SCIENCE CHINA Life Sciences, Volume 61, Issue 12: 1602-1603(2018) https://doi.org/10.1007/s11427-018-9416-y

New cytosine base editor for plant genome editing

More info
  • ReceivedOct 12, 2018
  • AcceptedOct 20, 2018
  • PublishedNov 11, 2018


There is no abstract available for this article.

Interest statement

The author(s) declare that they have no conflict of interest.


[1] Chen Y., Wang Z., Ni H., Xu Y., Chen Q., Jiang L.. CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis. Sci China Life Sci, 2017, 60: 520-523 CrossRef PubMed Google Scholar

[2] Jiao Y., Wang Y., Xue D., Wang J., Yan M., Liu G., Dong G., Zeng D., Lu Z., Zhu X., et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010, 42: 541-544 CrossRef PubMed Google Scholar

[3] Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu D.R.. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533: 420-424 CrossRef PubMed ADS Google Scholar

[4] Kosicki M., Tomberg K., Bradley A.. Erratum: Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol, 2018, 36: 899 CrossRef PubMed Google Scholar

[5] Li W., Zhu Z., Chern M., Yin J., Yang C., Ran L., Cheng M., He M., Wang K., Wang J., et al. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 2017, 170: 114-126.e15 CrossRef PubMed Google Scholar

[6] Ma Y., Dai X., Xu Y., Luo W., Zheng X., Zeng D., Pan Y., Lin X., Liu H., Zhang D., et al. COLD1 confers chilling tolerance in rice. Cell, 2015, 160: 1209-1221 CrossRef PubMed Google Scholar

[7] Ma Y., Zhang J., Yin W., Zhang Z., Song Y., Chang X.. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods, 2016, 13: 1029-1035 CrossRef PubMed Google Scholar

[8] Nishida K., Arazoe T., Yachie N., Banno S., Kakimoto M., Tabata M., Mochizuki M., Miyabe A., Araki M., Hara K.Y., et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 2016, 353: aaf8729 CrossRef PubMed Google Scholar

[9] Ran Y., Liang Z., Gao C.. Current and future editing reagent delivery systems for plant genome editing. Sci China Life Sci, 2017, 60: 490-505 CrossRef PubMed Google Scholar

[10] Ren B., Yan F., Kuang Y., Li N., Zhang D., Lin H., Zhou H.. A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice. Sci China Life Sci, 2017, 60: 516-519 CrossRef PubMed Google Scholar

[11] Wang X., Li J., Wang Y., Yang B., Wei J., Wu J., Wang R., Huang X., Chen J., Yang L.. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat Biotechnol, 2018, 533: 946-949 CrossRef PubMed Google Scholar

[12] Zong Y., Song Q., Li C., Jin S., Zhang D., Wang Y., Qiu J.L., Gao C.. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol, 2018, 2: 950-953 CrossRef PubMed Google Scholar

[13] Zong Y., Wang Y., Li C., Zhang R., Chen K., Ran Y., Qiu J.L., Wang D., Gao C.. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol, 2017, 35: 438-440 CrossRef PubMed Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有