SCIENCE CHINA Life Sciences, Volume 61 , Issue 12 : 1465-1473(2018) https://doi.org/10.1007/s11427-018-9420-1

Vaccination of poultry successfully eliminated human infection with H7N9 virus in China

More info
  • ReceivedOct 11, 2018
  • AcceptedOct 17, 2018
  • PublishedNov 7, 2018


The H7N9 viruses that emerged in China in 2013 were nonpathogenic in chickens but mutated to a highly pathogenic form in early 2017 and caused severe disease outbreaks in chickens. The H7N9 influenza viruses have caused five waves of human infection, with almost half of the total number of human cases (766 of 1,567) being reported in the fifth wave, raising concerns that even more human infections could occur in the sixth wave. In September 2017, an H5/H7 bivalent inactivated vaccine for chickens was introduced, and the H7N9 virus isolation rate in poultry dropped by 93.3% after vaccination. More importantly, only three H7N9 human cases were reported between October 1, 2017 and September 30, 2018, indicating that vaccination of poultry successfully eliminated human infection with H7N9 virus. These facts emphasize that active control of animal disease is extremely important for zoonosis control and human health protection.

Funded by

the National Key R&D Program of China(2016YFD0500201,2016YFD0500203)

the National Natural Science Foundation of China(31521005)

and the China Agriculture Research System(CARS-41-G12)


This work was supported by the National Key R&D Program of China (2016YFD0500201, 2016YFD0500203), the National Natural Science Foundation of China (31521005), the China Agriculture Research System (CARS-41-G12), and the US NIH CEIRS contract HHSN272201400004C.

Interest statement

The author(s) declare that they have no conflict of interest.


[1] Alexander D., Brown I.. History of highly pathogenic avian influenza. Rev Sci Tech OIE, 2009, 28: 19-38 CrossRef Google Scholar

[2] Belser J., Gustin K., Pearce M., Maines T., Zeng H., Pappas C., Sun X., Carney P., Villanueva J., Stevens J., et al. Pathogenesis and transmission of avian influenza A (H7N9) virus in ferrets and mice. Nature, 2013, 501: 556-559 CrossRef PubMed ADS Google Scholar

[3] Chen, B., Zhang, Z., and Chen, W. (1994). Isolation and preliminary serological characterization of type A influenza viruses from chickens. Chin J Vet Med 22, 3‒5. Google Scholar

[4] Chen H.. Avian influenza vaccination: the experience in China. Rev Sci Tech OIE, 2009a, 28: 267-274 CrossRef Google Scholar

[5] Chen H.. H5N1 avian influenza in China. Sci China Ser C-Life Sci, 2009b, 52: 419-427 CrossRef PubMed Google Scholar

[6] Chen H., Yuan H., Gao R., Zhang J., Wang D., Xiong Y., Fan G., Yang F., Li X., Zhou J., et al. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. Lancet, 2014, 383: 714-721 CrossRef Google Scholar

[7] Chen L., Blixt O., Stevens J., Lipatov A., Davis C., Collins B., Cox N., Paulson J., Donis R.. In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity. Virology, 2012, 422: 105-113 CrossRef PubMed Google Scholar

[8] Deng G., Shi J., Wang J., Kong H., Cui P., Zhang F., Tan D., Suzuki Y., Liu L., Jiang Y., et al. Genetics, receptor binding, and virulence in mice of H10N8 influenza viruses isolated from ducks and chickens in live poultry markets in China. J Virol, 2015, 89: 6506-6510 CrossRef PubMed Google Scholar

[9] Feng X., Wang Z., Shi J., Deng G., Kong H., Tao S., Li C., Liu L., Guan Y., Chen H.. Glycine at position 622 in PB1 contributes to the virulence of H5N1 avian influenza virus in mice. J Virol, 2016, 90: 1872-1879 CrossRef PubMed Google Scholar

[10] Gabriel G., Dauber B., Wolff T., Planz O., Klenk H.D., Stech J.. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci USA, 2005, 102: 18590-18595 CrossRef PubMed ADS Google Scholar

[11] Gao R., Cao B., Hu Y., Feng Z., Wang D., Hu W., Chen J., Jie Z., Qiu H., Xu K., et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med, 2013, 368: 1888-1897 CrossRef PubMed Google Scholar

[12] Gao Y., Zhang Y., Shinya K., Deng G., Jiang Y., Li Z., Guan Y., Tian G., Li Y., Shi J., et al. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog, 2009, 5: e1000709 CrossRef PubMed Google Scholar

[13] Ge J., Deng G., Wen Z., Tian G., Wang Y., Shi J., Wang X., Li Y., Hu S., Jiang Y., et al. Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses. J Virol, 2007, 81: 150-158 CrossRef PubMed Google Scholar

[14] Hatta M., Gao P., Halfmann P., Kawaoka Y.. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science, 2001, 293: 1840-1842 CrossRef PubMed ADS Google Scholar

[15] Hatta M., Hatta Y., Kim J.H., Watanabe S., Shinya K., Nguyen T., Lien P.S., Le Q.M., Kawaoka Y.. Growth of H5N1 influenza a viruses in the upper respiratory tracts of mice. PLoS Pathog, 2007, 3: e133-1379 CrossRef PubMed Google Scholar

[16] Herfst S., Schrauwen E., Linster M., Chutinimitkul S., de Wit E., Munster V., Sorrell E., Bestebroer T., Burke D., Smith D., et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science, 2012, 336: 1534-1541 CrossRef PubMed ADS Google Scholar

[17] Homme, P., and Easterday, B. (1970). Avian influenza virus infections. I. Characteristics of influenza A-turkey-Wisconsin-1966 virus. Avian Dis 14, 66‒74. Google Scholar

[18] Imai M., Watanabe T., Hatta M., Das S.C., Ozawa M., Shinya K., Zhong G., Hanson A., Katsura H., Watanabe S., et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature, 2012, 486: 420-428 CrossRef PubMed ADS Google Scholar

[19] Jiang Y., Yu K., Zhang H., Zhang P., Li C., Tian G., Li Y., Wang X., Ge J., Bu Z., et al. Enhanced protective efficacy of H5 subtype avian influenza DNA vaccine with codon optimized HA gene in a pCAGGS plasmid vector. Antiviral Res, 2007, 75: 234-241 CrossRef PubMed Google Scholar

[20] Jiao P., Tian G., Li Y., Deng G., Jiang Y., Liu C., Liu W., Bu Z., Kawaoka Y., Chen H.. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol, 2008, 82: 1146-1154 CrossRef PubMed Google Scholar

[21] Kilbourne E.D.. Influenza pandemics of the 20th century. Emerg Infect Dis, 2006, 12: 9-14 CrossRef PubMed Google Scholar

[22] Kong H., Zhang Q., Gu C., Shi J., Deng G., Ma S., Liu J., Chen P., Guan Y., Jiang Y., et al. A live attenuated vaccine prevents replication and transmission of H7N9 virus in mammals. Sci Rep, 2015, 5: 11233 CrossRef PubMed ADS Google Scholar

[23] Li C., Yu K., Tian G., Yu D., Liu L., Jing B., Ping J., Chen H.. Evolution of H9N2 influenza viruses from domestic poultry in Mainland China. Virology, 2005a, 340: 70-83 CrossRef PubMed Google Scholar

[24] Li C., Bu Z., Chen H.. Avian influenza vaccines against H5N1 ‘bird flu’. Trends Biotech, 2014a, 32: 147-156 CrossRef PubMed Google Scholar

[25] Li, C., and Chen, H. (2014). Enhancement of influenza virus transmission by gene reassortment. Curr Top Microbiol 385, 185--204. Google Scholar

[26] Li X., Shi J., Guo J., Deng G., Zhang Q., Wang J., He X., Wang K., Chen J., Li Y., et al. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 Avian Influenza viruses. PLoS Pathog, 2014b, 10: e1004508 CrossRef PubMed Google Scholar

[27] Li Y., Shi J., Zhong G., Deng G., Tian G., Ge J., Zeng X., Song J., Zhao D., Liu L., et al. Continued evolution of H5N1 influenza viruses in wild birds, domestic poultry, and humans in China from 2004 to 2009. J Virol, 2010, 84: 8389-8397 CrossRef PubMed Google Scholar

[28] Li Z., Chen H., Jiao P., Deng G., Tian G., Li Y., Hoffmann E., Webster R.G., Matsuoka Y., Yu K.. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol, 2005b, 79: 12058-12064 CrossRef PubMed Google Scholar

[29] Liu J., Chen P., Jiang Y., Wu L., Zeng X., Tian G., Ge J., Kawaoka Y., Bu Z., Chen H.. A duck enteritis virus-vectored bivalent live vaccine provides fast and complete protection against H5N1 avian influenza virus infection in ducks. J Virol, 2011, 85: 10989-10998 CrossRef PubMed Google Scholar

[30] Lowen A., Mubareka S., Tumpey T., García-Sastre A., Palese P.. The guinea pig as a transmission model for human influenza viruses. Proc Natl Acad Sci USA, 2006, 103: 9988-9992 CrossRef PubMed ADS Google Scholar

[31] Lu, X., Tumpey, T., Morken, T., Zaki, S., Cox, N., and Katz, J. (1999). A mouse model for the evaluation of pathogenesis and immunity to influenza A (H5N1) viruses isolated from humans. J Virol 73, 5903‒5911. Google Scholar

[32] MARA of China. (2018). Bulletin No. 30. http://www.moa.gov.cn/govpublic/SYJ/201805/t20180529_6145524.htm. Google Scholar

[33] Neumann G., Kawaoka Y.. Host range restriction and pathogenicity in the context of influenza pandemic. Emerg Infect Dis, 2006, 12: 881-886 CrossRef Google Scholar

[34] Pantin-Jackwood M., Miller P., Spackman E., Swayne D., Susta L., Costa-Hurtado M., Suarez D.. Role of poultry in the spread of novel H7N9 influenza virus in China. J Virol, 2014, 88: 5381-5390 CrossRef PubMed Google Scholar

[35] Qi W., Jia W., Liu D., Li J., Bi Y., Xie S., Li B., Hu T., Du Y., Xing L., et al. Emergence and adaptation of a novel highly pathogenic H7N9 influenza virus in birds and humans from a 2013 human-infecting low-pathogenic ancestor. J Virol, 2018, 92: pii:e00921-17 CrossRef PubMed Google Scholar

[36] Richard M., Schrauwen E., de Graaf M., Bestebroer T., Spronken M., van Boheemen S., de Meulder D., Lexmond P., Linster M., Herfst S., et al. Limited airborne transmission of H7N9 influenza A virus between ferrets. Nature, 2013, 501: 560-563 CrossRef PubMed ADS Google Scholar

[37] Rogers G., Paulson J.. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology, 1983, 127: 361-373 CrossRef Google Scholar

[38] Shi J., Deng G., Kong H., Gu C., Ma S., Yin X., Zeng X., Cui P., Chen Y., Yang H., et al. H7N9 virulent mutants detected in chickens in China pose an increased threat to humans. Cell Res, 2017, 27: 1409-1421 CrossRef PubMed Google Scholar

[39] Shi J., Deng G., Ma S., Zeng X., Yin X., Li M., Zhang B., Cui P., Chen Y., Yang H., et al. Rapid evolution of H7N9 highly pathogenic viruses that emerged in China in 2017. Cell Host Microbe, 2018, 24: 558-568.e7 CrossRef PubMed Google Scholar

[40] Shi J., Deng G., Liu P., Zhou J., Guan L., Li W., Li X., Guo J., Wang G., Fan J., et al. Isolation and characterization of H7N9 viruses from live poultry markets — Implication of the source of current H7N9 infection in humans. Chin Sci Bull, 2013, 58: 1857-1863 CrossRef ADS Google Scholar

[41] Shi J., Deng G., Zeng X., Kong H., Wang X., Lu K., Wang X., Mu G., Xu X., Cui P., et al. Novel influenza A(H7N2) virus in chickens, Jilin Province, China, 2014. Emerg Infect Dis, 2014, 20: 1719-1722 CrossRef PubMed Google Scholar

[42] Steel J., Lowen A.C., Mubareka S., Palese P.. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog, 2009, 5: e1000252 CrossRef PubMed Google Scholar

[43] Subbarao, K., London, W., and Murphy, B. (1993). A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol 67, 1761--1764. Google Scholar

[44] Swayne D.. Impact of vaccines and vaccination on global control of avian influenza. Avian Dis, 2012, 56: 818-828 CrossRef PubMed Google Scholar

[45] Tian G., Zhang S., Li Y., Bu Z., Liu P., Zhou J., Li C., Shi J., Yu K., Chen H.. Protective efficacy in chickens, geese and ducks of an H5N1-inactivated vaccine developed by reverse genetics. Virology, 2005, 341: 153-162 CrossRef PubMed Google Scholar

[46] Vasin A., Temkina O., Egorov V., Klotchenko S., Plotnikova M., Kiselev O.. Molecular mechanisms enhancing the proteome of influenza A viruses: an overview of recently discovered proteins. Virus Res, 2014, 185: 53-63 CrossRef PubMed Google Scholar

[47] Wang Z., Yang H., Chen Y., Tao S., Liu L., Kong H., Ma S., Meng F., Suzuki Y., Qiao C., et al. A single-amino-acid substitution at position 225 in hemagglutinin alters the transmissibility of eurasian avian-Like H1N1 swine influenza virus in guinea pigs. J Virol, 2017, 91: pii:e00800-17 CrossRef PubMed Google Scholar

[48] Watanabe T., Kiso M., Fukuyama S., Nakajima N., Imai M., Yamada S., Murakami S., Yamayoshi S., Iwatsuki-Horimoto K., Sakoda Y., et al. Characterization of H7N9 influenza A viruses isolated from humans. Nature, 2013, 501: 551-555 CrossRef PubMed ADS Google Scholar

[49] World Health Organization. (2018). Influenza at the human-animal interface. http://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_02_03_2018.pdf?ua=1. Google Scholar

[50] World Organisation for Animal Health. (2017). http://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?reportid=23367. Google Scholar

[51] Xiong X., Martin S., Haire L., Wharton S., Daniels R., Bennett M., McCauley J., Collins P., Walker P., Skehel J., et al. Receptor binding by an H7N9 influenza virus from humans. Nature, 2013, 499: 496-499 CrossRef PubMed ADS Google Scholar

[52] Yang H., Chen Y., Qiao C., He X., Zhou H., Sun Y., Yin H., Meng S., Liu L., Zhang Q., et al. Prevalence, genetics, and transmissibility in ferrets of Eurasian avian-like H1N1 swine influenza viruses. Proc Natl Acad Sci USA, 2016, 113: 392-397 CrossRef PubMed ADS Google Scholar

[53] Yang L., Zhu W., Li X., Chen M., Wu J., Yu P., Qi S., Huang Y., Shi W., Dong J., et al. Genesis and spread of newly emerged highly pathogenic H7N9 avian viruses in mainland China. J Virol, 2017, 91: pii:e01277-17 CrossRef PubMed Google Scholar

[54] Yang W., Yin X., Guan L., Li M., Ma S., Shi J., Deng G., Suzuki Y., Chen H.. A live attenuated vaccine prevents replication and transmission of H7N9 highly pathogenic influenza viruses in mammals. Emerg Microbes Infect, 2018, 7: 153 CrossRef PubMed Google Scholar

[55] Zeng X., Chen P., Liu L., Deng G., Li Y., Shi J., Kong H., Feng H., Bai J., Li X., et al. Protective efficacy of an H5N1 inactivated vaccine against challenge with lethal H5N1, H5N2, H5N6, and H5N8 influenza viruses in chickens. Avian Dis, 2016, 60: 253-255 CrossRef PubMed Google Scholar

[56] Zhang Q., Shi J., Deng G., Guo J., Zeng X., He X., Kong H., Gu C., Li X., Liu J., et al. H7N9 influenza viruses are transmissible in ferrets by respiratory droplet. Science, 2013a, 341: 410-414 CrossRef PubMed ADS Google Scholar

[57] Zhang Y., Zhang Q., Gao Y., He X., Kong H., Jiang Y., Guan Y., Xia X., Shu Y., Kawaoka Y., et al. Key molecular factors in hemagglutinin and PB2 contribute to efficient transmission of the 2009 H1N1 pandemic influenza virus. J Virol, 2012, 86: 9666-9674 CrossRef PubMed Google Scholar

[58] Zhang Y., Zhang Q., Kong H., Jiang Y., Gao Y., Deng G., Shi J., Tian G., Liu L., Liu J., et al. H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet. Science, 2013b, 340: 1459-1463 CrossRef PubMed ADS Google Scholar

[59] Zhou J., Wang D., Gao R., Zhao B., Song J., Qi X., Zhang Y., Shi Y., Yang L., Zhu W., et al. Biological features of novel avian influenza A (H7N9) virus. Nature, 2013, 499: 500-503 CrossRef PubMed ADS Google Scholar

[60] Zhu H., Wang D., Kelvin D.J., Li L., Zheng Z., Yoon S.W., Wong S.S., Farooqui A., Wang J., Banner D., et al. Infectivity, transmission, and pathology of human-isolated H7N9 influenza virus in ferrets and pigs. Science, 2013, 341: 183-186 CrossRef PubMed ADS Google Scholar

  • Figure 1

    Genetic and biologic evolution of H7N9 influenza viruses. The 2013 low pathogenic avian influenza H7N9 virus (2013 LPAI virus) mutated to a highly pathogenic form in 2017 (2017 HPAI virus) by obtaining an insertion of four amino acids (indicated by the short red bar in the blue virus sketch) in its hemagglutinin (HA) cleavage site. The 2017 HPAI virus further reassorted with different duck influenza viruses and formed new H7N9 and H7N2 reassortants (genes from other duck viruses are shown in dark yellow and purple). Both 2013 LPAI H7N9 virus and 2017 HPAI virus could obtain the PB2 627K or PB2 701N mutation (indicated by the red dot and yellow dot, respectively, in the blue virus sketch) during their replication in humans. The pathotypes of the viruses in different birds or mammals are indicated by the color of the animal sketches: red, non-lethal; grey, low-medium pathogenicity; black, highly pathogenic.

  • Figure 2

    Human infection with H7N9 viruses. The red arrow indicates when H5/H7 vaccine administration to poultry was initiated in China.

  • Table 1   Summary of transmission studies in ferrets of the 2013 H7N9 low pathogenic influenza viruses isolated from humans

    Study leader

    Animal pairs per experiment

    Respiratory droplet transmission (Number of positive pairs/Total number of pairs)a)

    A/Anhui/1/2013 (HA 186V/226L and PB2 627K)

    A/Shanghai/1/2013 (HA 186V/226Q and PB2 627K)

    A/Shanghai/2/2013 (HA 186V/226L and PB2 627K)


    Hualan Chen





    Zhang et al., 2013a

    Terrence M. Tumpey

    3 or 6



    Not done

    Belser et al., 2013

    Ron A. M. Fouchier



    Not done

    Not done

    Richard et al., 2013

    Yoshihiro Kawaoka



    Not done

    Not done

    Watanabe et al., 2013

    Yi Guan and Yuelong Shu


    Not done

    Not done


    Zhu et al., 2013

    Pair were deemed positive if virus was isolated or seroconversion was detected in the naïve exposed animal.

  • Table 2   Post-vaccination serological surveillance in chicken farms from October 2017 to January 2018 in China

    Chicken species

    Number of farms visited

    Vaccinated farma), b)


    % vaccinated


    % vaccinated







    Layer and slow-growing meat chickensd)












    Serum samples were collected from 10 chickens in each farm; the chicken farm was considered vaccinated when seven or more chickens had hemagglutinin inhibition (HI) antibody titers and the mean titer was ≥4 log2. b) Chickens in some farms were only vaccinated with the H5 single vaccine and only had H5 HI antibodies. c) Fast-growing meat chickens that are usually slaughtered at 40 days of age. d) Slow-growing meat chickens that are usually taken to markets at 90–120 days of age.

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号