sleep. Nat Neurosci, 2012, 15: 1460-1465 CrossRef PubMed Google Scholar

[9] Bandelow B., Baldwin D., Abelli M., Altamura C., Dell’Osso B., Domschke K., Fineberg N.A., Grünblatt E., Jarema M., Maron E., et al. Biological markers for anxiety disorders, OCD and PTSD—a consensus statement. Part I: neuroimaging and genetics. World J Biol Psychiatry, 2016, 17: 321-365 CrossRef PubMed Google Scholar

[10] Barnes D.C., Wilson D.A.. Slow-wave sleep-imposed replay modulates both strength and precision of memory. J Neurosci, 2014, 34: 5134-5142 CrossRef Google Scholar

[11] Bendor D., Wilson M.A.. Biasing the content of hippocampal replay during sleep. Nat Neurosci, 2012, 15: 1439-1444 CrossRef PubMed Google Scholar

[12] Björkstrand J., Agren T., Frick A., Engman J., Larsson E.M., Furmark T., Fredrikson M.. Disruption of memory reconsolidation erases a fear memory trace in the human amygdala: an 18-month follow-up. PLoS ONE, 2015, 10: e0129393 CrossRef PubMed ADS Google Scholar

[13] Bouton M.E., Moody E.W.. Memory processes in classical conditioning. Neurosci Biobehav Rev, 2004, 28: 663-674 CrossRef PubMed Google Scholar

[14] Brunet A., Orr S.P., Tremblay J., Robertson K., Nader K., Pitman R.K.. Effect of post-retrieval propranolol on psychophysiologic responding during subsequent script-driven traumatic imagery in post-traumatic stress disorder. J Psychiatric Res, 2008, 42: 503-506 CrossRef PubMed Google Scholar

[15] Brunet A., Poundja J., Tremblay J., Bui E., Thomas E., Orr S.P., Azzoug A., Birmes P., Pitman R.K.. Trauma reactivation under the influence of propranolol decreases posttraumatic stress symptoms and disorder. J Clin Psychopharmacol, 2011, 31: 547-550 CrossRef PubMed Google Scholar

[16] Büchel C., Morris J., Dolan R.J., Friston K.J.. Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron, 1998, 20: 947-957 CrossRef Google Scholar

[17] Burger A.M., Verkuil B., Van Diest I., Van der Does W., Thayer J.F., Brosschot J.F.. The effects of transcutaneous vagus nerve stimulation on conditioned fear extinction in humans. Neurobiol Learning Memory, 2016, 132: 49-56 CrossRef PubMed Google Scholar

[18] Burger A.M., Verkuil B., Fenlon H., Thijs L., Cools L., Miller H.C., Vervliet B., Van Diest I.. Mixed evidence for the potential of non-invasive transcutaneous vagal nerve stimulation to improve the extinction and retention of fear. Behav Res Ther, 2017, 97: 64-74 CrossRef PubMed Google Scholar

[19] Carpenter J.K., Andrews L.A., Witcraft S.M., Powers M.B., Smits J.A.J., Hofmann S.G.. Cognitive behavioral therapy for anxiety and related disorders: a meta-analysis of randomized placebo-controlled trials. Depress Anxiety, 2018, : in press doi: 10.1002/da.22728 CrossRef PubMed Google Scholar

[20] Craske M.G., Treanor M., Conway C.C., Zbozinek T., Vervliet B.. Maximizing exposure therapy: an inhibitory learning approach. Behav Res Ther, 2014, 58: 10-23 CrossRef PubMed Google Scholar

[21] Diekelmann S., Büchel C., Born J., Rasch B.. Labile or stable: opposing consequences for memory when reactivated during waking and sleep. Nat Neurosci, 2011, 14: 381-386 CrossRef PubMed Google Scholar

[22] Dudai Y.. The restless engram: consolidations never end. Annu Rev Neurosci, 2012, 35: 227-247 CrossRef PubMed Google Scholar

[23] Eckstein M., Becker B., Scheele D., Scholz C., Preckel K., Schlaepfer T.E., Grinevich V., Kendrick K.M., Maier W., Hurlemann R.. Oxytocin facilitates the extinction of conditioned fear in humans. Biol Psychiatry, 2015, 78: 194-202 CrossRef PubMed Google Scholar

[24] Eichenbaum H.. A cortical-hippocampal system for declarative memory. Nat Rev Neurosci, 2000, 1: 41-50 CrossRef PubMed Google Scholar

[25] Furini C.R.G., Behling J.A.K., Zinn C.G., Zanini M.L., Assis Brasil E., Pereira L.D., Izquierdo I., de Carvalho Myskiw J.. Extinction memory is facilitated by methylphenidate and regulated by dopamine and noradrenaline receptors. Behav Brain Res, 2017, 326: 303-306 CrossRef PubMed Google Scholar

[26] Girgenti M.J., Ghosal S., LoPresto D., Taylor J.R., Duman R.S.. Ketamine accelerates fear extinction via mTORC1 signaling. Neurobiol Dis, 2017, 100: 1-8 CrossRef PubMed Google Scholar

[27] Giustino T.F., Seemann J.R., Acca G.M., Goode T.D., Fitzgerald P.J., Maren S.. β-Adrenoceptor blockade in the basolateral amygdala, but not the medial prefrontal cortex, rescues the immediate extinction deficit. Neuropsychopharmacology, 2017, 42: 2537-2544 CrossRef PubMed Google Scholar

[28] Glickman S.E.. Perseverative neural processes and consolidation of the memory trace. Psychol Bull, 1961, 58: 218-233 CrossRef Google Scholar

[29] Gold A.L., Shechner T., Farber M.J., Spiro C.N., Leibenluft E., Pine D.S., Britton J.C.. Amygdala-cortical connectivity: associations with anxiety, development, and threat. Depress Anxiety, 2016, 33: 917-926 CrossRef PubMed Google Scholar

[30] Golkar A., Bellander M., Olsson A., Ohman A.. Are fear memories erasable?-reconsolidation of learned fear with fear-relevant and fear-irrelevant stimuli. Front Behav Neurosci, 2012, 6: 80 CrossRef PubMed Google Scholar

[31] Gordon W.C., Spear N.E.. Effect of reactivation of a previously acquired memory on the interaction between memories in the rat. J Exp Psychol, 1973, 99: 349-355 CrossRef Google Scholar

[32] Gottfried J.A., Dolan R.J.. Human orbitofrontal cortex mediates extinction learning while accessing conditioned representations of value. Nat Neurosci, 2004, 7: 1144-1152 CrossRef PubMed Google Scholar

[33] Guhn A., Dresler T., Andreatta M., Müller L.D., Hahn T., Tupak S.V., Polak T., Deckert J., Herrmann M.J.. Medial prefrontal cortex stimulation modulates the processing of conditioned fear. Front Behav Neurosci, 2014, 8: 44 CrossRef PubMed Google Scholar

[34] Haaker J., Gaburro S., Sah A., Gartmann N., Lonsdorf T.B., Meier K., Singewald N., Pape H.C., Morellini F., Kalisch R.. Single dose of L-dopa makes extinction memories context-independent and prevents the return of fear. Proc Natl Acad Sci USA, 2013, 110: E2428-E2436 CrossRef PubMed ADS Google Scholar

[35] Hauner K.K., Howard J.D., Zelano C., Gottfried J.A.. Stimulus-specific enhancement of fear extinction during slow-wave sleep. Nat Neurosci, 2013, 16: 1553-1555 CrossRef PubMed Google Scholar

[36] He J., Sun H.Q., Li S.X., Zhang W.H., Shi J., Ai S.Z., Li Y., Li X.J., Tang X.D., Lu L.. Effect of conditioned stimulus exposure during slow wave sleep on fear memory extinction in humans. Sleep, 2015, 38: 423-431 CrossRef PubMed Google Scholar

[37] Hermann A., Stark R., Milad M.R., Merz C.J.. Renewal of conditioned fear in a novel context is associated with hippocampal activation and connectivity. Soc Cogn Affect Neurosci, 2016, 11: 1411-1421 CrossRef PubMed Google Scholar

[38] Herrmann M.J., Katzorke A., Busch Y., Gromer D., Polak T., Pauli P., Deckert J.. Medial prefrontal cortex stimulation accelerates therapy response of exposure therapy in acrophobia. Brain Stimul, 2017, 10: 291-297 CrossRef PubMed Google Scholar

[39] Hofmann S.G., Otto M.W., Pollack M.H., Smits J.A.. D-cycloserine augmentation of cognitive behavioral therapy for anxiety disorders: an update. Curr Psychiatry Rep, 2015, 17: 532 CrossRef PubMed Google Scholar

[40] Indovina I., Robbins T.W., Núñez-Elizalde A.O., Dunn B.D., Bishop S.J.. Fear-conditioning mechanisms associated with trait vulnerability to anxiety in humans. Neuron, 2011, 69: 563-571 CrossRef PubMed Google Scholar

[41] James E.L., Bonsall M.B., Hoppitt L., Tunbridge E.M., Geddes J.R., Milton A.L., Holmes E.A.. Computer game play reduces intrusive memories of experimental trauma via reconsolidation-update mechanisms. Psychol Sci, 2015, 26: 1201-1215 CrossRef PubMed Google Scholar

[42] Johnson D.C., Casey B.J.. Extinction during memory reconsolidation blocks recovery of fear in adolescents. Sci Rep, 2015, 5: 8863 CrossRef PubMed ADS Google Scholar

[43] Knight D.C., Smith C.N., Cheng D.T., Stein E.A., Helmstetter F.J.. Amygdala and hippocampal activity during acquisition and extinction of human fear conditioning. Cogn Affect Behav Neurosci, 2004, 4: 317-325 CrossRef Google Scholar

[44] Kredlow M.A., Unger L.D., Otto M.W.. Harnessing reconsolidation to weaken fear and appetitive memories: a meta-analysis of post-retrieval extinction effects. Psychol Bull, 2016, 142: 314-336 CrossRef PubMed Google Scholar

[45] Kroes M.C.W., Fernández G.. Dynamic neural systems enable adaptive, flexible memories. Neurosci Biobehav Rev, 2012, 36: 1646-1666 CrossRef PubMed Google Scholar

[46] Lissek S., Powers A.S., McClure E.B., Phelps E.A., Woldehawariat G., Grillon C., Pine D.S.. Classical fear conditioning in the anxiety disorders: a meta-analysis. Behav Res Ther, 2005, 43: 1391-1424 CrossRef PubMed Google Scholar

[47] Liu J., Zhao L., Xue Y., Shi J., Suo L., Luo Y., Chai B., Yang C., Fang Q., Zhang Y., et al. An unconditioned stimulus retrieval extinction procedure to prevent the return of fear memory. Biol Psychiatry, 2014, 76: 895-901 CrossRef PubMed Google Scholar

[48] Lonergan M.H., Olivera-Figueroa L.A., Pitman R.K., Brunet A.. Propranolol’s effects on the consolidation and reconsolidation of long-term emotional memory in healthy participants: a meta-analysis. J Psychiatry Neurosci, 2013, 38: 222-231 CrossRef PubMed Google Scholar

[49] Maeng L.Y., Taha M.B., Cover K.K., Glynn S.S., Murillo M., Lebron-Milad K., Milad M.R.. Acute gonadotropin-releasing hormone agonist treatment enhances extinction memory in male rats. Psychoneuroendocrinology, 2017, 82: 164-172 CrossRef PubMed Google Scholar

[50] Marin M.F., Zsido R.G., Song H., Lasko N.B., Killgore W.D.S., Rauch S.L., Simon N.M., Milad M.R.. Skin conductance responses and neural activations during fear conditioning and extinction recall across anxiety disorders. JAMA Psychiatry, 2017, 74: 622-631 CrossRef PubMed Google Scholar

[51] McGaugh J.L.. Time-dependent processes in memory storage. Science, 1966, 153: 1351-1358 CrossRef ADS Google Scholar

[52] McGaugh J.L.. Memory—a century of consolidation. Science, 2000, 287: 248-251 CrossRef ADS Google Scholar

[53] McGuire J.F., Orr S.P., Essoe J.K.Y., McCracken J.T., Storch E.A., Piacentini J.. Extinction learning in childhood anxiety disorders, obsessive compulsive disorder and post-traumatic stress disorder: implications for treatment. Expert Rev Neurotherapeut, 2016, 16: 1155-1174 CrossRef PubMed Google Scholar

[54] Meir Drexler S., Merz C.J., Hamacher-Dang T.C., Marquardt V., Fritsch N., Otto T., Wolf O.T.. Effects of postretrieval-extinction learning on return of contextually controlled cued fear. Behav Neurosci, 2014, 128: 474-481 CrossRef PubMed Google Scholar

[55] Meuret A.E., Rosenfield D., Bhaskara L., Auchus R., Liberzon I., Ritz T., Abelson J.L.. Timing matters: endogenous cortisol mediates benefits from early-day psychotherapy. Psychoneuroendocrinology, 2016, 74: 197-202 CrossRef PubMed Google Scholar

[56] Milad M.R., Orr S.P., Pitman R.K., Rauch S.L.. Context modulation of memory for fear extinction in humans. Psychophysiology, 2005, 42: 456-464 CrossRef PubMed Google Scholar

[57] Milad M.R., Wright C.I., Orr S.P., Pitman R.K., Quirk G.J., Rauch S.L.. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry, 2007, 62: 446-454 CrossRef PubMed Google Scholar

[58] Mineka S., Zinbarg R.. A contemporary learning theory perspective on the etiology of anxiety disorders: it’s not what you thought it was. Am Psychologist, 2006, 61: 10-26 CrossRef PubMed Google Scholar

[59] Misanin J.R., Miller R.R., Lewis D.J.. Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science, 1968, 160: 554-555 CrossRef ADS Google Scholar

[60] Mizrachi Zer-Aviv T., Segev A., Akirav I.. Cannabinoids and post-traumatic stress disorder. Behav Pharmacol, 2016, 27: 561-569 CrossRef PubMed Google Scholar

[61] Monfils M.H., Cowansage K.K., Klann E., LeDoux J.E.. Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science, 2009, 324: 951-955 CrossRef PubMed ADS Google Scholar

[62] Morena M., Berardi A., Colucci P., Palmery M., Trezza V., Hill M.N., Campolongo P.. Enhancing endocannabinoid neurotransmission augments the efficacy of extinction training and ameliorates traumatic stress-induced behavioral alterations in rats. Neuropsychopharmacology, 2018, : in press doi: 10.1038/npp.2017.305 CrossRef PubMed Google Scholar

[63] Nader K., Schafe G.E., Le Doux J.E.. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature, 2000, 406: 722-726 CrossRef PubMed Google Scholar

[64] O’Doherty, D.C., Chitty, K.M., Saddiqui, S., Bennett, M.R., and Lagopoulos, J. (2015). A systematic review and meta-analysis of magnetic resonance imaging measurement of structural volumes in posttraumatic stress disorder. Psychiatry Res 232, 1–33. Google Scholar

[65] Phelps E.A., Delgado M.R., Nearing K.I., LeDoux J.E.. Extinction learning in humans. Neuron, 2004, 43: 897-905 CrossRef PubMed Google Scholar

[66] Rasch B., Büchel C., Gais S., Born J.. Odor cues during slow-wave sleep prompt declarative memory consolidation. Science, 2007, 315: 1426-1429 CrossRef PubMed ADS Google Scholar

[67] Roesler R.. Molecular mechanisms controlling protein synthesis in memory reconsolidation. Neurobiol Learn Mem, 2017, 142: 30-40 CrossRef PubMed Google Scholar

[68] Rolls A., Makam M., Kroeger D., Colas D., de Lecea L., Heller H.C.. Sleep to forget: interference of fear memories during sleep. Mol Psychiatry, 2013, 18: 1166-1170 CrossRef PubMed Google Scholar

[69] Rudoy J.D., Voss J.L., Westerberg C.E., Paller K.A.. Strengthening individual memories by reactivating them during sleep. Science, 2009, 326: 1079-1079 CrossRef PubMed ADS Google Scholar

[70] Schiller, D., and Phelps, E.A. (2011). Does reconsolidation occur in humans? Front Behav Neurosci 5, 24. Google Scholar

[71] Schiller D., Kanen J.W., LeDoux J.E., Monfils M.H., Phelps E.A.. Extinction during reconsolidation of threat memory diminishes prefrontal cortex involvement. Proc Natl Acad Sci USA, 2013, 110: 20040-20045 CrossRef PubMed ADS Google Scholar

[72] Schiller D., Monfils M.H., Raio C.M., Johnson D.C., Ledoux J.E., Phelps E.A.. Preventing the return of fear in humans using reconsolidation update mechanisms. Nature, 2010, 463: 49-53 CrossRef PubMed ADS Google Scholar

[73] Schönauer M., Geisler T., Gais S.. Strengthening procedural memories by reactivation in sleep. J Cogn Neurosci, 2014, 26: 143-153 CrossRef PubMed Google Scholar

[74] Smits J.A.J., Rosenfield D., Davis M.L., Julian K., Handelsman P.R., Otto M.W., Tuerk P., Shiekh M., Rosenfield B., Hofmann S.G., et al. Yohimbine enhancement of exposure therapy for social anxiety disorder: a randomized controlled trial. Biol Psychiatry, 2014, 75: 840-846 CrossRef PubMed Google Scholar

[75] Sperl M.F.J., Panitz C., Rosso I.M., Dillon D.G., Kumar P., Hermann A., Whitton A.E., Hermann C., Pizzagalli D.A., Mueller E.M.. Fear extinction recall modulates human frontomedial theta and amygdala activity. Cerebral Cortex, 2018, : in press doi: 10.1093/cercor/bhx353 CrossRef PubMed Google Scholar

[76] Squire L.R., Davis H.P.. The pharmacology of memory: a neurobiological perspective. Annu Rev Pharmacol Toxicol, 1981, 21: 323-356 CrossRef Google Scholar

[77] Steinfurth E.C.K., Kanen J.W., Raio C.M., Clem R.L., Huganir R.L., Phelps E.A.. Young and old Pavlovian fear memories can be modified with extinction training during reconsolidation in humans. Learning Memory, 2014, 21: 338-341 CrossRef PubMed Google Scholar

[78] Tempesta D., Socci V., De Gennaro L., Ferrara M.. Sleep and emotional processing. Sleep Med Rev, 2018, : in press doi: 10.1016/j.smrv.2017.12.005 CrossRef PubMed Google Scholar

[79] Van’t Wout, M., Longo, S.M., Reddy, M.K., Philip, N.S., Bowker, M.T., and Greenberg, B.D. (2017). Transcranial direct current stimulation may modulate extinction memory in posttraumatic stress disorder. Brain Behav 7, e00681. Google Scholar

[80] Van’t Wout, M., Mariano, T.Y., Garnaat, S.L., Reddy, M.K., Rasmussen, S.A., and Greenberg, B.D. (2016). Can transcranial direct current stimulation augment extinction of conditioned fear? Brain Stimul 9, 529–536. Google Scholar

[81] Vervliet B., Craske M.G., Hermans D.. Fear extinction and relapse: state of the art. Annu Rev Clin Psychol, 2013, 9: 215-248 CrossRef PubMed Google Scholar

[82] Wang P.S., Berglund P., Olfson M., Pincus H.A., Wells K.B., Kessler R.C.. Failure and delay in initial treatment contact after first onset of mental disorders in the national comorbidity survey replication. Arch Gen Psychiatry, 2005, 62: 603-613 CrossRef PubMed Google Scholar

[83] Weems C.F., Graham R.A.. Resilience and trajectories of posttraumatic stress among youth exposed to disaster. J Child Adolescent Psychopharmacol, 2014, 24: 2-8 CrossRef PubMed Google Scholar

[84] Zhang B., Li C.Y., Wang X.S.. The effect of hippocampal NMDA receptor blockade by MK-801 on cued fear extinction. Behav Brain Res, 2017a, 332: 200-203 CrossRef PubMed Google Scholar

[85] Zhang D., Wang X., Wang B., Garza J.C., Fang X., Wang J., Scherer P.E., Brenner R., Zhang W., Lu X.Y.. Adiponectin regulates contextual fear extinction and intrinsic excitability of dentate gyrus granule neurons through AdipoR2 receptors. Mol Psychiatry, 2017b, 22: 1044-1055 CrossRef PubMed Google Scholar

[86] Zuj D.V., Palmer M.A., Lommen M.J.J., Felmingham K.L.. The centrality of fear extinction in linking risk factors to PTSD: a narrative review. Neurosci Biobehav Rev, 2016, 69: 15-35 CrossRef PubMed Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1