logo

SCIENCE CHINA Life Sciences, Volume 62, Issue 4: 437-452(2019) https://doi.org/10.1007/s11427-018-9447-8

Exaptation at the molecular genetic level

More info
  • ReceivedNov 10, 2018
  • AcceptedDec 1, 2018
  • PublishedDec 12, 2018

Abstract

The realization that body parts of animals and plants can be recruited or coopted for novel functions dates back to, or even predates the observations of Darwin. S.J. Gould and E.S. Vrba recognized a mode of evolution of characters that differs from adaptation. The umbrella term aptation was supplemented with the concept of exaptation. Unlike adaptations, which are restricted to features built by selection for their current role, exaptations are features that currently enhance fitness, even though their present role was not a result of natural selection. Exaptations can also arise from nonaptations; these are characters which had previously been evolving neutrally. All nonaptations are potential exaptations. The concept of exaptation was expanded to the molecular genetic level which aided greatly in understanding the enormous potential of neutrally evolving repetitive DNA—including transposed elements, formerly considered junk DNA—for the evolution of genes and genomes. The distinction between adaptations and exaptations is outlined in this review and examples are given. Also elaborated on is the fact that such distinctions are sometimes more difficult to determine; this is a widespread phenomenon in biology, where continua abound and clear borders between states and definitions are rare.


Acknowledgment

Apologies to those whose articles were not cited which, in part, is owed to the explosive growth of the literature in the field. The author is grateful to Stephanie Klco-Brosius for a last minute review of language.


Interest statement

The author(s) declare that they have no conflict of interest.


References

[1] Ahituv N., Zhu Y., Visel A., Holt A., Afzal V., Pennacchio L.A., Rubin E.M.. Deletion of ultraconserved elements yields viable mice. PLoS Biol, 2007, 5: e234 CrossRef PubMed Google Scholar

[2] Anderson S.N., Springer N.M.. Potential roles for transposable elements in creating imprinted expression. Curr Opin Genets Dev, 2018, 49: 8-14 CrossRef PubMed Google Scholar

[3] Atkins, J.F., Gesteland, R.F., and Cech, T.R. (2011). RNA Worlds: from life’s origins to diversity in gene regulation (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press). Google Scholar

[4] Babatz T.D., Burns K.H.. Functional impact of the human mobilome. Curr Opin Genets Dev, 2013, 23: 264-270 CrossRef PubMed Google Scholar

[5] Baertsch R., Diekhans M., Kent W.J., Haussler D., Brosius J.. Retrocopy contributions to the evolution of the human genome. BMC Genomics, 2008, 9: 466 CrossRef PubMed Google Scholar

[6] Bakel, H.V., Nislow, C., Blencowe,B.,J., and Hughes, T.R. (2011). Response to “The Reality of Pervasive Transcription”. PLoS Biol 9, e1001102. Google Scholar

[7] Barcroft J., Stephens J.G.. Observations upon the size of the spleen. J Physiol, 1927, 64: 1-22 CrossRef Google Scholar

[8] Betrán E., Thornton K., Long M.. Retroposed new genes out of the X in Drosophila. Genome Res, 2002, 12: 1854-1859 CrossRef PubMed Google Scholar

[9] Black S.G., Arnaud F., Palmarini M., Spencer T.E.. Endogenous retroviruses in trophoblast differentiation and placental development. Am J Reprod Immunol, 2010, 64: 255-264 CrossRef PubMed Google Scholar

[10] Bladon T.S., McBurney M.W.. The rodent B2 sequence can affect expression when present in the transcribed region of a reporter gene. Gene, 1991, 98: 259-263 CrossRef Google Scholar

[11] Blain J.C., Szostak J.W.. Progress toward synthetic cells. Annu Rev Biochem, 2014, 83: 615-640 CrossRef PubMed Google Scholar

[12] Blond J.L., Lavillette D., Cheynet V., Bouton O., Oriol G., Chapel-Fernandes S., Mandrand B., Mallet F., Cosset F.L.. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol, 2000, 74: 3321-3329 CrossRef Google Scholar

[13] Bobay L.M., Touchon M., Rocha E.P.C.. Pervasive domestication of defective prophages by bacteria. Proc Natl Acad Sci USA, 2014, 111: 12127-12132 CrossRef PubMed ADS Google Scholar

[14] Bock R.. Witnessing genome evolution: experimental reconstruction of endosymbiotic and horizontal gene transfer. Annu Rev Genet, 2017, 51: 1-22 CrossRef PubMed Google Scholar

[15] Boer P.H., Adra C.N., Lau Y.F., McBurney M.W.. The testis-specific phosphoglycerate kinase gene pgk-2 is a recruited retroposon.. Mol Cell Biol, 1987, 7: 3107-3112 CrossRef Google Scholar

[16] Bornberg-Bauer E., Albà M.M.. Dynamics and adaptive benefits of modular protein evolution. Curr Opin Struct Biol, 2013, 23: 459-466 CrossRef PubMed Google Scholar

[17] Bornberg-Bauer E., Huylmans A.K., Sikosek T.. How do new proteins arise?. Curr Opin Struct Biol, 2010, 20: 390-396 CrossRef PubMed Google Scholar

[18] Bornberg-Bauer E., Schmitz J., Heberlein M.. Emergence of de novo proteins from ‘dark genomic matter’ by ‘grow slow and moult’. Biochem Soc Trans, 2015, 43: 867-873 CrossRef PubMed Google Scholar

[19] Bouttier M., Laperriere D., Memari B., Mangiapane J., Fiore A., Mitchell E., Verway M., Behr M.A., Sladek R., Barreiro L.B., et al. Alu repeats as transcriptional regulatory platforms in macrophage responses to M. tuberculosis infection. Nucleic Acids Res, 2016, 44: 10571-10587 CrossRef PubMed Google Scholar

[20] Bridges C.B.. The bar “gene” a duplication. Science, 1936, 83: 210-211 CrossRef PubMed ADS Google Scholar

[21] Britten R.J., Davidson E.H.. Gene regulation for higher cells: a theory. Science, 1969, 165: 349-357 CrossRef ADS Google Scholar

[22] Brosius J.. Retroposons—seeds of evolution. Science, 1991, 251: 753 CrossRef ADS Google Scholar

[23] Brosius J.. Genomes were forged by massive bombardments with retroelements and retrosequences. Genetica, 1999a, 107: 209-238 CrossRef Google Scholar

[24] Brosius J.. Many G-protein-coupled receptors are encoded by retrogenes. Trends Genets, 1999b, 15: 304-305 CrossRef Google Scholar

[25] Brosius J.. RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene, 1999c, 238: 115-134 CrossRef Google Scholar

[26] Brosius J.. The contribution of RNAs and retroposition to evolutionary novelties. Genetica, 2003a, 118: 99-115 CrossRef Google Scholar

[27] Brosius J.. Gene duplication and other evolutionary strategies: from the RNA world to the future. J Struct Funct Genomics, 2003b, 3: 1-17 CrossRef Google Scholar

[28] Brosius J.. Disparity, adaptation, exaptation, bookkeeping, and contingency at the genome level. Paleobiology, 2005a, 31: 1-16 CrossRef Google Scholar

[29] Brosius, J. (2005b). Echoes from the past—are we still in an RNP world? Cytogenet Genome Res 110, 8–24. Google Scholar

[30] Brosius J.. Waste not, want not—transcript excess in multicellular eukaryotes. Trends Genets, 2005c, 21: 287-288 CrossRef PubMed Google Scholar

[31] Brosius J.. The fragmented gene. Ann New York Acad Sci, 2009, 1178: 186-193 CrossRef PubMed ADS Google Scholar

[32] Brosius J.. The persistent contributions of RNA to eukaryotic gen(om)e architecture and cellular function. Cold Spring Harbor Perspectives Biol, 2014, 6: a016089 CrossRef PubMed Google Scholar

[33] Brosius J., Gould S.J.. On “genomenclature”: a comprehensive (and respectful) taxonomy for pseudogenes and other “junk DNA”. Proc Natl Acad Sci USA, 1992, 89: 10706-10710 CrossRef ADS Google Scholar

[34] Brosius J., Raabe C.A.. What is an RNA? A top layer for RNA classification. RNA Biol, 2016, 13: 140-144 CrossRef PubMed Google Scholar

[35] Brosius J., Tiedge H.. Reverse transcriptase: mediator of genomic plasticity. Virus Genes, 1995, 11: 163-179 CrossRef Google Scholar

[36] Buss D.M., Haselton M.G., Shackelford T.K., Bleske A.L., Wakefield J.C.. Adaptations, exaptations, and spandrels. Am Psychol, 1998, 53: 533-548 CrossRef Google Scholar

[37] Cai J., Zhao R., Jiang H., Wang W.. De novo origination of a new protein-coding gene in Saccharomyces cerevisiae. Genetics, 2008, 179: 487-496 CrossRef PubMed Google Scholar

[38] Capshew C.R., Dusenbury K.L., Hundley H.A.. Inverted Alu dsRNA structures do not affect localization but can alter translation efficiency of human mRNAs independent of RNA editing. Nucleic Acids Res, 2012, 40: 8637-8645 CrossRef PubMed Google Scholar

[39] Carninci, P. (2010). RNA dust: where are the genes? DNA Res 17, 51–59. Google Scholar

[40] Carrieri C., Cimatti L., Biagioli M., Beugnet A., Zucchelli S., Fedele S., Pesce E., Ferrer I., Collavin L., Santoro C., et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature, 2012, 491: 454-457 CrossRef PubMed ADS Google Scholar

[41] Carvunis A.R., Rolland T., Wapinski I., Calderwood M.A., Yildirim M.A., Simonis N., Charloteaux B., Hidalgo C.A., Barbette J., Santhanam B., et al. Proto-genes and de novo gene birth. Nature, 2012, 487: 370-374 CrossRef PubMed ADS Google Scholar

[42] Caudron-Herger M., Pankert T., Seiler J., Németh A., Voit R., Grummt I., Rippe K.. Alu element-containing RNAs maintain nucleolar structure and function. EMBO J, 2015, 34: 2758-2774 CrossRef PubMed Google Scholar

[43] Chen H., Chen L., Wu Y., Shen H., Yang G., Deng C.. The exonization and functionalization of an Alu-J element in the protein coding region of glycoprotein hormone alpha gene represent a novel mechanism to the evolution of hemochorial placentation in primates. Mol Biol Evol, 2017, 34: 3216-3231 CrossRef PubMed Google Scholar

[44] Chen L.L., Yang L.. ALU ternative regulation for gene expression. Trends Cell Biol, 2017, 27: 480-490 CrossRef PubMed Google Scholar

[45] Chen S., Spletter M., Ni X., White K.P., Luo L., Long M.. Frequent recent origination of brain genes shaped the evolution of foraging behavior in Drosophila. Cell Rep, 2012, 1: 118-132 CrossRef PubMed Google Scholar

[46] Chen S., Zhang Y.E., Long M.. New genes in Drosophila quickly become essential. Science, 2010, 330: 1682-1685 CrossRef PubMed ADS Google Scholar

[47] Chen S., Krinsky B.H., Long M.. New genes as drivers of phenotypic evolution. Nat Rev Genet, 2013, 14: 645-660 CrossRef PubMed Google Scholar

[48] Chen W., Heierhorst J., Brosius J., Tiedge H.. Expression of neural BC1 RNA: induction in murine tumours. Eur J Cancer, 1997, 33: 288-292 CrossRef Google Scholar

[49] Chillon, I., and Pyle, A.M. (2016). Inverted repeat Alu elements in the human lincRNA-p21 adopt a conserved secondary structure that regulates RNA function. Nucleic Acids Res 44, 9462–9471. Google Scholar

[50] Chuong, E.B. (2013). Retroviruses facilitate the rapid evolution of the mammalian placenta. Bioessays 35, 853–861. Google Scholar

[51] Chuong E.B., Elde N.C., Feschotte C.. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science, 2016, 351: 1083-1087 CrossRef PubMed ADS Google Scholar

[52] Chuong E.B., Elde N.C., Feschotte C.. Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet, 2017, 18: 71-86 CrossRef PubMed Google Scholar

[53] Chuong E.B., Rumi M.A.K., Soares M.J., Baker J.C.. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat Genet, 2013, 45: 325-329 CrossRef PubMed Google Scholar

[54] Churakov G., Sadasivuni M.K., Rosenbloom K.R., Huchon D., Brosius J., Schmitz J.. Rodent evolution: back to the root. Mol Biol Evol, 2010, 27: 1315-1326 CrossRef PubMed Google Scholar

[55] Clark M.B., Amaral P.P., Schlesinger F.J., Dinger M.E., Taft R.J., Rinn J.L., Ponting C.P., Stadler P.F., Morris K.V., Morillon A., et al. The reality of pervasive transcription. PLoS Biol, 2011, 9: e1000625 CrossRef PubMed Google Scholar

[56] Daniel C., Behm M., Öhman M.. The role of Alu elements in the cis-regulation of RNA processing. Cell Mol Life Sci, 2015, 72: 4063-4076 CrossRef PubMed Google Scholar

[57] Daniel C., Silberberg G., Behm M., Öhman M.. Alu elements shape the primate transcriptome by cis-regulation of RNA editing. Genome Biol, 2014, 15: R28 CrossRef PubMed Google Scholar

[58] Darwin, C. (1845). Journal of researches into the natural history and geology of the countries visited during the voyage of H.M.S. Beagle round the world, under the Command of Capt. Fitz Roy, R.N Second edn (London: John Murray). Google Scholar

[59] Darwin, C. (1972). On the Origin of Species, 6th edn (London: John Murray). Google Scholar

[60] de Koning A.P.J., Gu W., Castoe T.A., Batzer M.A., Pollock D.D.. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet, 2011, 7: e1002384 CrossRef PubMed Google Scholar

[61] de Souza, F.S., Franchini, L.F., and Rubinstein, M. (2013). Exaptation of transposable elements into novel cis-regulatory elements: is the evidence always strong? Mol Biol Evol 30, 1239–1251. Google Scholar

[62] Dechiara T.M., Brosius J.. Neural BC1 RNA: cDNA clones reveal nonrepetitive sequence content.. Proc Natl Acad Sci USA, 1987, 84: 2624-2628 CrossRef ADS Google Scholar

[63] Deininger, P.L., Tiedge, H., Kim, J., and Brosius, J. (1996). Evolution, expression, and possible function of a master gene for amplification of an interspersed repeated DNA family in rodents. Prog Nucleic Acid Re 52, 67–88. Google Scholar

[64] del Rosario R.C.H., Rayan N.A., Prabhakar S.. Noncoding origins of anthropoid traits and a new null model of transposon functionalization. Genome Res, 2014, 24: 1469-1484 CrossRef PubMed Google Scholar

[65] Dennett, D.C. (1995). Darwin’s Dangerous Idea (New York: Simon & Schuster). Google Scholar

[66] Dewannieux M., Heidmann T.. LINEs, SINEs and processed pseudogenes: parasitic strategies for genome modeling. Cytogenet Genome Res, 2005, 110: 35-48 CrossRef PubMed Google Scholar

[67] Dewannieux M., Heidmann T.. Endogenous retroviruses: acquisition, amplification and taming of genome invaders. Curr Opin Virol, 2013, 3: 646-656 CrossRef PubMed Google Scholar

[68] Dickel D.E., Ypsilanti A.R., Pla R., Zhu Y., Barozzi I., Mannion B.J., Khin Y.S., Fukuda-Yuzawa Y., Plajzer-Frick I., Pickle C.S., et al. Ultraconserved enhancers are required for normal development. Cell, 2018, 172: 491-499.e15 CrossRef PubMed Google Scholar

[69] Ding Y., Zhao L., Yang S., Jiang Y., Chen Y., Zhao R., Zhang Y., Zhang G., Dong Y., Yu H., et al. A young Drosophila duplicate gene plays essential roles in spermatogenesis by regulating several Y-linked male fertility genes. PLoS Genet, 2010, 6: e1001255 CrossRef PubMed Google Scholar

[70] Doolittle W.F., Sapienza C.. Selfish genes, the phenotype paradigm and genome evolution. Nature, 1980, 284: 601-603 CrossRef ADS Google Scholar

[71] Drezen J.M., Gauthier J., Josse T., Bézier A., Herniou E., Huguet E.. Foreign DNA acquisition by invertebrate genomes. J Invertebrate Pathol, 2017, 147: 157-168 CrossRef PubMed Google Scholar

[72] Dupressoir A., Lavialle C., Heidmann T.. From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta, 2012, 33: 663-671 CrossRef PubMed Google Scholar

[73] Eisenberg E.. Proteome diversification by genomic parasites. Genome Biol, 2016, 17: 17 CrossRef PubMed Google Scholar

[74] Elbarbary R.A., Lucas B.A., Maquat L.E.. Retrotransposons as regulators of gene expression. Science, 2016, 351: aac7247 CrossRef PubMed Google Scholar

[75] Elbarbary R.A., Maquat L.E.. Distinct mechanisms obviate the potentially toxic effects of inverted-repeat Alu elements on cellular RNA metabolism. Nat Struct Mol Biol, 2017, 24: 496-498 CrossRef PubMed Google Scholar

[76] Ellison C.E., Bachtrog D.. Dosage compensation via transposable element mediated rewiring of a regulatory network. Science, 2013, 342: 846-850 CrossRef PubMed ADS Google Scholar

[77] Emera D., Casola C., Lynch V.J., Wildman D.E., Agnew D., Wagner G.P.. Convergent evolution of endometrial prolactin expression in primates, mice, and elephants through the independent recruitment of transposable elements. Mol Biol Evol, 2012, 29: 239-247 CrossRef PubMed Google Scholar

[78] Emera D., Yin J., Reilly S.K., Gockley J., Noonan J.P.. Origin and evolution of developmental enhancers in the mammalian neocortex. Proc Natl Acad Sci USA, 2016, 113: E2617-E2626 CrossRef PubMed ADS Google Scholar

[79] Estécio M.R.H., Gallegos J., Dekmezian M., Lu Y., Liang S., Issa J.P.J.. SINE retrotransposons cause epigenetic reprogramming of adjacent gene promoters. Mol Cancer Res, 2012, 10: 1332-1342 CrossRef PubMed Google Scholar

[80] Farré D., Engel P., Angulo A.. Novel role of 3′UTR-embedded Alu elements as facilitators of processed pseudogene genesis and host gene capture by viral genomes. PLoS ONE, 2016, 11: e0169196 CrossRef PubMed ADS Google Scholar

[81] Faulkner G.J., Kimura Y., Daub C.O., Wani S., Plessy C., Irvine K.M., Schroder K., Cloonan N., Steptoe A.L., Lassmann T., et al. The regulated retrotransposon transcriptome of mammalian cells. Nat Genet, 2009, 41: 563-571 CrossRef PubMed Google Scholar

[82] Fielder D.P.. Seasonal and diel dive performance and behavioral ecology of the bimodally respiring freshwater turtle Myuchelys bellii of eastern Australia. J Comp Physiol A, 2012, 198: 129-143 CrossRef PubMed Google Scholar

[83] Fuentes, D.R., Swigut, T., and Wysocka, J. (2018). Systematic perturbation of retroviral LTRs reveals widespread long-range effects on human gene regulation. Elife 7, pii: e35989. Google Scholar

[84] Galindo-González L., Mhiri C., Deyholos M.K., Grandbastien M.A.. LTR-retrotransposons in plants: Engines of evolution. Gene, 2017, 626: 14-25 CrossRef PubMed Google Scholar

[85] Garcia-Perez J.L., Widmann T.J., Adams I.R.. The impact of transposable elements on mammalian development. Development, 2016, 143: 4101-4114 CrossRef PubMed Google Scholar

[86] Gardiner D.M., Kazan K., Manners J.M.. Cross-kingdom gene transfer facilitates the evolution of virulence in fungal pathogens. Plant Sci, 2013, 210: 151-158 CrossRef PubMed Google Scholar

[87] Gavelis, G.S., Keeling, P.J., and Leander, B.S. (2017). How exaptations facilitated photosensory evolution: Seeing the light by accident. Bioessays 39. Google Scholar

[88] Ge S.X.. Exploratory bioinformatics investigation reveals importance of “junk” DNA in early embryo development. BMC Genomics, 2017, 18: 200 CrossRef PubMed Google Scholar

[89] Ghaly, T.M., and Gillings, M.R. (2018). Mobile DNAs as ecologically and evolutionarily independent units of life. Trends Microbiol 26, 904–912. Google Scholar

[90] Gilbert-Kawai, E.T., Milledge, J.S., Grocott, M.P., and Martin, D.S. (2014). King of the mountains: Tibetan and Sherpa physiological adaptations for life at high altitude. Physiology (Bethesda) 29, 388–402. Google Scholar

[91] Gladyshev E.A., Meselson M., Arkhipova I.R.. Massive horizontal gene transfer in bdelloid rotifers. Science, 2008, 320: 1210-1213 CrossRef PubMed ADS Google Scholar

[92] Glinsky G.V.. Transposable elements and DNA methylation create in embryonic stem cells human-specific regulatory sequences associated with distal enhancers and noncoding RNAs. Genome Biol Evol, 2015, 7: 1432-1454 CrossRef PubMed Google Scholar

[93] Gophna U., Charlebois R.L., Doolittle W.F.. Ancient lateral gene transfer in the evolution of Bdellovibrio bacteriovorus. Trends MicroBiol, 2006, 14: 64-69 CrossRef PubMed Google Scholar

[94] Gould S.J.. Exaptation: a crucial tool for an evolutionary psychology. J Social Issues, 1991, 47: 43-65 CrossRef Google Scholar

[95] Gould, S.J. (2002). The Structure of Evolutionary Theory (Cambridge, MA: Belknap, Harvard University Press). Google Scholar

[96] Gould S.J., Lewontin R.C.. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc B-Biol Sci, 1979, 205: 581-598 CrossRef PubMed ADS Google Scholar

[97] Gould S.J., Vrba E.S.. Exaptation—a missing term in the science of form. Paleobiology, 1982, 8: 4-15 CrossRef Google Scholar

[98] Gubala, A.M., Schmitz, J.F., Kearns, M.J., Vinh, T.T., Bornberg-Bauer, E., Wolfner, M.F., and Findlay, G.D. (2017). The Goddard and Saturn genes are essential for Drosophila male fertility and may have arisen de novo. Mol Biol Evol 34, 1066–1082. Google Scholar

[99] Haig D.. Transposable elements: Self-seekers of the germline, team-players of the soma. BioEssays, 2016, 38: 1158-1166 CrossRef PubMed Google Scholar

[100] Hall, J.P.J., Brockhurst, M.A., and Harrison, E. (2017). Sampling the mobile gene pool: innovation via horizontal gene transfer in bacteria. Philos Trans R Soc Lond B Biol Sci 372, pii: 20160424. Google Scholar

[101] Harmston N., Baresic A., Lenhard B.. The mystery of extreme non-coding conservation. Philos Trans R Soc B-Biol Sci, 2013, 368: 20130021 CrossRef PubMed Google Scholar

[102] Heinen T.J.A.J., Staubach F., Häming D., Tautz D.. Emergence of a new gene from an intergenic region. Curr Biol, 2009, 19: 1527-1531 CrossRef PubMed Google Scholar

[103] Hezroni H., Ben-Tov Perry R., Meir Z., Housman G., Lubelsky Y., Ulitsky I.. A subset of conserved mammalian long non-coding RNAs are fossils of ancestral protein-coding genes. Genome Biol, 2017, 18: 162 CrossRef PubMed Google Scholar

[104] Hirsch C.D., Springer N.M.. Transposable element influences on gene expression in plants. Biochim Biophys Acta Gene Regul Mech, 2017, 1860: 157-165 CrossRef PubMed Google Scholar

[105] Hoffman Y., Dahary D., Bublik D.R., Oren M., Pilpel Y.. The majority of endogenous microRNA targets within Alu elements avoid the microRNA machinery. Bioinformatics, 2013, 29: 894-902 CrossRef PubMed Google Scholar

[106] Hoffman Y., Pilpel Y., Oren M.. microRNAs and Alu elements in the p53-Mdm2-Mdm4 regulatory network. J Mol Cell Biol, 2014, 6: 192-197 CrossRef PubMed Google Scholar

[107] Holdt L.M., Hoffmann S., Sass K., Langenberger D., Scholz M., Krohn K., Finstermeier K., Stahringer A., Wilfert W., Beutner F., et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet, 2013, 9: e1003588 CrossRef PubMed Google Scholar

[108] Hu Q.D., Tanasa B., Trabucchi M., Li W., Zhang J., Ohgi K.A., Rose D.W., Glass C.K., Rosenfeld M.G.. DICER- and AGO3-dependent generation of retinoic acid-induced DR2 Alu RNAs regulates human stem cell proliferation. Nat Struct Mol Biol, 2012, 19: 1168-1175 CrossRef PubMed Google Scholar

[109] Huda A., Mariño-Ramírez L., Jordan I.K.. Epigenetic histone modifications of human transposable elements: genome defense versus exaptation. Mobile DNA, 2010, 1: 2 CrossRef PubMed Google Scholar

[110] Huda A., Tyagi E., Mariño-Ramírez L., Bowen N.J., Jjingo D., Jordan I.K.. Prediction of transposable element derived enhancers using chromatin modification profiles. PLoS ONE, 2011, 6: e27513 CrossRef PubMed ADS Google Scholar

[111] Hunt, G.R., Gray, R.D., and Taylor, A.H. (2013). Why is tool use rare in animals? In Tool Use in Animals: Cognition and Ecology, C. Sanz, C. Boesch, and J. Call, eds. (Cambridge: Cambridge University Press), pp. 89–118. Google Scholar

[112] Husnik F., McCutcheon J.P.. Functional horizontal gene transfer from bacteria to eukaryotes. Nat Rev Micro, 2018, 16: 67-79 CrossRef PubMed Google Scholar

[113] Ilardo M.A., Moltke I., Korneliussen T.S., Cheng J., Stern A.J., Racimo F., de Barros Damgaard P., Sikora M., Seguin-Orlando A., Rasmussen S., et al. Physiological and genetic adaptations to diving in sea nomads. Cell, 2018, 173: 569-580.e15 CrossRef PubMed Google Scholar

[114] Ivanova E., Berger A., Scherrer A., Alkalaeva E., Strub K.. Alu RNA regulates the cellular pool of active ribosomes by targeted delivery of SRP9/14 to 40S subunits. Nucleic Acids Res, 2015, 43: 2874-2887 CrossRef PubMed Google Scholar

[115] Jacques P.É., Jeyakani J., Bourque G.. The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet, 2013, 9: e1003504 CrossRef PubMed Google Scholar

[116] Jeck W.R., Sorrentino J.A., Wang K., Slevin M.K., Burd C.E., Liu J., Marzluff W.F., Sharpless N.E.. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013, 19: 141-157 CrossRef PubMed Google Scholar

[117] Jeffares D.C., Poole A.M., Penny D.. Relics from the RNA world. J Mol Evol, 1998, 46: 18-36 CrossRef ADS Google Scholar

[118] Jiang L., Li T., Zhang X., Zhang B., Yu C., Li Y., Fan S., Jiang X., Khan T., Hao Q., et al. RPL10L is required for male meiotic division by compensating for RPL10 during meiotic sex chromosome inactivation in mice. Curr Biol, 2017, 27: 1498-1505.e6 CrossRef PubMed Google Scholar

[119] Joly-Lopez Z., Bureau T.E.. Exaptation of transposable element coding sequences. Curr Opin Genets Dev, 2018, 49: 34-42 CrossRef PubMed Google Scholar

[120] Jørgensen C.B.. Role of urinary and cloacal bladders in chelonian water economy: historical and comparative perspectives. Biol Rev, 1998, 73: 347-366 CrossRef Google Scholar

[121] Joyce, G.F., and Szostak, J.W. (2018). Protocells and RNA self-replication. Cold Spring Harb Perspect Biol 10, pii: a034801. Google Scholar

[122] Jung, J., Lee, S., Cho, H.S., Park, K., Ryu, J.W., Jung, M., Kim, J., Kim, H., and Kim, D.S. (2018). Bioinformatic analysis of regulation of natural antisense transcripts by transposable elements in human mRNA. Genomics, pii: S0888-7543(18)30025-9. Google Scholar

[123] Kapusta A., Kronenberg Z., Lynch V.J., Zhuo X., Ramsay L.A., Bourque G., Yandell M., Feschotte C.. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet, 2013, 9: e1003470 CrossRef PubMed Google Scholar

[124] Kelley D., Rinn J.. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol, 2012, 13: R107 CrossRef PubMed Google Scholar

[125] Kelley D.R., Hendrickson D.G., Tenen D., Rinn J.L.. Transposable elements modulate human RNA abundance and splicing via specific RNA-protein interactions. Genome Biol, 2014, 15: 537 CrossRef PubMed Google Scholar

[126] Kemkemer C., Long M.. New genes important for development. EMBO Rep, 2014, 15: 460-461 CrossRef PubMed Google Scholar

[127] Kent W.J., Baertsch R., Hinrichs A., Miller W., Haussler D.. Evolution’s cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci USA, 2003, 100: 11484-11489 CrossRef PubMed ADS Google Scholar

[128] Keren H., Lev-Maor G., Ast G.. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet, 2010, 11: 345-355 CrossRef PubMed Google Scholar

[129] Khanam T., Rozhdestvensky T.S., Bundman M., Galiveti C.R., Handel S., Sukonina V., Jordan U., Brosius J., Skryabin B.V.. Two primate-specific small non-protein-coding RNAs in transgenic mice: neuronal expression, subcellular localization and binding partners. Nucleic Acids Res, 2007, 35: 529-539 CrossRef PubMed Google Scholar

[130] Kim E., Goren A., Ast G.. Alternative splicing and disease. RNA Biol, 2008, 5: 17-19 CrossRef Google Scholar

[131] Kim Y.J., Lee J., Han K.. Transposable elements: no more ‘junk DNA’. Genomics Inform, 2012, 10: 226-233 CrossRef PubMed Google Scholar

[132] Kingsolver J.G., Koehl M.A.R.. Aerodynamics, thermoregulation, and the evolution of insect wings: differential scaling and evolutionary change. Evolution, 1985, 39: 488-504 CrossRef PubMed Google Scholar

[133] Klasberg, S., Bitard-Feildel, T., Callebaut, I., and Bornberg-Bauer, E. (2018). Origins and structural properties of novel and de novo protein domains during insect evolution. FEBS J 285, 2605–2625. Google Scholar

[134] Koch, A.L. (1972). Enzyme evolution. I. The importance of untranslatable intermediates. Genetics 72, 297–316. Google Scholar

[135] Kondrashov A.V., Kiefmann M., Ebnet K., Khanam T., Muddashetty R.S., Brosius J.. Inhibitory effect of naked neural BC1 RNA or BC200 RNA on eukaryotic in vitro translation systems is reversed by poly(A)-binding protein (PABP). J Mol Biol, 2005, 353: 88-103 CrossRef PubMed Google Scholar

[136] Koonin, E.V. (2016). Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions. F1000Res 5, pii: F1000 Faculty Rev-1805. Google Scholar

[137] Koonin E.V., Krupovic M.. The depths of virus exaptation. Curr Opin Virol, 2018, 31: 1-8 CrossRef PubMed Google Scholar

[138] Kriegs, J.O., Schmitz, J., Makalowski, W., and Brosius, J. (2005). Does the AD7c-NTP locus encode a protein? Biochim Biophys Acta 1727, 1–4. Google Scholar

[139] Krull M., Brosius J., Schmitz J.. Alu-SINE exonization: en route to protein-coding function. Mol Biol Evol, 2005, 22: 1702-1711 CrossRef PubMed Google Scholar

[140] Krull M., Petrusma M., Makalowski W., Brosius J., Schmitz J.. Functional persistence of exonized mammalian-wide interspersed repeat elements (MIRs). Genome Res, 2007, 17: 1139-1145 CrossRef PubMed Google Scholar

[141] Kuryshev V.Y., Skryabin B.V., Kremerskothen J., Jurka J., Brosius J.. Birth of a gene: locus of neuronal BC200 snmRNA in three prosimians and human BC200 pseudogenes as archives of change in the Anthropoidea lineage. J Mol Biol, 2001, 309: 1049-1066 CrossRef PubMed Google Scholar

[142] Lacroix, B., and Citovsky, V. (2018). Beyond agrobacterium-mediated transformation: horizontal gene transfer from bacteria to eukaryotes. Curr Top Microbiol Immunol 418, 443–462. Google Scholar

[143] Larsen P.A., Hunnicutt K.E., Larsen R.J., Yoder A.D., Saunders A.M.. Warning SINEs: Alu elements, evolution of the human brain, and the spectrum of neurological disease. Chromosome Res, 2018, 26: 93-111 CrossRef PubMed Google Scholar

[144] Larson G., Stephens P.A., Tehrani J.J., Layton R.H.. Exapting exaptation. Trends Ecol Evol, 2013, 28: 497-498 CrossRef PubMed Google Scholar

[145] Lavi, E., and Carmel, L. (2018). Alu exaptation enriches the human transcriptome by introducing new gene ends. RNA Biol 15, 715–725. Google Scholar

[146] Lee H.E., Ayarpadikannan S., Kim H.S.. Role of transposable elements in genomic rearrangement, evolution, gene regulation and epigenetics in primates. Genes Genet Syst, 2015, 90: 245-257 CrossRef PubMed Google Scholar

[147] Lev-Maor G., Sorek R., Shomron N., Ast G.. The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons. Science, 2003, 300: 1288-1291 CrossRef PubMed ADS Google Scholar

[148] Levy A., Sela N., Ast G.. TranspoGene and microTranspoGene: transposed elements influence on the transcriptome of seven vertebrates and invertebrates. Nucleic Acids Res, 2008, 36: D47-D52 CrossRef PubMed Google Scholar

[149] Lewejohann L., Skryabin B.V., Sachser N., Prehn C., Heiduschka P., Thanos S., Jordan U., Dell’Omo G., Vyssotski A.L., Pleskacheva M.G., et al. Role of a neuronal small non-messenger RNA: behavioural alterations in BC1 RNA-deleted mice. Behavioural Brain Res, 2004, 154: 273-289 CrossRef PubMed Google Scholar

[150] Lewis E.B.. Pseudoallelism and gene evolution. Cold Spring Harb Symp Quant Biol, 1951, 16: 159-174 CrossRef Google Scholar

[151] Li D., Dong Y., Jiang Y., Jiang H., Cai J., Wang W.. A de novo originated gene depresses budding yeast mating pathway and is repressed by the protein encoded by its antisense strand. Cell Res, 2010, 20: 408-420 CrossRef PubMed Google Scholar

[152] Li X., Liang J., Yu H., Su B., Xiao C., Shang Y., Wang W.. Functional consequences of new exon acquisition in mammalian chromodomain Y-like (CDYL) genes. Trends Genets, 2007, 23: 427-431 CrossRef PubMed Google Scholar

[153] Liang K.H., Yeh C.T.. A gene expression restriction network mediated by sense and antisense Alu sequences located on protein-coding messenger RNAs. BMC Genomics, 2013, 14: 325 CrossRef PubMed Google Scholar

[154] Lin L., Jiang P., Park J.W., Wang J., Lu Z.X., Lam M.P.Y., Ping P., Xing Y.. The contribution of Alu exons to the human proteome. Genome Biol, 2016, 17: 15 CrossRef PubMed Google Scholar

[155] Long M., Betrán E., Thornton K., Wang W.. The origin of new genes: glimpses from the young and old. Nat Rev Genet, 2003a, 4: 865-875 CrossRef PubMed Google Scholar

[156] Long M.. Origin of new genes: evidence from experimental and computational analyses. Genetica, 2003b, 118: 171-182 CrossRef Google Scholar

[157] Long M., Langley C.H.. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science, 1993, 260: 91-95 CrossRef ADS Google Scholar

[158] Long M., VanKuren N.W., Chen S., Vibranovski M.D.. New gene evolution: little did we know. Annu Rev Genet, 2013, 47: 307-333 CrossRef PubMed Google Scholar

[159] Lowe C.B., Haussler D.. 29 mammalian genomes reveal novel exaptations of mobile elements for likely regulatory functions in the human genome. PLoS ONE, 2012, 7: e43128 CrossRef PubMed ADS Google Scholar

[160] Lubelsky Y., Ulitsky I.. Sequences enriched in Alu repeats drive nuclear localization of long RNAs in human cells. Nature, 2018, 555: 107-111 CrossRef PubMed ADS Google Scholar

[161] Lucas B.A., Lavi E., Shiue L., Cho H., Katzman S., Miyoshi K., Siomi M.C., Carmel L., Ares Jr. M., Maquat L.E.. Evidence for convergent evolution of SINE-directed Staufen-mediated mRNA decay. Proc Natl Acad Sci USA, 2018, 115: 968-973 CrossRef PubMed Google Scholar

[162] Ludwig A., Rozhdestvensky T.S., Kuryshev V.Y., Schmitz J., Brosius J.. An unusual primate locus that attracted two independent Alu insertions and facilitates their transcription. J Mol Biol, 2005, 350: 200-214 CrossRef PubMed Google Scholar

[163] Lunyak V.V., Prefontaine G.G., Núñez E., Cramer T., Ju B.G., Ohgi K.A., Hutt K., Roy R., García-Díaz A., Zhu X., et al. Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science, 2007, 317: 248-251 CrossRef PubMed ADS Google Scholar

[164] Lynch V.J., Nnamani M.C., Kapusta A., Brayer K., Plaza S.L., Mazur E.C., Emera D., Sheikh S.Z., Grützner F., Bauersachs S., et al. Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep, 2015, 10: 551-561 CrossRef PubMed Google Scholar

[165] Makałowski W., Mitchell G.A., Labuda D.. Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genets, 1994, 10: 188-193 CrossRef Google Scholar

[166] Mandal A.K., Pandey R., Jha V., Mukerji M.. Transcriptome-wide expansion of non-coding regulatory switches: evidence from co-occurrence of Alu exonization, antisense and editing. Nucleic Acids Res, 2013, 41: 2121-2137 CrossRef PubMed Google Scholar

[167] Martignetti J.A., Brosius J.. BC200 RNA: a neural RNA polymerase III product encoded by a monomeric Alu element.. Proc Natl Acad Sci USA, 1993a, 90: 11563-11567 CrossRef ADS Google Scholar

[168] Martignetti J.A., Brosius J.. Neural BC1 RNA as an evolutionary marker: guinea pig remains a rodent. Proc Natl Acad Sci USA, 1993b, 90: 9698-9702 CrossRef ADS Google Scholar

[169] Martignetti J.A., Brosius J.. BC1 RNA: transcriptional analysis of a neural cell-specific RNA polymerase III transcript.. Mol Cell Biol, 1995, 15: 1642-1650 CrossRef Google Scholar

[170] Martin, W.F. (2017). Too much eukaryote LGT. Bioessays 39. Google Scholar

[171] Matsui, H., Hunt, G.R., Oberhofer, K., Ogihara, N., McGowan, K.J., Mithraratne, K., Yamasaki, T., Gray, R.D., and Izawa, E. (2016). Adaptive bill morphology for enhanced tool manipulation in New Caledonian crows. Sci Rep 6, 22776. Google Scholar

[172] McCarrey J.R., Thomas K.. Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene. Nature, 1987, 326: 501-505 CrossRef PubMed ADS Google Scholar

[173] McLaughlin R.N., Young J.M., Yang L., Neme R., Wichman H.A., Malik H.S.. Positive selection and multiple losses of the LINE-1-derived L1TD1 gene in mammals suggest a dual role in genome defense and pluripotency. PLoS Genet, 2014, 10: e1004531 CrossRef PubMed Google Scholar

[174] Medstrand P., Landry J.R., Mager D.L.. Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J Biol Chem, 2001, 276: 1896-1903 CrossRef PubMed Google Scholar

[175] Méheust R., Watson A.K., Lapointe F.J., Papke R.T., Lopez P., Bapteste E.. Hundreds of novel composite genes and chimeric genes with bacterial origins contributed to haloarchaeal evolution. Genome Biol, 2018, 19: 75 CrossRef PubMed Google Scholar

[176] Mi S., Lee X., Li X., Veldman G.M., Finnerty H., Racie L., LaVallie E., Tang X.Y., Edouard P., Howes S., et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature, 2000, 403: 785-789 CrossRef PubMed Google Scholar

[177] Mo D., Raabe C.A., Reinhardt R., Brosius J., Rozhdestvensky T.S.. Alternative processing as evolutionary mechanism for the origin of novel nonprotein coding RNAs. Genome Biol Evol, 2013, 5: 2061-2071 CrossRef PubMed Google Scholar

[178] Monte S.M., Ghanbari K., Frey W.H., Beheshti I., Averback P., Hauser S.L., Ghanbari H.A., Wands J.R.. Characterization of the AD7C-NTP cDNA expression in Alzheimer’s disease and measurement of a 41-kD protein in cerebrospinal fluid.. J Clin Invest, 1997, 100: 3093-3104 CrossRef PubMed Google Scholar

[179] Moore A.D., Björklund A.K., Ekman D., Bornberg-Bauer E., Elofsson A.. Arrangements in the modular evolution of proteins. Trends Biochem Sci, 2008, 33: 444-451 CrossRef PubMed Google Scholar

[180] Morales M.E., White T.B., Streva V.A., DeFreece C.B., Hedges D.J., Deininger P.L.. The contribution of alu elements to mutagenic DNA double-strand break repair. PLoS Genet, 2015, 11: e1005016 CrossRef PubMed Google Scholar

[181] Morales-Hernández A., González-Rico F.J., Román A.C., Rico-Leo E., Alvarez-Barrientos A., Sánchez L., Macia Á., Heras S.R., García-Pérez J.L., Merino J.M., et al. Alu retrotransposons promote differentiation of human carcinoma cells through the aryl hydrocarbon receptor. Nucleic Acids Res, 2016, 44: 4665-4683 CrossRef PubMed Google Scholar

[182] Moyers B.A., Zhang J.. Evaluating phylostratigraphic evidence for widespread de novo gene birth in genome evolution. Mol Biol Evol, 2016, 33: 1245-1256 CrossRef PubMed Google Scholar

[183] Muller, H.J. (1935). The origination of chromatin deficiencies as minute deletions subject to insertion elsewhere. Genetics 17, 237–252. Google Scholar

[184] Nakanishi A., Kobayashi N., Suzuki-Hirano A., Nishihara H., Sasaki T., Hirakawa M., Sumiyama K., Shimogori T., Okada N.. A SINE-derived element constitutes a unique modular enhancer for mammalian diencephalic Fgf8. PLoS ONE, 2012, 7: e43785 CrossRef PubMed ADS Google Scholar

[185] Nefedova L.N., Kuzmin I.V., Makhnovskii P.A., Kim A.I.. Domesticated retroviral GAG gene in Drosophila: new functions for an old gene. Virology, 2014, 450-451: 196-204 CrossRef PubMed Google Scholar

[186] Nei M.. Gene duplication and nucleotide substitution in evolution. Nature, 1969, 221: 40-42 CrossRef ADS Google Scholar

[187] Nekrutenko A., Makova K.D., Li W.H.. The KA/KS ratio test for assessing the protein-coding potential of genomic regions: an empirical and simulation study. Genome Res, 2002, 12: 198-202 CrossRef PubMed Google Scholar

[188] Nelson A.C., Wardle F.C.. Conserved non-coding elements and cis regulation: actions speak louder than words. Development, 2013, 140: 1385-1395 CrossRef PubMed Google Scholar

[189] Neme R., Amador C., Yildirim B., McConnell E., Tautz D.. Random sequences are an abundant source of bioactive RNAs or peptides. Nat ecol evol, 2017, 1: 0127 CrossRef PubMed Google Scholar

[190] Neme R., Tautz D.. Evolution: dynamics of de novo gene emergence. Curr Biol, 2014, 24: R238-R240 CrossRef PubMed Google Scholar

[191] Neme R., Tautz D.. Fast turnover of genome transcription across evolutionary time exposes entire non-coding DNA to de novo gene emergence. eLife, 2016, 5: e09977 CrossRef PubMed Google Scholar

[192] Nishihara H., Kobayashi N., Kimura-Yoshida C., Yan K., Bormuth O., Ding Q., Nakanishi A., Sasaki T., Hirakawa M., Sumiyama K., et al. Coordinately co-opted multiple transposable elements constitute an enhancer for wnt5a expression in the mammalian secondary palate. PLoS Genet, 2016, 12: e1006380 CrossRef PubMed Google Scholar

[193] Nissimov, J.I., Pagarete, A., Ma, F., Cody, S., Dunigan, D.D., Kimmance, S.A., and Allen, M.J. (2017). Coccolithoviruses: a review of cross-kingdom genomic thievery and metabolic thuggery. Viruses 9, pii: E52. Google Scholar

[194] Notwell J.H., Chung T., Heavner W., Bejerano G.. A family of transposable elements co-opted into developmental enhancers in the mouse neocortex. Nat Commun, 2015, 6: 6644 CrossRef PubMed ADS Google Scholar

[195] Ohno, S. (1970). Evolution by gene duplication (Berlin: Springer Verlag). Google Scholar

[196] Ohno, S. (1972). So much “junk” DNA in our genome. Brookhaven Symp Biol 23, 366–370. Google Scholar

[197] Ohno S., Wolf U., Atkin N.B.. Evolution from fish to mammals by gene duplication. Hereditas, 1968, 59: 169-187 CrossRef Google Scholar

[198] Okada, N., Sasaki, T., Shimogori, T., and Nishihara, H. (2010). Emergence of mammals by emergency: exaptation. Genes Cells 15, 801–812. Google Scholar

[199] Orgel L.E., Crick F.H.C.. Selfish DNA: the ultimate parasite. Nature, 1980, 284: 604-607 CrossRef ADS Google Scholar

[200] Palmer A.A., Dulawa S.C.. Murine warriors or worriers: the saga of Comt1, B2 SINE elements, and the future of translational genetics. Front Neurosci, 2010, 4: 177 CrossRef Google Scholar

[201] Pandey R., Bhattacharya A., Bhardwaj V., Jha V., Mandal A.K., Mukerji M.. Alu-miRNA interactions modulate transcript isoform diversity in stress response and reveal signatures of positive selection. Sci Rep, 2016, 6: 32348 CrossRef PubMed ADS Google Scholar

[202] Park E., Maquat L.E.. Staufen-mediated mRNA decay. WIREs RNA, 2013, 4: 423-435 CrossRef PubMed Google Scholar

[203] Pauli A., Valen E., Schier A.F.. Identifying (non-)coding RNAs and small peptides: challenges and opportunities. BioEssays, 2015, 37: 103-112 CrossRef PubMed Google Scholar

[204] Pei B., Sisu C., Frankish A., Howald C., Habegger L., Mu X.J., Harte R., Balasubramanian S., Tanzer A., Diekhans M., et al. The GENCODE pseudogene resource. Genome Biol, 2012, 13: R51 CrossRef PubMed Google Scholar

[205] Peng L.. Origin and evolution of new exons in the rodent zinc finger protein 39 gene. Chin Sci Bull, 2005, 50: 1126-1130 CrossRef ADS Google Scholar

[206] Phillips P.K., Heath J.E.. Heat exchange by the pinna of the african elephant (Loxodonta africana). Comp Biochem Physiol Part A Physiol, 1992, 101: 693-699 CrossRef Google Scholar

[207] Piatigorsky J., Wistow G.. The recruitment of crystallins: new functions precede gene duplication. Science, 1991, 252: 1078-1079 CrossRef ADS Google Scholar

[208] Piya S., Bennett M., Rambani A., Hewezi T.. Transcriptional activity of transposable elements may contribute to gene expression changes in the syncytium formed by cyst nematode in arabidopsis roots. Plant Signal Behav, 2017, 12: e1362521 CrossRef PubMed Google Scholar

[209] Platt R.N., Vandewege M.W., Ray D.A.. Mammalian transposable elements and their impacts on genome evolution. Chromosome Res, 2018, 26: 25-43 CrossRef PubMed Google Scholar

[210] Podbevšek P., Fasolo F., Bon C., Cimatti L., Reißer S., Carninci P., Bussi G., Zucchelli S., Plavec J., Gustincich S.. Structural determinants of the SINE B2 element embedded in the long non-coding RNA activator of translation AS Uchl1. Sci Rep, 2018, 8: 3189 CrossRef PubMed ADS Google Scholar

[211] Polesskaya O., Kananykhina E., Roy-Engel A.M., Nazarenko O., Kulemzina I., Baranova A., Vassetsky Y., Myakishev-Rempel M.. The role of Alu-derived RNAs in Alzheimer’s and other neurodegenerative conditions. Med Hypotheses, 2018, 115: 29-34 CrossRef PubMed Google Scholar

[212] Poliseno L., Salmena L., Zhang J., Carver B., Haveman W.J., Pandolfi P.P.. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 2010, 465: 1033-1038 CrossRef PubMed ADS Google Scholar

[213] Ponicsan S.L., Kugel J.F., Goodrich J.A.. Genomic gems: SINE RNAs regulate mRNA production. Curr Opin Genets Dev, 2010, 20: 149-155 CrossRef PubMed Google Scholar

[214] Post, T.W., Arce, M.A., Liszewski, M.K., Thompson, E.S., Atkinson, J.P., and Lublin, D.M. (1990). Structure of the gene for human complement protein decay accelerating factor. J Immunol 144, 740–744. Google Scholar

[215] Potrzebowski L., Vinckenbosch N., Marques A.C., Chalmel F., Jégou B., Kaessmann H.. Chromosomal gene movements reflect the recent origin and biology of therian sex chromosomes. PLoS Biol, 2008, 6: e80 CrossRef PubMed Google Scholar

[216] Raj A., van Oudenaarden A.. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell, 2008, 135: 216-226 CrossRef PubMed Google Scholar

[217] Ram O., Schwartz S., Ast G.. Multifactorial interplay controls the splicing profile of Alu-derived exons. Mol Cell Biol, 2008, 28: 3513-3525 CrossRef PubMed Google Scholar

[218] Rayan N.A., Del Rosario R.C.H., Prabhakar S.. Massive contribution of transposable elements to mammalian regulatory sequences. Sem Cell Dev Biol, 2016, 57: 51-56 CrossRef PubMed Google Scholar

[219] Rebollo R., Romanish M.T., Mager D.L.. Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet, 2012, 46: 21-42 CrossRef PubMed Google Scholar

[220] Rosikiewicz, W., Kabza, M., Kosinski, J.G., Ciomborowska-Basheer, J., Kubiak, M.R., and Makalowska, I. (2017). RetrogeneDB-a database of plant and animal retrocopies. Database (Oxford) 2017. Google Scholar

[221] Rohrmoser M., Kluge M., Yahia Y., Gruber-Eber A., Maqbool M.A., Forné I., Krebs S., Blum H., Greifenberg A.K., Geyer M., et al. MIR sequences recruit zinc finger protein ZNF768 to expressed genes. Nucleic Acids Res, 2018, 107 CrossRef PubMed Google Scholar

[222] Rote N.S., Chakrabarti S., Stetzer B.P.. The role of human endogenous retroviruses in trophoblast differentiation and placental development. Placenta, 2004, 25: 673-683 CrossRef PubMed Google Scholar

[223] Sasaki T., Nishihara H., Hirakawa M., Fujimura K., Tanaka M., Kokubo N., Kimura-Yoshida C., Matsuo I., Sumiyama K., Saitou N., et al. Possible involvement of SINEs in mammalian-specific brain formation. Proc Natl Acad Sci USA, 2008, 105: 4220-4225 CrossRef PubMed ADS Google Scholar

[224] Schmitz, J. (2012). SINEs as driving forces in genome evolution. Genome Dyn 7, 92–107. Google Scholar

[225] Schmitz J., Brosius J.. Exonization of transposed elements: A challenge and opportunity for evolution. Biochimie, 2011, 93: 1928-1934 CrossRef PubMed Google Scholar

[226] Schmitz J.F., Bornberg-Bauer E.. Fact or fiction: updates on how protein-coding genes might emerge de novo from previously non-coding DNA. F1000Res, 2017, 6: 57 CrossRef PubMed Google Scholar

[227] Sieber K.B., Bromley R.E., Dunning Hotopp J.C.. Lateral gene transfer between prokaryotes and eukaryotes. Exp Cell Res, 2017, 358: 421-426 CrossRef PubMed Google Scholar

[228] Simonson T.S., Yang Y., Huff C.D., Yun H., Qin G., Witherspoon D.J., Bai Z., Lorenzo F.R., Xing J., Jorde L.B., et al. Genetic evidence for high-altitude adaptation in Tibet. Science, 2010, 329: 72-75 CrossRef PubMed ADS Google Scholar

[229] Simonti C.N., Pavlicev M., Capra J.A.. Transposable element exaptation into regulatory regions is rare, influenced by evolutionary age, and subject to pleiotropic constraints. Mol Biol Evol, 2017, 34: 2856-2869 CrossRef PubMed Google Scholar

[230] Singer S.S., Männel D.N., Hehlgans T., Brosius J., Schmitz J.. From “junk” to gene: curriculum vitae of a primate receptor isoform gene. J Mol Biol, 2004, 341: 883-886 CrossRef PubMed Google Scholar

[231] Smalheiser N.R., Torvik V.I.. Alu elements within human mRNAs are probable microRNA targets. Trends Genets, 2006, 22: 532-536 CrossRef PubMed Google Scholar

[232] Smith H.M., James L.F.. The taxonomic significance of cloacal bursae in turtles. Trans Kansas Acad Sci, 1958, 61: 86-96 CrossRef Google Scholar

[233] Soares M.B., Schon E., Henderson A., Karathanasis S.K., Cate R., Zeitlin S., Chirgwin J., Efstratiadis A.. RNA-mediated gene duplication: the rat preproinsulin I gene is a functional retroposon.. Mol Cell Biol, 1985, 5: 2090-2103 CrossRef Google Scholar

[234] Song X., Cao X.. Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice. Curr Opin Plant Biol, 2017, 36: 111-118 CrossRef PubMed Google Scholar

[235] Sorek R., Ast G., Graur D.. Alu-containing exons are alternatively spliced. Genome Res, 2002, 12: 1060-1067 CrossRef PubMed Google Scholar

[236] Sorek R., Lev-Maor G., Reznik M., Dagan T., Belinky F., Graur D., Ast G.. Minimal conditions for exonization of intronic sequences. Mol Cell, 2004, 14: 221-231 CrossRef Google Scholar

[237] Stephens, S.G. (1951). Possible significances of duplication in evolution. Adv Genet 4, 247–265. Google Scholar

[238] Storz J.F., Moriyama H.. Mechanisms of hemoglobin adaptation to high altitude hypoxia. High Altitude Med Biol, 2008, 9: 148-157 CrossRef PubMed Google Scholar

[239] Struhl K.. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol, 2007, 14: 103-105 CrossRef PubMed Google Scholar

[240] Su M., Han D., Boyd-Kirkup J., Yu X., Han J.D.J.. Evolution of Alu elements toward enhancers. Cell Rep, 2014, 7: 376-385 CrossRef PubMed Google Scholar

[241] Sundaram V., Cheng Y., Ma Z., Li D., Xing X., Edge P., Snyder M.P., Wang T.. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res, 2014, 24: 1963-1976 CrossRef PubMed Google Scholar

[242] Sundaram, V., and Wang, T. (2018). Transposable element mediated innovation in gene regulatory landscapes of cells: re-visiting the “gene-battery” model. Bioessays 40. Google Scholar

[243] Tait, L. (1879). The use of tails. Nature, 603. Google Scholar

[244] Tajaddod M., Tanzer A., Licht K., Wolfinger M.T., Badelt S., Huber F., Pusch O., Schopoff S., Janisiw M., Hofacker I., et al. Transcriptome-wide effects of inverted SINEs on gene expression and their impact on RNA polymerase II activity. Genome Biol, 2016, 17: 220 CrossRef PubMed Google Scholar

[245] Tashiro K., Teissier A., Kobayashi N., Nakanishi A., Sasaki T., Yan K., Tarabykin V., Vigier L., Sumiyama K., Hirakawa M., et al. A mammalian conserved element derived from SINE displays enhancer properties recapitulating Satb2 expression in early-born callosal projection neurons. PLoS ONE, 2011, 6: e28497 CrossRef PubMed ADS Google Scholar

[246] Tattersall I.. Human evolution and cognition. Theor Biosci, 2010, 129: 193-201 CrossRef PubMed Google Scholar

[247] Tautz D.. The discovery of de novo gene evolution. Perspect Biol Med, 2014, 57: 149-161 CrossRef PubMed Google Scholar

[248] Tautz D., Domazet-Lošo T.. The evolutionary origin of orphan genes. Nat Rev Genet, 2011, 12: 692-702 CrossRef PubMed Google Scholar

[249] Tiedge H., Chen W., Brosius J.. Primary structure, neural-specific expression, and dendritic location of human BC200 RNA. J Neurosci, 1993, 13: 2382-2390 CrossRef Google Scholar

[250] Tiedge H., Fremeau Jr. R.T., Weinstock P.H., Arancio O., Brosius J.. Dendritic location of neural BC1 RNA. Proc Natl Acad Sci USA, 1991, 88: 2093-2097 CrossRef ADS Google Scholar

[251] Touchon M., Moura de Sousa J.A., Rocha E.P.. Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr Opin Microbiol, 2017, 38: 66-73 CrossRef PubMed Google Scholar

[252] Trizzino M., Kapusta A., Brown C.D.. Transposable elements generate regulatory novelty in a tissue-specific fashion. BMC Genomics, 2018, 19: 468 CrossRef PubMed Google Scholar

[253] Trizzino M., Park Y.S., Holsbach-Beltrame M., Aracena K., Mika K., Caliskan M., Perry G.H., Lynch V.J., Brown C.D.. Transposable elements are the primary source of novelty in primate gene regulation. Genome Res, 2017, 27: 1623-1633 CrossRef PubMed Google Scholar

[254] Ulbricht R.J., Emeson R.B.. One hundred million adenosine-to-inosine RNA editing sites: hearing through the noise. Bioessays, 2014, 36: 730-735 CrossRef PubMed Google Scholar

[255] Ulitsky I., Bartel D.P.. lincRNAs: genomics, evolution, and mechanisms. Cell, 2013, 154: 26-46 CrossRef PubMed Google Scholar

[256] van de Lagemaat L.N., Landry J.R., Mager D.L., Medstrand P.. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genets, 2003, 19: 530-536 CrossRef PubMed Google Scholar

[257] VanKuren N.W., Long M.. Gene duplicates resolving sexual conflict rapidly evolved essential gametogenesis functions. Nat Ecol Evol, 2018, 2: 705-712 CrossRef PubMed Google Scholar

[258] Volff, J.N. (2005). Retrotransposable elements and genome evolution (Basel: S. Karger). Google Scholar

[259] Volff, J.N., and Brosius, J. (2007). Modern genomes with retro-look: retrotransposed elements, retroposition and the origin of new genes. Genome Dyn 3, 175–190. Google Scholar

[260] Vos, M., Hesselman, M.C., Te Beek, T.A., van Passel, M.W.J., and Eyre-Walker, A. (2015). Rates of lateral gene transfer in prokaryotes: high but why? Trends Microbiol 23, 598–605. Google Scholar

[261] Wade J.T., Grainger D.C.. Spurious transcription and its impact on cell function. Transcription, 2018, 9: 182-189 CrossRef PubMed Google Scholar

[262] Wallace, A.R. (1889). Darwinism, 1st edn (London: Macmillan). Google Scholar

[263] Wallace M.R., Andersen L.B., Saulino A.M., Gregory P.E., Glover T.W., Collins F.S.. A de novo Alu insertion results in neurofibromatosis type 1. Nature, 1991, 353: 864-866 CrossRef PubMed ADS Google Scholar

[264] Wang C., Huang S.. Nuclear function of Alus. Nucleus, 2014, 5: 131-137 CrossRef PubMed Google Scholar

[265] Wang H., Iacoangeli A., Lin D., Williams K., Denman R.B., Hellen C.U.T., Tiedge H.. Dendritic BC1 RNA in translational control mechanisms. J Cell Biol, 2005, 171: 811-821 CrossRef PubMed Google Scholar

[266] Wang H., Tiedge H.. Translational control at the synapse. Neuroscientist, 2004, 10: 456-466 CrossRef PubMed Google Scholar

[267] Wang J., Gong C., Maquat L.E.. Control of myogenesis by rodent SINE-containing lncRNAs. Genes Dev, 2013, 27: 793-804 CrossRef PubMed Google Scholar

[268] Wang J., Vicente-García C., Seruggia D., Moltó E., Fernandez-Miñán A., Neto A., Lee E., Gómez-Skarmeta J.L., Montoliu L., Lunyak V.V., et al. MIR retrotransposon sequences provide insulators to the human genome. Proc Natl Acad Sci USA, 2015, 112: E4428-E4437 CrossRef PubMed ADS Google Scholar

[269] Wang L., Jordan I.K.. Transposable element activity, genome regulation and human health. Curr Opin Genets Dev, 2018, 49: 25-33 CrossRef PubMed Google Scholar

[270] Wang T., Zeng J., Lowe C.B., Sellers R.G., Salama S.R., Yang M., Burgess S.M., Brachmann R.K., Haussler D.. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc Natl Acad Sci USA, 2007, 104: 18613-18618 CrossRef PubMed ADS Google Scholar

[271] Wang W., Brunet F.G., Nevo E., Long M.. Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster. Proc Natl Acad Sci USA, 2002, 99: 4448-4453 CrossRef PubMed ADS Google Scholar

[272] Wilson B.A., Masel J.. Putatively noncoding transcripts show extensive association with ribosomes. Genome Biol Evol, 2011, 3: 1245-1252 CrossRef PubMed Google Scholar

[273] Wistow G.. Lens crystallins: gene recruitment and evolutionary dynamism. Trends Biochem Sci, 1993, 18: 301-306 CrossRef Google Scholar

[274] Wu T., Kayser B.. High altitude adaptation in Tibetans. High Altitude Med Biol, 2006, 7: 193-208 CrossRef PubMed Google Scholar

[275] Xiao W., Liu H., Li Y., Li X., Xu C., Long M., Wang S.. A rice gene of de novo origin negatively regulates pathogen-induced defense response. PLoS ONE, 2009, 4: e4603 CrossRef PubMed ADS Google Scholar

[276] Xie M., Hong C., Zhang B., Lowdon R.F., Xing X., Li D., Zhou X., Lee H.J., Maire C.L., Ligon K.L., et al. DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nat Genet, 2013, 45: 836-841 CrossRef PubMed Google Scholar

[277] Yang S., Arguello J.R., Li X., Ding Y., Zhou Q., Chen Y., Zhang Y., Zhao R., Brunet F., Peng L., et al. Repetitive element-mediated recombination as a mechanism for new gene origination in Drosophila. PLoS Genet, 2008, 4: e3 CrossRef PubMed Google Scholar

[278] Yu H., Jiang H., Zhou Q., Yang J., Cun Y., Su B., Xiao C., Wang W.. Origination and evolution of a human-specific transmembrane protein gene, c1orf37-dup. Hum Mol Genets, 2006, 15: 1870-1875 CrossRef PubMed Google Scholar

[279] Yu H., Zhao X., Su B., Li D., Xu Y., Luo S., Xiao C., Wang W.. Expression of NF1 pseudogenes. Hum Mutat, 2005, 26: 487-488 CrossRef PubMed Google Scholar

[280] Zeng L., Pederson S.M., Cao D., Qu Z., Hu Z., Adelson D.L., Wei C.. Genome-wide analysis of the association of transposable elements with gene regulation suggests that Alu elements have the largest overall regulatory impact. J Comput Biol, 2018a, 25: 551-562 CrossRef PubMed Google Scholar

[281] Zeng L., Pederson S.M., Kortschak R.D., Adelson D.L.. Transposable elements and gene expression during the evolution of amniotes. Mobile DNA, 2018b, 9: 17 CrossRef PubMed Google Scholar

[282] Zhang W., Landback P., Gschwend A.R., Shen B., Long M.. New genes drive the evolution of gene interaction networks in the human and mouse genomes. Genome Biol, 2015, 16: 202 CrossRef PubMed Google Scholar

[283] Zhang Y., Lu S., Zhao S., Zheng X., Long M., Wei L.. Positive selection for the male functionality of a co-retroposed gene in the hominoids. BMC Evol Biol, 2009, 9: 252 CrossRef PubMed Google Scholar

[284] Zhang Y.E., Landback P., Vibranovski M., Long M.. New genes expressed in human brains: implications for annotating evolving genomes. Bioessays, 2012, 34: 982-991 CrossRef PubMed Google Scholar

[285] Zhang, Y.E., Landback, P., Vibranovski, M.D., and Long, M.Y. (2011). Accelerated recruitment of new brain development genes into the human genome. PLoS Biol 9, e1001179. Google Scholar

[286] Zhang Y.E., Long M.. New genes contribute to genetic and phenotypic novelties in human evolution. Curr Opin Genets Dev, 2014, 29: 90-96 CrossRef PubMed Google Scholar

[287] Zhang Z., Harrison P.M., Liu Y., Gerstein M.. Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res, 2003, 13: 2541-2558 CrossRef PubMed Google Scholar

[288] Zhao D., Ferguson A.A., Jiang N.. What makes up plant genomes: The vanishing line between transposable elements and genes. Biochim Biophys Acta Gene Regul Mech, 2016, 1859: 366-380 CrossRef PubMed Google Scholar

[289] Zucchelli S., Patrucco L., Persichetti F., Gustincich S., Cotella D.. Engineering translation in mammalian cell factories to increase protein yield: the unexpected use of long non-coding SINEUP RNAs. Comput Struct Biotech J, 2016, 14: 404-410 CrossRef PubMed Google Scholar

  • Figure 1

    Definition of aptation, adaptation and exaptation. This figure is adapted from Table 1 in the original publication of Gould and Vrba (1982), in which the distinction of exaptation out of a character previously shaped by selection for a given function (IIa) as well as out of a neutrally evolving character is illustrated (IIb) in comparison to adaptation.

  • Figure 2

    (Color online) The continuum of aptations: fuzzy boundaries between adaptations (bottom, red area) and exaptations (top, blue area). An adaptation describes the event(s) by which point mutations or small indels modify protein or RNA coding regions, or regulatory elements, altering the corresponding gene products or the action of regulatory regions to the advantage of the carrier organism. De novo gene formation from neutrally evolving sequences and horizontal gene transfer clearly correspond to exaptation. Duplication of a gene (either by recombination or retrotransposition) can yield genes with variant or novel function, sometimes via neutrally evolving inactive stages. These are exaptations. If a gene duplicates and remains largely unaltered, for example, with the effect of a beneficial higher expression of the corresponding product, this would be similar to a point mutation in the promoter region and thus, could also be delineated as adaptation. A gene residing after duplication on an autosome, escaping from inactivation on a sex chromosome, can be placed somewhere in the no man’s land between exaptation and adaptation. Subfunctionalization of genes after duplication could also be in this nebulous area. Point mutation of a neutrally evolving sequence fortuitously generating a transcription factor (TF) binding site is closer to adaptation, whereas the recruitment of novel exons or regulatory regions out of neutrally evolving sequences (including TEs) are usually considered to be exaptations. Inactivation of a gene encoding a protein and subsequent neutral evolution or continued transcription and maintained function as non-protein coding RNA (bottom part of box on the left) could be considered a partial nonaptation with the continued potential of adaptation (of the RNA function). However, neutral evolution of the open reading frame (ORF) and subsequent revival of a protein coding region that is different from the original one clearly falls under exaptation (top part of box on the left).

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号