logo

SCIENCE CHINA Life Sciences, https://doi.org/10.1007/s11427-018-9510-3

Hippo signaling and epithelial cell plasticity in mammalian liver development, homeostasis, injury and disease

More info
  • ReceivedMay 20, 2019
  • AcceptedJun 15, 2019
  • PublishedAug 26, 2019

Abstract

A traditional view of cellular differentiation is unidirectional: progenitor cells adopt specific fates in response to environmental cues resulting in deployment of cell-specific gene expression programs and acquisition of unique differentiated cellular properties such as production of structural and functional proteins that define individual cell types. In both development and in tissue repair stem and progenitor cells are thought to both self-renew to maintain the pool of precursors and to expand to give rise to transient amplifying and differentiated cell types. Recently, however, it has become appreciated that differentiated cell types can be reprogrammed to adopt progenitor and stem cell properties. In the case of epithelial cells in the mammalian liver, hepatocytes and biliary epithelial cells there is a significant degree of plasticity between these lineages that has been implicated in mechanisms of tissue repair and in liver pathologies such as cancer. Recent studies have highlighted the role of Hippo signaling, an emerging growth control and tumor suppressor pathway, in regulating epithelial cell plasticity in the mammalian liver and in this review, the role of cellular plasticity and Hippo signaling in regulating normal and abnormal tissue responses in the mammalian liver will be discussed.


Acknowledgment

This work was supported by the Cancer Prevention and Research Institute of Texas (CPRIT) Award RP180530.


Interest statement

The author(s) declare that they have no conflict of interest.


References

[1] Alder O., Cullum R., Lee S., Kan A.C., Wei W., Yi Y., Garside V.C., Bilenky M., Griffith M., Morrissy A.S., et al. Hippo signaling influences HNF4A and FOXA2 enhancer switching during hepatocyte differentiation. Cell Rep, 2014, 9: 261-271 CrossRef PubMed Google Scholar

[2] Ally A., Balasundaram M., Carlsen R., Chuah E., Clarke A., Dhalla N., Holt R.A., Jones S.J.M., Lee D., Ma Y., et al. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell, 2017, 169: 1327-1341.e23 CrossRef PubMed Google Scholar

[3] Alwahsh S.M., Rashidi H., Hay D.C.. Liver cell therapy: is this the end of the beginning?. Cell Mol Life Sci, 2018, 75: 1307-1324 CrossRef PubMed Google Scholar

[4] Bai H., Zhang N., Xu Y., Chen Q., Khan M., Potter J.J., Nayar S.K., Cornish T., Alpini G., Bronk S., et al. Yes-associated protein regulates the hepatic response after bile duct ligation. Hepatology, 2012, 56: 1097-1107 CrossRef PubMed Google Scholar

[5] Cai W.Y., Lin L.Y., Hao H., Zhang S.M., Ma F., Hong X.X., Zhang H., Liu Q.F., Ye G.D., Sun G.B., et al. Yes-associated protein/TEA domain family member and hepatocyte nuclear factor 4-alpha (HNF4α) repress reciprocally to regulate hepatocarcinogenesis in rats and mice. Hepatology, 2017, 65: 1206-1221 CrossRef PubMed Google Scholar

[6] Chen, J., Chen, L., Zern, M.A., Theise, N.D., Diehl, A.M., Liu, P., and Duan, Y. (2017). The diversity and plasticity of adult hepatic progenitor cells and their niche. Liver international: official journal of the International Association for the Study of the Liver 37, 1260–1271. Google Scholar

[7] Choi T.Y., Ninov N., Stainier D.Y.R., Shin D.. Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology, 2014, 146: 776-788 CrossRef PubMed Google Scholar

[8] Dorrell, C., Erker, L., Schug, J., Kopp, J.L., Canaday, P.S., Fox, A.J., Smirnova, O., Duncan, A.W., Finegold, M.J., Sander, M., et al. (2011). Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. Genes Dev 25, 1193–1203. Google Scholar

[9] Duncan A.W., Dorrell C., Grompe M.. Stem cells and liver regeneration. Gastroenterology, 2009, 137: 466-481 CrossRef PubMed Google Scholar

[10] Español-Suñer R., Carpentier R., Van Hul N., Legry V., Achouri Y., Cordi S., Jacquemin P., Lemaigre F., Leclercq I.A.. Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology, 2012, 143: 1564-1575.e7 CrossRef PubMed Google Scholar

[11] Fan B., Malato Y., Calvisi D.F., Naqvi S., Razumilava N., Ribback S., Gores G.J., Dombrowski F., Evert M., Chen X., et al. Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest, 2012, 122: 2911-2915 CrossRef PubMed Google Scholar

[12] Fausto N.. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology, 2004, 39: 1477-1487 CrossRef PubMed Google Scholar

[13] Font-Burgada J., Shalapour S., Ramaswamy S., Hsueh B., Rossell D., Umemura A., Taniguchi K., Nakagawa H., Valasek M.A., Ye L., et al. Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell, 2015, 162: 766-779 CrossRef PubMed Google Scholar

[14] Furuyama K., Kawaguchi Y., Akiyama H., Horiguchi M., Kodama S., Kuhara T., Hosokawa S., Elbahrawy A., Soeda T., Koizumi M., et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet, 2011, 43: 34-41 CrossRef PubMed Google Scholar

[15] Grijalva J.L., Huizenga M., Mueller K., Rodriguez S., Brazzo J., Camargo F., Sadri-Vakili G., Vakili K.. Dynamic alterations in Hippo signaling pathway and YAP activation during liver regeneration. Am J Physiol-Gastrointestinal Liver Physiol, 2014, 307: G196-G204 CrossRef PubMed Google Scholar

[16] Guest R.V., Boulter L., Kendall T.J., Minnis-Lyons S.E., Walker R., Wigmore S.J., Sansom O.J., Forbes S.J.. Cell lineage tracing reveals a biliary origin of intrahepatic cholangiocarcinoma. Cancer Res, 2014, 74: 1005-1010 CrossRef PubMed Google Scholar

[17] Guo, X., Zhao, Y., Yan, H., Yang, Y., Shen, S., Dai, X., Ji, X., Ji, F., Gong, X.G., Li, L., et al. (2017). Single tumor-initiating cells evade immune clearance by recruiting type II macrophages. Genes Dev 31, 247–259. Google Scholar

[18] Halder G., Johnson R.L.. Hippo signaling: growth control and beyond. Development, 2011, 138: 9-22 CrossRef PubMed Google Scholar

[19] He J., Lu H., Zou Q., Luo L.. Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology, 2014, 146: 789-800.e8 CrossRef PubMed Google Scholar

[20] Holczbauer Á., Factor V.M., Andersen J.B., Marquardt J.U., Kleiner D.E., Raggi C., Kitade M., Seo D., Akita H., Durkin M.E., et al. Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types. Gastroenterology, 2013, 145: 221-231 CrossRef PubMed Google Scholar

[21] Huch M., Gehart H., van Boxtel R., Hamer K., Blokzijl F., Verstegen M.M.A., Ellis E., van Wenum M., Fuchs S.A., de Ligt J., et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell, 2015, 160: 299-312 CrossRef PubMed Google Scholar

[22] Jörs S., Jeliazkova P., Ringelhan M., Thalhammer J., Dürl S., Ferrer J., Sander M., Heikenwalder M., Schmid R.M., Siveke J.T., et al. Lineage fate of ductular reactions in liver injury and carcinogenesis. J Clin Invest, 2015, 125: 2445-2457 CrossRef PubMed Google Scholar

[23] Katsuda T., Kawamata M., Hagiwara K., Takahashi R.U., Yamamoto Y., Camargo F.D., Ochiya T.. Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with regenerative capacity. Cell Stem Cell, 2017, 20: 41-55 CrossRef PubMed Google Scholar

[24] Kim W., Khan S.K., Liu Y., Xu R., Park O., He Y., Cha B., Gao B., Yang Y.. Hepatic Hippo signaling inhibits protumoural microenvironment to suppress hepatocellular carcinoma. Gut, 2018, 67: 1692-1703 CrossRef PubMed Google Scholar

[25] Kopp J.L., Grompe M., Sander M.. Stem cells versus plasticity in liver and pancreas regeneration. Nat Cell Biol, 2016, 18: 238-245 CrossRef PubMed Google Scholar

[26] Krenkel O., Tacke F.. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol, 2017, 17: 306-321 CrossRef PubMed Google Scholar

[27] Kubes P., Jenne C.. Immune responses in the liver. Annu Rev Immunol, 2018, 36: 247-277 CrossRef PubMed Google Scholar

[28] Lee D.H., Park J.O., Kim T.S., Kim S.K., Kim T.H., Kim M.C., Park G.S., Kim J.H., Kuninaka S., Olson E.N., et al. LATS-YAP/TAZ controls lineage specification by regulating TGFβ signaling and Hnf4α expression during liver development. Nat Commun, 2016, 7: 11961 CrossRef PubMed ADS Google Scholar

[29] Lee K.P., Lee J.H., Kim T.S., Kim T.H., Park H.D., Byun J.S., Kim M.C., Jeong W.I., Calvisi D.F., Kim J.M., et al. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Natl Acad Sci USA, 2010, 107: 8248-8253 CrossRef PubMed ADS Google Scholar

[30] Lemoinne S., Thabut D., Housset C.. Portal myofibroblasts connect angiogenesis and fibrosis in liver. Cell Tissue Res, 2016, 365: 583-589 CrossRef PubMed Google Scholar

[31] Lin S., Nascimento E.M., Gajera C.R., Chen L., Neuhöfer P., Garbuzov A., Wang S., Artandi S.E.. Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury. Nature, 2018, 556: 244-248 CrossRef PubMed ADS Google Scholar

[32] Llovet J.M., Zucman-Rossi J., Pikarsky E., Sangro B., Schwartz M., Sherman M., Gores G.. Hepatocellular carcinoma. Nat Rev Dis Primers, 2016, 2: 16018 CrossRef PubMed Google Scholar

[33] Lu, L., Finegold, M.J., and Johnson, R.L. (2018). Hippo pathway coactivators Yap and Taz are required to coordinate mammalian liver regeneration. Exp Mol Med 50, e423. Google Scholar

[34] Lu L., Li Y., Kim S.M., Bossuyt W., Liu P., Qiu Q., Wang Y., Halder G., Finegold M.J., Lee J.S., et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc Natl Acad Sci USA, 2010, 107: 1437-1442 CrossRef PubMed ADS Google Scholar

[35] Lu W.Y., Bird T.G., Boulter L., Tsuchiya A., Cole A.M., Hay T., Guest R.V., Wojtacha D., Man T.Y., Mackinnon A., et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat Cell Biol, 2015, 17: 971-983 CrossRef PubMed Google Scholar

[36] Machado M.V., Michelotti G.A., Pereira T.A., Xie G., Premont R., Cortez-Pinto H., Diehl A.M.. Accumulation of duct cells with activated YAP parallels fibrosis progression in non-alcoholic fatty liver disease. J Hepatol, 2015, 63: 962-970 CrossRef PubMed Google Scholar

[37] Malato Y., Naqvi S., Schürmann N., Ng R., Wang B., Zape J., Kay M.A., Grimm D., Willenbring H.. Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J Clin Invest, 2011, 121: 4850-4860 CrossRef PubMed Google Scholar

[38] Marquardt J.U., Andersen J.B., Thorgeirsson S.S.. Functional and genetic deconstruction of the cellular origin in liver cancer. Nat Rev Cancer, 2015, 15: 653-667 CrossRef PubMed Google Scholar

[39] Michalopoulos G.K.. Hepatostat: Liver regeneration and normal liver tissue maintenance. Hepatology, 2017, 65: 1384-1392 CrossRef PubMed Google Scholar

[40] Michalopoulos G.K., DeFrances M.C.. Liver regeneration. Science, 1997, 276: 60-66 CrossRef Google Scholar

[41] Mu X., Español-Suñer R., Mederacke I., Affò S., Manco R., Sempoux C., Lemaigre F.P., Adili A., Yuan D., Weber A., et al. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J Clin Invest, 2015, 125: 3891-3903 CrossRef PubMed Google Scholar

[42] Ober E.A., Lemaigre F.P.. Development of the liver: insights into organ and tissue morphogenesis. J Hepatol, 2018, 68: 1049-1062 CrossRef PubMed Google Scholar

[43] Pan D.. The Hippo signaling pathway in development and cancer. Dev Cell, 2010, 19: 491-505 CrossRef PubMed Google Scholar

[44] Patel S.H., Camargo F.D., Yimlamai D.. Hippo signaling in the liver regulates organ size, cell fate, and carcinogenesis. Gastroenterology, 2017, 152: 533-545 CrossRef PubMed Google Scholar

[45] Poisson J., Lemoinne S., Boulanger C., Durand F., Moreau R., Valla D., Rautou P.E.. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J Hepatol, 2017, 66: 212-227 CrossRef PubMed Google Scholar

[46] Raven A., Lu W.Y., Man T.Y., Ferreira-Gonzalez S., O'Duibhir E., Dwyer B.J., Thomson J.P., Meehan R.R., Bogorad R., Koteliansky V., et al. Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature, 2017, 547: 350-354 CrossRef PubMed ADS Google Scholar

[47] Schaub J.R., Malato Y., Gormond C., Willenbring H.. Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep, 2014, 8: 933-939 CrossRef PubMed Google Scholar

[48] Schaub J.R., Huppert K.A., Kurial S.N.T., Hsu B.Y., Cast A.E., Donnelly B., Karns R.A., Chen F., Rezvani M., Luu H.Y., et al. De novo formation of the biliary system by TGFβ-mediated hepatocyte transdifferentiation. Nature, 2018, 557: 247-251 CrossRef PubMed ADS Google Scholar

[49] Sekiya S., Suzuki A.. Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. J Clin Invest, 2012, 122: 3914-3918 CrossRef PubMed Google Scholar

[50] Shin, S., Walton, G., Aoki, R., Brondell, K., Schug, J., Fox, A., Smirnova, O., Dorrell, C., Erker, L., Chu, A.S., et al. (2011). Foxl1-Cre-marked adult hepatic progenitors have clonogenic and bilineage differentiation potential. Genes Dev 25, 1185–1192. Google Scholar

[51] Shin S., Wangensteen K.J., Teta-Bissett M., Wang Y.J., Mosleh-Shirazi E., Buza E.L., Greenbaum L.E., Kaestner K.H.. Genetic lineage tracing analysis of the cell of origin of hepatotoxin-induced liver tumors in mice. Hepatology, 2016, 64: 1163-1177 CrossRef PubMed Google Scholar

[52] Si-Tayeb K., Lemaigre F.P., Duncan S.A.. Organogenesis and development of the liver. Dev Cell, 2010, 18: 175-189 CrossRef PubMed Google Scholar

[53] Stanger B.Z.. Cellular homeostasis and repair in the mammalian liver. Annu Rev Physiol, 2015, 77: 179-200 CrossRef PubMed Google Scholar

[54] Suzuki A., Sekiya S., Onishi M., Oshima N., Kiyonari H., Nakauchi H., Taniguchi H.. Flow cytometric isolation and clonal identification of self-renewing bipotent hepatic progenitor cells in adult mouse liver. Hepatology, 2008, 48: 1964-1978 CrossRef PubMed Google Scholar

[55] Tanaka M., Iwakiri Y.. The hepatic lymphatic vascular system: structure, function, markers, and lymphangiogenesis. Cell Mol Gastroenterol Hepatol, 2016, 2: 733-749 CrossRef PubMed Google Scholar

[56] Tarlow B.D., Finegold M.J., Grompe M.. Clonal tracing of Sox9+ liver progenitors in mouse oval cell injury. Hepatology, 2014a, 60: 278-289 CrossRef PubMed Google Scholar

[57] Tarlow B.D., Pelz C., Naugler W.E., Wakefield L., Wilson E.M., Finegold M.J., Grompe M.. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell, 2014b, 15: 605-618 CrossRef PubMed Google Scholar

[58] Theise N.D., Saxena R., Portmann B.C., Thung S.N., Yee H., Chiriboga L., Kumar A., Crawford J.M.. The canals of Hering and hepatic stem cells in humans. Hepatology, 1999, 30: 1425-1433 CrossRef PubMed Google Scholar

[59] Tolosa, L., Pareja, E., and Gomez-Lechon, M.J. (2016). Clinical application of pluripotent stem cells: an alternative cell-based therapy for treating liver diseases? Transplantation 100, 2548–2557. Google Scholar

[60] Tschaharganeh D.F., Xue W., Calvisi D.F., Evert M., Michurina T.V., Dow L.E., Banito A., Katz S.F., Kastenhuber E.R., Weissmueller S., et al. p53-Dependent Nestin regulation links tumor suppression to cellular plasticity in liver cancer. Cell, 2016, 165: 1546-1547 CrossRef PubMed Google Scholar

[61] Tsuchida, T., and Friedman, S.L. (2017). Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 14, 397–411. Google Scholar

[62] Wang B., Zhao L., Fish M., Logan C.Y., Nusse R.. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Nature, 2015, 524: 180-185 CrossRef PubMed ADS Google Scholar

[63] Wang, X., Foster, M., Al-Dhalimy, M., Lagasse, E., Finegold, M., and Grompe, M. (2003). The origin and liver repopulating capacity of murine oval cells. Proc Natl Acad Sci USA 100(Suppl 1), 11881–11888. Google Scholar

[64] Wang X., Zheng Z., Caviglia J.M., Corey K.E., Herfel T.M., Cai B., Masia R., Chung R.T., Lefkowitch J.H., Schwabe R.F., et al. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab, 2016, 24: 848-862 CrossRef PubMed Google Scholar

[65] Wu H., Zhou X., Fu G.B., He Z.Y., Wu H.P., You P., Ashton C., Wang X., Wang H.Y., Yan H.X.. Reversible transition between hepatocytes and liver progenitors for in vitro hepatocyte expansion. Cell Res, 2017, 27: 709-712 CrossRef PubMed Google Scholar

[66] Xu M.Z., Yao T.J., Lee N.P.Y., Ng I.O.L., Chan Y.T., Zender L., Lowe S.W., Poon R.T.P., Luk J.M.. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer, 2009, 115: 4576-4585 CrossRef PubMed Google Scholar

[67] Yang L., Wang W.H., Qiu W.L., Guo Z., Bi E., Xu C.R.. A single-cell transcriptomic analysis reveals precise pathways and regulatory mechanisms underlying hepatoblast differentiation. Hepatology, 2017, 66: 1387-1401 CrossRef PubMed Google Scholar

[68] Yanger K., Knigin D., Zong Y., Maggs L., Gu G., Akiyama H., Pikarsky E., Stanger B.Z.. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell, 2014, 15: 340-349 CrossRef PubMed Google Scholar

[69] Yanger K., Stanger B.Z.. Facultative stem cells in liver and pancreas: fact and fancy. Dev Dyn, 2011, 240: 521-529 CrossRef PubMed Google Scholar

[70] Yanger, K., Zong, Y., Maggs, L.R., Shapira, S.N., Maddipati, R., Aiello, N.M., Thung, S.N., Wells, R.G., Greenbaum, L.E., and Stanger, B.Z. (2013). Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev 27, 719–724. Google Scholar

[71] Yi J., Lu L., Yanger K., Wang W., Sohn B.H., Stanger B.Z., Zhang M., Martin J.F., Ajani J.A., Chen J., et al. Large tumor suppressor homologs 1 and 2 regulate mouse liver progenitor cell proliferation and maturation through antagonism of the coactivators YAP and TAZ. Hepatology, 2016, 64: 1757-1772 CrossRef PubMed Google Scholar

[72] Yimlamai D., Christodoulou C., Galli G.G., Yanger K., Pepe-Mooney B., Gurung B., Shrestha K., Cahan P., Stanger B.Z., Camargo F.D.. Hippo pathway activity influences liver cell fate. Cell, 2014, 157: 1324-1338 CrossRef PubMed Google Scholar

[73] Yoo K.S., Lim W.T., Choi H.S.. Biology of cholangiocytes: from bench to bedside. Gut Liver, 2016, 10: 687-698 CrossRef PubMed Google Scholar

[74] Yovchev M., Jaber F.L., Lu Z., Patel S., Locker J., Rogler L.E., Murray J.W., Sudol M., Dabeva M.D., Zhu L., et al. Experimental model for successful liver cell therapy by Lenti TTR-YapERT2 transduced hepatocytes with tamoxifen control of Yap subcellular location. Sci Rep, 2016, 6: 19275 CrossRef PubMed ADS Google Scholar

[75] Zajicek G., Oren R., Weinreb Jr. M.. The streaming liver. Liver, 1985, 5: 293-300 CrossRef Google Scholar

[76] Zhang T., Zhang J., You X., Liu Q., Du Y., Gao Y., Shan C., Kong G., Wang Y., Yang X., et al. Hepatitis B virus X protein modulates oncogene Yes-associated protein by CREB to promote growth of hepatoma cells. Hepatology, 2012, 56: 2051-2059 CrossRef PubMed Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1