logo

SCIENCE CHINA Life Sciences, Volume 62, Issue 3: 360-368(2019) https://doi.org/10.1007/s11427-018-9427-4

Advances in research into gamete and embryo-fetal origins of adult diseases

Kexin Zou1,2,†, Guolian Ding1,2,†, Hefeng Huang1,2,*
More info
  • ReceivedAug 28, 2018
  • AcceptedSep 19, 2018
  • PublishedJan 24, 2019

Abstract

The fetal and infant origins of adult disease hypothesis proposed that the roots of adult chronic disease lie in the effects of adverse environments in fetal life and early infancy. In addition to the fetal period, fertilization and early embryonic stages, the critical time windows of epigenetic reprogramming, rapid cell differentiation and organogenesis, are the most sensitive stages to environmental disturbances. Compared with embryo and fetal development, gametogenesis and maturation take decades and are more vulnerable to potential damage for a longer exposure period. Therefore, we should shift the focus of adult disease occurrence and pathogenesis further back to gametogenesis and embryonic development events, which may result in intergenerational, even transgenerational, epigenetic re-programming with transmission of adverse traits and characteristics to offspring. Here, we focus on the research progress relating to diseases that originated from events in the gametes and early embryos and the potential epigenetic mechanisms involved.


Funded by

Special Fund for the National Key Research and Development Plan(2017YFC1001303)

National Natural Science Foundation of China(81490742,31571556)


Acknowledgment

This work was supported by Special Fund for the National Key Research and Development Plan (2017YFC1001303) and National Natural Science Foundation of China (81490742 and 31571556).


Interest statement

The author(s) declare that they have no conflict of interest.


References

[1] Bahous R.H., Jadavji N.M., Deng L., Cosín-Tomás M., Lu J., Malysheva O., Leung K.Y., Ho M.K., Pallàs M., Kaliman P., et al. High dietary folate in pregnant mice leads to pseudo-MTHFR deficiency and altered methyl metabolism, with embryonic growth delay and short-term memory impairment in offspring. Hum Mol Genet, 2017, 26: 888-900 CrossRef PubMed Google Scholar

[2] Barker D.J., Osmond C., Law C.M.. The intrauterine and early postnatal origins of cardiovascular disease and chronic bronchitis. J Epidemiol Commun Health, 1989a, 43: 237-240 CrossRef Google Scholar

[3] Barker D.J.P., Osmond C., Winter P.D., Margetts B., Simmonds S.J.. Weight in infancy and death from ischaemic heart disease. Lancet, 1989b, 334: 577-580 CrossRef Google Scholar

[4] Barker, D. J., ed. (1992). Fetal and Infant Origins of Adult Disease. London: BMJ Books. Google Scholar

[5] Canani R.B., Di Costanzo M., Leone L., Bedogni G., Brambilla P., Cianfarani S., Nobili V., Pietrobelli A., Agostoni C.. Epigenetic mechanisms elicited by nutrition in early life. Nutr Res Rev, 2011, 24: 198-205 CrossRef PubMed Google Scholar

[6] Cardozo E.R., Karmon A.E., Gold J., Petrozza J.C., Styer A.K.. Reproductive outcomes in oocyte donation cycles are associated with donor BMI. Hum Reprod, 2015, 207: dev298 CrossRef PubMed Google Scholar

[7] Chen H., Zhang L., Deng T., Zou P., Wang Y., Quan F., Zhang Y.. Effects of oocyte vitrification on epigenetic status in early bovine embryos. Theriogenology, 2016, 86: 868-878 CrossRef PubMed Google Scholar

[8] Chen Q., Yan M., Cao Z., Li X., Zhang Y., Shi J., Feng G., Peng H., Zhang X., Zhang Y., et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science, 2016, 351: 397-400 CrossRef PubMed ADS Google Scholar

[9] Ding G.L., Wang F.F., Shu J., Tian S., Jiang Y., Zhang D., Wang N., Luo Q., Zhang Y., Jin F., et al. Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia. Diabetes, 2012, 61: 1133-1142 CrossRef PubMed Google Scholar

[10] Du Z., Zheng H., Huang B., Ma R., Wu J., Zhang X., He J., Xiang Y., Wang Q., Li Y., et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature, 2017, 547: 232-235 CrossRef PubMed ADS Google Scholar

[11] Eckersley-Maslin M.A., Alda-Catalinas C., Reik W.. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat Rev Mol Cell Biol, 2018, 19: 436-450 CrossRef PubMed Google Scholar

[12] Eckert J.J., Porter R., Watkins A.J., Burt E., Brooks S., Leese H.J., Humpherson P.G., Cameron I.T., Fleming T.P.. Metabolic induction and early responses of mouse blastocyst developmental programming following maternal low protein diet affecting life-long health. PLoS ONE, 2012, 7: e52791 CrossRef PubMed ADS Google Scholar

[13] Fleming, T. P., Eckert, J. J. and Denisenko, O. (2017). The role of maternal nutrition during the periconceptional period and its effect on offspring phenotype. Adv Exp Med Biol 1014: 87–105. Google Scholar

[14] Fleming T.P., Velazquez M.A., Eckert J.J., Lucas E.S., Watkins A.J.. Nutrition of females during the peri-conceptional period and effects on foetal programming and health of offspring. Anim Reprod Sci, 2012, 130: 193-197 CrossRef PubMed Google Scholar

[15] Flyamer I.M., Gassler J., Imakaev M., Brandão H.B., Ulianov S.V., Abdennur N., Razin S.V., Mirny L.A., Tachibana-Konwalski K.. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature, 2017, 544: 110-114 CrossRef PubMed ADS Google Scholar

[16] Gao L., Zhao Y.C., Liang Y., Lin X.H., Tan Y.J., Wu D.D., Li X.Z., Ye B.Z., Kong F.Q., Sheng J.Z., et al. The impaired myocardial ischemic tolerance in adult offspring of diabetic pregnancy is restored by maternal melatonin treatment. J Pineal Res, 2016, 61: 340-352 CrossRef PubMed Google Scholar

[17] Gapp K., Jawaid A., Sarkies P., Bohacek J., Pelczar P., Prados J., Farinelli L., Miska E., Mansuy I.M.. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci, 2014, 17: 667-669 CrossRef PubMed Google Scholar

[18] Ge Z.J., Liang X.W., Guo L., Liang Q.X., Luo S.M., Wang Y.P., Wei Y.C., Han Z.M., Schatten H., Sun Q.Y.. Maternal diabetes causes alterations of DNA methylation statuses of some imprinted genes in murine oocytes. Biol Reprod, 2013, 88: 117 CrossRef Google Scholar

[19] Gkountela S., Zhang K.X., Shafiq T.A., Liao W.W., Hargan-Calvopiña J., Chen P.Y., Clark A.T.. DNA demethylation dynamics in the human prenatal germline. Cell, 2015, 161: 1425-1436 CrossRef PubMed Google Scholar

[20] Gluckman P., Harding J.. Nutritional and hormonal regulation of fetal growth—evolving concepts. Acta Paediatr, 1994, 83: 60-63 CrossRef Google Scholar

[21] Gould J.M., Smith P.J., Airey C.J., Mort E.J., Airey L.E., Warricker F.D.M., Pearson-Farr J.E., Weston E.C., Gould P.J.W., Semmence O.G., et al. Mouse maternal protein restriction during preimplantation alone permanently alters brain neuron proportion and adult short-term memory. Proc Natl Acad Sci USA, 2018, 115: E7398-E7407 CrossRef PubMed Google Scholar

[22] Grandjean V., Fourré S., De Abreu D.A.F., Derieppe M.A., Remy J.J., Rassoulzadegan M.. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci Rep, 2015, 5: 18193 CrossRef PubMed ADS Google Scholar

[23] Gu T.P., Guo F., Yang H., Wu H.P., Xu G.F., Liu W., Xie Z.G., Shi L., He X., Jin S., et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature, 2011, 477: 606-610 CrossRef PubMed ADS Google Scholar

[24] Guo F., Yan L., Guo H., Li L., Hu B., Zhao Y., Yong J., Hu Y., Wang X., Wei Y., et al. The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell, 2015, 161: 1437-1452 CrossRef PubMed Google Scholar

[25] Han L., Ren C., Li L., Li X., Ge J., Wang H., Miao Y.L., Guo X., Moley K.H., Shu W., et al. Embryonic defects induced by maternal obesity in mice derive from Stella insufficiency in oocytes. Nat Genet, 2018, 50: 432-442 CrossRef PubMed Google Scholar

[26] Hanna C.W., Demond H., Kelsey G.. Epigenetic regulation in development: is the mouse a good model for the human?. Human Reprod Update, 2018, 24: 556-576 CrossRef PubMed Google Scholar

[27] Hanson M.A., Gluckman P.D.. Early developmental conditioning of later health and disease: physiology or pathophysiology?. Physiol Rev, 2014, 94: 1027-1076 CrossRef PubMed Google Scholar

[28] Hou Y.J., Zhu C.C., Duan X., Liu H.L., Wang Q., Sun S.C.. Both diet and gene mutation induced obesity affect oocyte quality in mice. Sci Rep, 2016, 6: 18858 CrossRef PubMed ADS Google Scholar

[29] Hu X.L., Feng C., Lin X.H., Zhong Z.X., Zhu Y.M., Lv P.P., Lv M., Meng Y., Zhang D., Lu X.E., et al. High maternal serum estradiol environment in the first trimester is associated with the increased risk of small-for-gestational-age birth. J Clin Endocrinol Metab, 2014, 99: 2217-2224 CrossRef PubMed Google Scholar

[30] Huypens P., Sass S., Wu M., Dyckhoff D., Tschöp M., Theis F., Marschall S., Hrabě de Angelis M., Beckers J.. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat Genet, 2016, 48: 497-499 CrossRef PubMed Google Scholar

[31] Joubert B.R., den Dekker H.T., Felix J.F., Bohlin J., Ligthart S., Beckett E., Tiemeier H., van Meurs J.B., Uitterlinden A.G., Hofman A., et al. Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun, 2016, 7: 10577 CrossRef PubMed ADS Google Scholar

[32] Jungheim E.S., Schoeller E.L., Marquard K.L., Louden E.D., Schaffer J.E., Moley K.H.. Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology, 2010, 151: 4039-4046 CrossRef PubMed Google Scholar

[33] Kanaka-gantenbein C., Mastorakos G., Chrousos G.P.. Endocrine-related causes and consequences of intrauterine growth retardation. Ann New York Acad Sci, 2003, 997: 150-157 CrossRef ADS Google Scholar

[34] Ke Y., Xu Y., Chen X., Feng S., Liu Z., Sun Y., Yao X., Li F., Zhu W., Gao L., et al. 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell, 2017, 170: 367-381.e20 CrossRef PubMed Google Scholar

[35] Krishnaveni G.V., Veena S.R., Karat S.C., Yajnik C.S., Fall C.H.D.. Association between maternal folate concentrations during pregnancy and insulin resistance in Indian children. Diabetologia, 2014, 57: 110-121 CrossRef PubMed Google Scholar

[36] Kuhtz J., Romero S., De Vos M., Smitz J., Haaf T., Anckaert E.. Human in vitro oocyte maturation is not associated with increased imprinting error rates at LIT1, SNRPN, PEG3 and GTL2. Hum Reprod, 2014, 29: 1995-2005 CrossRef PubMed Google Scholar

[37] Li W., Li Z., Li S., Wang X., Wilson J.X., Huang G.. Periconceptional folic acid supplementation benefit to development of early sensory-motor function through increase DNA methylation in rat offspring. Nutrients, 2018, 10: 292 CrossRef PubMed Google Scholar

[38] Liu X., Wang C., Liu W., Li J., Li C., Kou X., Chen J., Zhao Y., Gao H., Wang H., et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature, 2016, 537: 558-562 CrossRef PubMed ADS Google Scholar

[39] Lv P.P., Meng Y., Lv M., Feng C., Liu Y., Li J.Y., Yu D.Q., Shen Y., Hu X.L., Gao Q., et al. Altered thyroid hormone profile in offspring after exposure to high estradiol environment during the first trimester of pregnancy: a cross-sectional study. BMC Med, 2014, 12: 240 CrossRef PubMed Google Scholar

[40] Lv P.P., Tian S., Feng C., Li J.Y., Yu D.Q., Jin L., Shen Y., Yu T.T., Meng Y., Ding G.L., et al. Maternal high estradiol exposure is associated with elevated thyroxine and Pax8 in mouse offspring. Sci Rep, 2016, 6: 36805 CrossRef PubMed ADS Google Scholar

[41] Marshall K.L., Rivera R.M.. The effects of superovulation and reproductive aging on the epigenome of the oocyte and embryo. Mol Reprod Dev, 2018, 85: 90-105 CrossRef PubMed Google Scholar

[42] Meng Y., Lv P.P., Ding G.L., Yu T.T., Liu Y., Shen Y., Hu X.L., Lin X.H., Tian S., Lv M., et al. High maternal serum estradiol levels induce dyslipidemia in human newborns via a hepatic HMGCR estrogen response element. Sci Rep, 2015, 5: 10086 CrossRef PubMed ADS Google Scholar

[43] Morgan H.D., Sutherland H.G.E., Martin D.I.K., Whitelaw E.. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet, 1999, 23: 314-318 CrossRef PubMed Google Scholar

[44] Motrenko, T. (2010). Embryo-fetal origin of diseases–new approach on epigenetic reprogramming. Arch Perinat Med 6. Google Scholar

[45] Padmanabhan N., Jia D., Geary-Joo C., Wu X., Ferguson-Smith A.C., Fung E., Bieda M.C., Snyder F.F., Gravel R.A., Cross J.C., et al. Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development. Cell, 2013, 155: 81-93 CrossRef PubMed Google Scholar

[46] Paneth N., Susser M.. Early origin of coronary heart disease (the “Barker hypothesis”). Br Med J, 1995, 310: 411-412 CrossRef Google Scholar

[47] Pliushch G., Schneider E., Schneider T., El Hajj N., Rösner S., Strowitzki T., Haaf T.. In vitro maturation of oocytes is not associated with altered deoxyribonucleic acid methylation patterns in children from in vitro fertilization or intracytoplasmic sperm injection. Fertil Steril, 2015, 103: 720-727.e1 CrossRef PubMed Google Scholar

[48] Radford E.J., Ito M., Shi H., Corish J.A., Yamazawa K., Isganaitis E., Seisenberger S., Hore T.A., Reik W., Erkek S., et al. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science, 2014, 345: 1255903 CrossRef PubMed Google Scholar

[49] Rechavi O., Houri-Ze'evi L., Anava S., Goh W.S.S., Kerk S.Y., Hannon G.J., Hobert O.. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell, 2014, 158: 277-287 CrossRef PubMed Google Scholar

[50] Ren J., Cheng Y., Ming Z.H., Dong X.Y., Zhou Y.Z., Ding G.L., Pang H.Y., Rahman T.U., Akbar R., Huang H.F., et al. Intrauterine hyperglycemia exposure results in intergenerational inheritance via DNA methylation reprogramming on F1 PGCs. Epigenets Chromatin, 2018, 11: 20 CrossRef PubMed Google Scholar

[51] Rodgers A.B., Morgan C.P., Leu N.A., Bale T.L.. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci USA, 2015, 112: 13699-13704 CrossRef PubMed ADS Google Scholar

[52] Siklenka K., Erkek S., Godmann M., Lambrot R., McGraw S., Lafleur C., Cohen T., Xia J., Suderman M., Hallett M., et al. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science, 2015, 350: aab2006 CrossRef PubMed Google Scholar

[53] Skinner M.K., Guerrero-Bosagna C., Haque M.M.. Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations. Epigenetics, 2015, 10: 762-771 CrossRef PubMed Google Scholar

[54] Soubry A.. POHaD: why we should study future fathers. Environ Epigenets, 2018, 4: dvy007 CrossRef PubMed Google Scholar

[55] Stein A.D., Pierik F.H., Verrips G.H.W., Susser E.S., Lumey L.H.. Maternal exposure to the Dutch famine before conception and during pregnancy. Epidemiology, 2009, 20: 909-915 CrossRef PubMed Google Scholar

[56] Tan Y.J., Zhang X.Y., Ding G.L., Li R., Wang L., Jin L., Lin X.H., Gao L., Sheng J.Z., Huang H.F.. Aquaporin7 plays a crucial role in tolerance to hyperosmotic stress and in the survival of oocytes during cryopreservation. Sci Rep, 2015, 5: 17741 CrossRef PubMed ADS Google Scholar

[57] Tian S., Lin X.H., Xiong Y.M., Liu M.E., Yu T.T., Lv M., Zhao W., Xu G.F., Ding G.L., Xu C.M., et al. Prevalence of prediabetes risk in offspring born to mothers with hyperandrogenism. EBioMedicine, 2017, 16: 275-283 CrossRef PubMed Google Scholar

[58] Tobi E.W., Slieker R.C., Stein A.D., Suchiman H.E.D., Slagboom P.E., van Zwet E.W., Heijmans B.T., Lumey L.H.. Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome. Int J Epidemiol, 2015, 44: 1211-1223 CrossRef PubMed Google Scholar

[59] Veenendaal M.V.E., Painter R.C., de Rooij S.R., Bossuyt P.M.M., van der Post J.A.M., Gluckman P.D., Hanson M.A., Roseboom T.J.. Transgenerational effects of prenatal exposure to the 1944-45 Dutch famine. BJOG, 2013, 120: 548-554 CrossRef PubMed Google Scholar

[60] Vickers M.H.. Early life nutrition, epigenetics and programming of later life disease. Nutrients, 2014, 6: 2165-2178 CrossRef PubMed Google Scholar

[61] Wang C., Liu X., Gao Y., Yang L., Li C., Liu W., Chen C., Kou X., Zhao Y., Chen J., et al. Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nat Cell Biol, 2018, 20: 620-631 CrossRef PubMed Google Scholar

[62] Wang H.H., Zhou C.L., Lv M., Yang Q., Li J.X., Hou M., Lin J., Liu X.M., Wu Y.T., Sheng J.Z., et al. Prenatal high estradiol exposure induces sex-specific and dietarily reversible insulin resistance through decreased hypothalamic INSR. Endocrinology, 2018, 159: 465-476 CrossRef PubMed Google Scholar

[63] Wang Q., Tang S.B., Song X.B., Deng T.F., Zhang T.T., Yin S., Luo S.M., Shen W., Zhang C.L., Ge Z.J.. High-glucose concentrations change DNA methylation levels in human IVM oocytes. Human Reprod, 2018, 33: 474-481 CrossRef Google Scholar

[64] Watkins A.J., Lucas E.S., Torrens C., Cleal J.K., Green L., Osmond C., Eckert J.J., Gray W.P., Hanson M.A., Fleming T.P.. Maternal low-protein diet during mouse pre-implantation development induces vascular dysfunction and altered renin-angiotensin-system homeostasis in the offspring. Br J Nutr, 2010, 103: 1762-1770 CrossRef PubMed Google Scholar

[65] Watkins A.J., Ursell E., Panton R., Papenbrock T., Hollis L., Cunningham C., Wilkins A., Perry V.H., Sheth B., Kwong W.Y., et al. Adaptive responses by mouse early embryos to maternal diet protect fetal growth but predispose to adult onset disease1. Biol Reprod, 2008a, 78: 299-306 CrossRef Google Scholar

[66] Watkins A.J., Wilkins A., Cunningham C., Perry V.H., Seet M.J., Osmond C., Eckert J.J., Torrens C., Cagampang F.R.A., Cleal J., et al. Low protein diet fed exclusively during mouse oocyte maturation leads to behavioural and cardiovascular abnormalities in offspring. J Physiol, 2008b, 586: 2231-2244 CrossRef Google Scholar

[67] Wei Y., Yang C.R., Wei Y.P., Zhao Z.A., Hou Y., Schatten H., Sun Q.Y.. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci USA, 2014, 111: 1873-1878 CrossRef PubMed ADS Google Scholar

[68] Wu J., Huang B., Chen H., Yin Q., Liu Y., Xiang Y., Zhang B., Liu B., Wang Q., Xia W., et al. The landscape of accessible chromatin in mammalian preimplantation embryos. Nature, 2016, 534: 652-657 CrossRef PubMed ADS Google Scholar

[69] Wu L.L., Russell D.L., Wong S.L., Chen M., Tsai T.S., St John J.C., Norman R.J., Febbraio M.A., Carroll J., Robker R.L.. Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development, 2015, 142: 681-691 CrossRef PubMed Google Scholar

[70] Xu G.F., Zhang J.Y., Pan H.T., Tian S., Liu M.E., Yu T.T., Li J.Y., Ying W.W., Yao W.M., Lin X.H., et al. Cardiovascular dysfunction in offspring of ovarian-hyperstimulated women and effects of estradiol and progesterone: a retrospective cohort study and proteomics analysis. J Clin Endocrinol Metab, 2014, 99: E2494-E2503 CrossRef PubMed Google Scholar

[71] Xu G.F., Zhou C.L., Xiong Y.M., Li J.Y., Yu T.T., Tian S., Lin X.H., Liao Y., Lv Y., Zhang F.H., et al. Reduced intellectual ability in offspring of ovarian hyperstimulation syndrome: a cohort study. EBioMedicine, 2017, 20: 263-267 CrossRef PubMed Google Scholar

[72] Zamudio N.M., Chong S., O’Bryan M.K.. Epigenetic regulation in male germ cells. Reproduction, 2008, 136: 131-146 CrossRef PubMed Google Scholar

[73] Zeltser L.M.. Feeding circuit development and early-life influences on future feeding behaviour. Nat Rev Neurosci, 2018, 19: 302-316 CrossRef PubMed Google Scholar

[74] Zenk F., Loeser E., Schiavo R., Kilpert F., Bogdanović O., Iovino N.. Germ line-inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition. Science, 2017, 357: 212-216 CrossRef PubMed ADS Google Scholar

[75] Zhang L., Han L., Ma R., Hou X., Yu Y., Sun S., Xu Y., Schedl T., Moley K.H., Wang Q.. Sirt3 prevents maternal obesity-associated oxidative stress and meiotic defects in mouse oocytes. Cell Cycle, 2015, 14: 2959-2968 CrossRef PubMed Google Scholar

[76] Zhang Y., Zhang X., Shi J., Tuorto F., Li X., Liu Y., Liebers R., Zhang L., Qu Y., Qian J., et al. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol, 2018, 20: 535-540 CrossRef PubMed Google Scholar

[77] Zhu P., Guo H., Ren Y., Hou Y., Dong J., Li R., Lian Y., Fan X., Hu B., Gao Y., et al. Single-cell DNA methylome sequencing of human preimplantation embryos. Nat Genet, 2018, 50: 12-19 CrossRef PubMed Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1