SCIENCE CHINA Life Sciences, Volume 63 , Issue 6 : 866-874(2020) https://doi.org/10.1007/s11427-019-9591-5

Oxidative stress, nutritional antioxidants and beyond

More info
  • ReceivedAug 6, 2019
  • AcceptedSep 11, 2019
  • PublishedNov 5, 2019


Free radical-induced oxidative stress contributes to the development of metabolic syndromes (Mets), including overweight, hyperglycemia, insulin resistance and pro-inflammatory state. Most free radicals are generated from the mitochondrial electron transport chain; under physiological conditions, their levels are maintained by efficient antioxidant systems. A variety of transcription factors have been identified and characterized that control gene expression in response to oxidative stress status. Natural antioxidant compounds have been largely studied for their strong antioxidant capacities. This review discusses the recent progress in oxidative stress and mitochondrial dysfunction in Mets and highlights the anti-Mets, anti-oxidative, and anti-inflammatory effect of polyphenols as potential nutritional therapy.

Funded by

the National Key Research and Development Program(2016YFD0501204,2018YFD0500405)

the Youth Innovation Promotion Association CAS(2016326)

the Science and Technology Projects of Hunan Province(2016SK3022,2017RS3058)

Key Project of Research and Development Plan of Hunan Province(2016NK2170)

Science and Technology Projects of Changsha City(kq1801059)

Youth Innovation Team Project of ISA


the Key Research Program of the Chinese Academy of Sciences(KFZD-SW-219)

and the Earmarked Fund for China Agriculture Research System(CARS-35)


This work was supported by the National Key Research and Development Program (2016YFD0501204, 2018YFD0500405), the Youth Innovation Promotion Association CAS (2016326), the Science and Technology Projects of Hunan Province (2016SK3022, 2017RS3058), Key Project of Research and Development Plan of Hunan Province (2016NK2170), Science and Technology Projects of Changsha City (kq1801059), Youth Innovation Team Project of ISA, CAS (2017QNCXTD_ZCS), the Key Research Program of the Chinese Academy of Sciences (KFZD-SW-219), and the Earmarked Fund for China Agriculture Research System (CARS-35).

Interest statement

The author(s) declare that they have no conflict of interest.


[1] Abdel-Moneim A., El-Twab S.M.A., Yousef A.I., Reheim E.S.A., Ashour M.B.. Modulation of hyperglycemia and dyslipidemia in experimental type 2 diabetes by gallic acid and p-coumaric acid: the role of adipocytokines and PPARγ. Biomed Pharmacother, 2018, 105: 1091-1097 CrossRef PubMed Google Scholar

[2] Ardid-Ruiz A., Ibars M., Mena P., Del Rio D., Muguerza B., Bladé C., Arola L., Aragonès G., Suárez M.. Potential involvement of peripheral leptin/STAT3 signaling in the effects of resveratrol and its metabolites on reducing body fat accumulation. Nutrients, 2018, 10: 1757 CrossRef PubMed Google Scholar

[3] Awada M., Soulage C.O., Meynier A., Debard C., Plaisancié P., Benoit B., Picard G., Loizon E., Chauvin M.A., Estienne M., et al. Dietary oxidized n-3 PUFA induce oxidative stress and inflammation: role of intestinal absorption of 4-HHE and reactivity in intestinal cells. J Lipid Res, 2012, 53: 2069-2080 CrossRef PubMed Google Scholar

[4] Bak E.J., Kim J., Jang S., Woo G.H., Yoon H.G., Yoo Y.J., Cha J.H.. Gallic acid improves glucose tolerance and triglyceride concentration in diet-induced obesity mice. Scand J Clin Lab Invest, 2013, 73: 607-614 CrossRef PubMed Google Scholar

[5] Bai, M., Liu, H., Xu, K., Zhang, X., Deng, B., Tan, C., Deng, J., and Yin, Y. (2019). Compensation effects of coated cysteamine on meat quality, amino acid composition, fatty acid composition, mineral content in dorsal muscle and serum biochemical indices in finishing pigs offered reduced trace minerals diet. Sci China Life Sci, doi: 10.1007/s11427-018-9399-4. Google Scholar

[6] Bose M., Lambert J.D., Ju J., Reuhl K.R., Shapses S.A., Yang C.S.. The major green tea polyphenol, (–)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J Nutr, 2008, 138: 1677-1683 CrossRef PubMed Google Scholar

[7] Chattopadhyay M., Khemka V.K., Chatterjee G., Ganguly A., Mukhopadhyay S., Chakrabarti S.. Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects. Mol Cell Biochem, 2015, 399: 95-103 CrossRef PubMed Google Scholar

[8] Chaudhuri J., Bains Y., Guha S., Kahn A., Hall D., Bose N., Gugliucci A., Kapahi P.. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab, 2018, 28: 337-352 CrossRef PubMed Google Scholar

[9] Corrêa M.G., Absy S., Tenenbaum H., Ribeiro F.V., Cirano F.R., Casati M.Z., Pimentel S.P.. Resveratrol attenuates oxidative stress during experimental periodontitis in rats exposed to cigarette smoke inhalation. J Periodont Res, 2019, 54: 225-232 CrossRef PubMed Google Scholar

[10] Cortassa S., Sollott S.J., Aon M.A.. Mitochondrial respiration and ROS emission during β-oxidation in the heart: an experimental-computational study. PLoS Comput Biol, 2017, 13: e1005588 CrossRef PubMed ADS Google Scholar

[11] Crescenzo R., Bianco F., Mazzoli A., Giacco A., Liverini G., Iossa S.. A possible link between hepatic mitochondrial dysfunction and diet-induced insulin resistance. Eur J Nutr, 2016, 55: 1-6 CrossRef PubMed Google Scholar

[12] Gustafson B., Smith U.. Regulation of white adipogenesis and its relation to ectopic fat accumulation and cardiovascular risk. Atherosclerosis, 2015, 241: 27-35 CrossRef PubMed Google Scholar

[13] Czarny P., Wigner P., Galecki P., Sliwinski T.. The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog Neuropsychopharmacol Biol Psych, 2018, 80: 309-321 CrossRef PubMed Google Scholar

[14] Das L., Vinayak M.. Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signalling and modulation of inflammation in prevention of cancer. PLoS ONE, 2015, 10: e0124000 CrossRef PubMed ADS Google Scholar

[15] Feng R.B., Wang Y., He C., Yang Y., Wan J.B.. Gallic acid, a natural polyphenol, protects against tert-butyl hydroperoxide-induced hepatotoxicity by activating ERK-Nrf2-Keap1-mediated antioxidative response. Food Chem Toxicol, 2018, 119: 479-488 CrossRef PubMed Google Scholar

[16] Folbergrová J., Ješina P., Kubová H., Otáhal J.. Effect of resveratrol on oxidative stress and mitochondrial dysfunction in immature brain during epileptogenesis. Mol Neurobiol, 2018, 55: 7512-7522 CrossRef PubMed Google Scholar

[17] Gandhi G.R., Jothi G., Antony P.J., Balakrishna K., Paulraj M.G., Ignacimuthu S., Stalin A., Al-Dhabi N.A.. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway. Eur J Pharmacol, 2014, 745: 201-216 CrossRef PubMed Google Scholar

[18] González de Vega R., García M., Fernández-Sánchez M.L., González-Iglesias H., Sanz-Medel A.. Protective effect of selenium supplementation following oxidative stress mediated by glucose on retinal pigment epithelium. Metallomics, 2018, 10: 83-92 CrossRef PubMed Google Scholar

[19] Goszcz K., Deakin S.J., Duthie G.G., Stewart D., Megson I.L.. Bioavailable concentrations of delphinidin and its metabolite, gallic acid, induce antioxidant protection associated with increased intracellular glutathione in cultured endothelial cells. Oxid Med Cell Longev, 2017, 2017(4): 1-17 CrossRef PubMed Google Scholar

[20] Gu M., Liu C., Wan X., Yang T., Chen Y., Zhou J., Chen Q., Wang Z.. Epigallocatechin gallate attenuates bladder dysfunction via suppression of oxidative stress in a rat model of partial bladder outlet obstruction. Oxid Med Cell Longev, 2018, 2018: 1-10 CrossRef PubMed Google Scholar

[21] Hadrich F., Mahmoudi A., Bouallagui Z., Feki I., Isoda H., Feve B., Sayadi S.. Evaluation of hypocholesterolemic effect of oleuropein in cholesterol-fed rats. Chem Biol Interact, 2016, 252: 54-60 CrossRef PubMed Google Scholar

[22] Hauck A.K., Bernlohr D.A.. Oxidative stress and lipotoxicity. J Lipid Res, 2016, 57: 1976-1986 CrossRef PubMed Google Scholar

[23] He W., Wang C., Chen Y., He Y., Cai Z.. Berberine attenuates cognitive impairment and ameliorates tau hyperphosphorylation by limiting the self-perpetuating pathogenic cycle between NF-κB signaling, oxidative stress and neuroinflammation. Pharmacol Rep, 2017, 69: 1341-1348 CrossRef PubMed Google Scholar

[24] Holvoet P., Vanhaverbeke M., Geeraert B., De Keyzer D., Hulsmans M., Janssens S.. Low cytochrome oxidase 1 links mitochondrial dysfunction to atherosclerosis in mice and pigs. PLoS ONE, 2017, 12: e0170307 CrossRef PubMed ADS Google Scholar

[25] Hu M., Wu F., Luo J., Gong J., Fang K., Yang X., Li J., Chen G., Lu F.. The role of berberine in the prevention of HIF-1α activation to alleviate adipose tissue fibrosis in high-fat-diet-induced obese mice. Evid Based Compl Alternat Med, 2018, 2018(7603): 1-12 CrossRef PubMed Google Scholar

[26] Jin Y., Liu S., Ma Q., Xiao D., Chen L.. Berberine enhances the AMPK activation and autophagy and mitigates high glucose-induced apoptosis of mouse podocytes. Eur J Pharmacol, 2017, 794: 106-114 CrossRef PubMed Google Scholar

[27] Khaleel E.F., Abdel-Aleem G.A., Mostafa D.G.. Resveratrol improves high-fat diet induced fatty liver and insulin resistance by concomitantly inhibiting proteolytic cleavage of sterol regulatory element-binding proteins, free fatty acid oxidation, and intestinal triglyceride absorption. Can J Physiol Pharmacol, 2018, 96: 145-157 CrossRef PubMed Google Scholar

[28] Kim B.H., Lee E.S., Choi R., Nawaboot J., Lee M.Y., Lee E.Y., Kim H.S., Chung C.H.. Protective effects of curcumin on renal oxidative stress and lipid metabolism in a rat model of type 2 diabetic nephropathy. Yonsei Med J, 2016, 57: 664 CrossRef PubMed Google Scholar

[29] Kim S., Jin Y., Choi Y., Park T.. Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem Pharmacol, 2011, 81: 1343-1351 CrossRef PubMed Google Scholar

[30] Kovac S., Angelova P.R., Holmström K.M., Zhang Y., Dinkova-Kostova A.T., Abramov A.Y.. Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim Biophys Acta Gen Subj, 2015, 1850: 794-801 CrossRef PubMed Google Scholar

[31] Leamy A.K., Egnatchik R.A., Young J.D.. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res, 2013, 52: 165-174 CrossRef PubMed Google Scholar

[32] Li F., Gao C., Yan P., Zhang M., Wang Y., Hu Y., Wu X., Wang X., Sheng J.. EGCG reduces obesity and white adipose tissue gain partly through AMPK activation in mice. Front Pharmacol, 2018, 9 CrossRef Google Scholar

[33] Li J., Tan B., Tang Y., Liao P., Yao K., Ji P., Yin Y.. Extraction and identification of the chyme proteins in the digestive tract of growing pigs. Sci China Life Sci, 2018, 61: 1396-1406 CrossRef PubMed Google Scholar

[34] Liao W., Yin X., Li Q., Zhang H., Liu Z., Zheng X., Zheng L., Feng X.. Resveratrol-induced white adipose tissue browning in obese mice by remodeling fecal microbiota. Molecules, 2018, 23: 3356 CrossRef PubMed Google Scholar

[35] Lv D., Xiong X., Yang H., Wang M., He Y., Liu Y., Yin Y.. Effect of dietary soy oil, glucose, and glutamine on growth performance, amino acid profile, blood profile, immunity, and antioxidant capacity in weaned piglets. Sci China Life Sci, 2018, 61: 1233-1242 CrossRef PubMed Google Scholar

[36] Mahmoud, A.M., Abdel-Rahman, M.M., Bastawy, N.A., and Eissa, H.M. (2017). Modulatory effect of berberine on adipose tissue PPARγ, adipocytokines and oxidative stress in high fat diet/streptozotocin-induced diabetic rats. J Appl Pharm Sci 7, 001–010. Google Scholar

[37] Malliou F., Andreadou I., Gonzalez F.J., Lazou A., Xepapadaki E., Vallianou I., Lambrinidis G., Mikros E., Marselos M., Skaltsounis A.L., et al. The olive constituent oleuropein, as a PPARα agonist, markedly reduces serum triglycerides. J Nutr Biochem, 2018, 59: 17-28 CrossRef PubMed Google Scholar

[38] Maritim A.C., Sanders R.A., Watkins J.B.. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol, 2003, 17: 24-38 CrossRef PubMed Google Scholar

[39] Maulucci G., Daniel B., Cohen O., Avrahami Y., Sasson S.. Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells. Mol Aspects Med, 2016, 49: 49-77 CrossRef PubMed Google Scholar

[40] Mi Y., Qi G., Fan R., Qiao Q., Sun Y., Gao Y., Liu X.. EGCG ameliorates high-fat- and high-fructose-induced cognitive defects by regulating the IRS/AKT and ERK/CREB/BDNF signaling pathways in the CNS. FASEB J, 2017, 31: 4998-5011 CrossRef PubMed Google Scholar

[41] Murphy M.P.. How mitochondria produce reactive oxygen species. Biochem J, 2009, 417: 1-13 CrossRef PubMed Google Scholar

[42] Paltoglou G., Schoina M., Valsamakis G., Salakos N., Avloniti A., Chatzinikolaou A., Margeli A., Skevaki C., Papagianni M., Kanaka-Gantenbein C., et al. Interrelations among the adipocytokines leptin and adiponectin, oxidative stress and aseptic inflammation markers in pre- and early-pubertal normal-weight and obese boys. Endocrine, 2017, 55: 925-933 CrossRef PubMed Google Scholar

[43] Panahi G., Pasalar P., Zare M., Rizzuto R., Meshkani R.. High glucose induces inflammatory responses in HepG2 cells via the oxidative stress-mediated activation of NF-κB, and MAPK pathways in HepG2 cells. Arch Physiol Biochem, 2018, 124: 468-474 CrossRef PubMed Google Scholar

[44] Park J., Min J.S., Kim B., Chae U.B., Yun J.W., Choi M.S., Kong I.K., Chang K.T., Lee D.S.. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways. Neurosci Lett, 2015, 584: 191-196 CrossRef PubMed Google Scholar

[45] Patel S., Santani D.. Role of NF-κB in the pathogenesis of diabetes and its associated complications. Pharmacol Rep, 2009, 61: 595-603 CrossRef Google Scholar

[46] Peverill W., Powell L.W., Skoien R.. Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. Int J Mol Sci, 2014, 15: 8591-8638 CrossRef PubMed Google Scholar

[47] Sadeghi A., Seyyed Ebrahimi S.S., Golestani A., Meshkani R.. Resveratrol ameliorates palmitate-induced inflammation in skeletal muscle cells by attenuating oxidative stress and JNK/NF-κB pathway in a SIRT1-independent mechanism. J Cell Biochem, 2017, 118: 2654-2663 CrossRef PubMed Google Scholar

[48] Sahin K., Orhan C., Akdemir F., Tuzcu M., Sahin N., Yılmaz I., Juturu V.. β-cryptoxanthin ameliorates metabolic risk factors by regulating NF-κB and Nrf2 pathways in insulin resistance induced by high-fat diet in rodents. Food Chem Toxicol, 2017, 107: 270-279 CrossRef PubMed Google Scholar

[49] Sampath C., Rashid M.R., Sang S., Ahmedna M.. Green tea epigallocatechin 3-gallate alleviates hyperglycemia and reduces advanced glycation end products via nrf2 pathway in mice with high fat diet-induced obesity. Biomed Pharmacother, 2017, 87: 73-81 CrossRef PubMed Google Scholar

[50] Septembre-Malaterre A., Le Sage F., Hatia S., Catan A., Janci L., Gonthier M.P.. Curcuma longa polyphenols improve insulin-mediated lipid accumulation and attenuate proinflammatory response of 3T3-L1 adipose cells during oxidative stress through regulation of key adipokines and antioxidant enzymes. Biofactors, 2016, 42: 418-430 CrossRef PubMed Google Scholar

[51] Setayesh T., Nersesyan A., Mišík M., Noorizadeh R., Haslinger E., Javaheri T., Lang E., Grusch M., Huber W., Haslberger A., et al. Gallic acid, a common dietary phenolic protects against high fat diet induced DNA damage. Eur J Nutr, 2018, 4 CrossRef PubMed Google Scholar

[52] Shi C., Chen X., Liu Z., Meng R., Zhao X., Liu Z., Guo N.. Oleuropein protects L-02 cells against H2O2-induced oxidative stress by increasing SOD1, GPx1 and CAT expression. Biomed Pharmacother, 2017, 85: 740-748 CrossRef PubMed Google Scholar

[53] Slocum S.L., Skoko J.J., Wakabayashi N., Aja S., Yamamoto M., Kensler T.W., Chartoumpekis D.V.. Keap1/Nrf2 pathway activation leads to a repressed hepatic gluconeogenic and lipogenic program in mice on a high-fat diet. Arch Biochem Biophys, 2016, 591: 57-65 CrossRef PubMed Google Scholar

[54] Smith U.. Abdominal obesity: a marker of ectopic fat accumulation. J Clin Invest, 2015, 125: 1790-1792 CrossRef PubMed Google Scholar

[55] Sun R., Yang N., Kong B., Cao B., Feng D., Yu X., Ge C., Huang J., Shen J., Wang P., et al. Orally administered berberine modulates hepatic lipid metabolism by altering microbial bile acid metabolism and the intestinal FXR signaling pathway. Mol Pharmacol, 2017, 91: 110-122 CrossRef PubMed Google Scholar

[56] Sun W., Wang X., Hou C., Yang L., Li H., Guo J., Huo C., Wang M., Miao Y., Liu J., et al. Oleuropein improves mitochondrial function to attenuate oxidative stress by activating the Nrf2 pathway in the hypothalamic paraventricular nucleus of spontaneously hypertensive rats. Neuropharmacology, 2017, 113: 556-566 CrossRef PubMed Google Scholar

[57] Tanaka M., Kishimoto Y., Sasaki M., Sato A., Kamiya T., Kondo K., Iida K.. Terminalia bellirica (Gaertn.) Roxb. extract and gallic acid attenuate LPS-induced inflammation and oxidative stress via MAPK/NF-κB and Akt/AMPK/Nrf2 pathways. Oxid Med Cell Longev, 2018, 2018(2): 1-15 CrossRef PubMed Google Scholar

[58] Tien T., Zhang J., Muto T., Kim D., Sarthy V.P., Roy S.. High glucose induces mitochondrial dysfunction in retinal Müller cells: implications for diabetic retinopathy. Invest Ophthalmol Vis Sci, 2017, 58: 2915 CrossRef PubMed Google Scholar

[59] Valenzuela R., Illesca P., Echeverría F., Espinosa A., Rincón-Cervera M.Á., Ortiz M., Hernandez-Rodas M.C., Valenzuela A., Videla L.A.. Molecular adaptations underlying the beneficial effects of hydroxytyrosol in the pathogenic alterations induced by a high-fat diet in mouse liver: PPAR-α and Nrf2 activation, and NF-κB down-regulation. Food Funct, 2017, 8: 1526-1537 CrossRef PubMed Google Scholar

[60] Wadhwa R., Gupta R., Maurya P.K.. Oxidative stress and accelerated aging in neurodegenerative and neuropsychiatric disorder. Curr Pharm Des, 2019, 24: 4711-4725 CrossRef PubMed Google Scholar

[61] Wang L., Ye X., Hua Y., Song Y.. Berberine alleviates adipose tissue fibrosis by inducing AMP-activated kinase signaling in high-fat diet-induced obese mice. Biomed Pharmacother, 2018, 105: 121-129 CrossRef PubMed Google Scholar

[62] Wang S., Liang X., Yang Q., Fu X., Zhu M., Rodgers B.D., Jiang Q., Dodson M.V., Du M.. Resveratrol enhances brown adipocyte formation and function by activating AMP-activated protein kinase (AMPK) α1 in mice fed high-fat diet. Mol Nutr Food Res, 2017, 61: 1600746 CrossRef PubMed Google Scholar

[63] Wang T., Xiang Z., Wang Y., Li X., Fang C., Song S., Li C., Yu H., Wang H., Yan L., et al. (−)-Epigallocatechin gallate targets notch to attenuate the inflammatory response in the immediate early stage in human macrophages. Front Immunol, 2017, 8 CrossRef PubMed Google Scholar

[64] Wang S.L., Li Y., Wen Y., Chen Y.F., Na L.X., Li S.T., Sun C.H.. Curcumin, a potential inhibitor of up-regulation of TNF-alpha and IL-6 induced by palmitate in 3T3-L1 adipocytes through NF-kB and JNK pathway. Biomed Environ Sci, 2009, 22: 32-39 CrossRef Google Scholar

[65] Willems P.H.G.M., Rossignol R., Dieteren C.E.J., Murphy M.P., Koopman W.J.H.. Redox homeostasis and mitochondrial dynamics. Cell Metab, 2015, 22: 207-218 CrossRef PubMed Google Scholar

[66] Xia X., Yan J., Shen Y., Tang K., Yin J., Zhang Y., Yang D., Liang H., Ye J., Weng J.. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS ONE, 2011, 6: e16556 CrossRef PubMed ADS Google Scholar

[67] Yao Y.F., Liu X., Li W.J., Shi Z.W., Yan Y.X., Wang L.F., Chen M., Xie M.Y.. (−)-Epigallocatechin-3-gallate alleviates doxorubicin-induced cardiotoxicity in sarcoma 180 tumor-bearing mice. Life Sci, 2017, 180: 151-159 CrossRef PubMed Google Scholar

[68] Yu H.T., Fu X.Y., Liang B., Wang S., Liu J.K., Wang S.R., Feng Z.H.. Oxidative damage of mitochondrial respiratory chain in different organs of a rat model of diet-induced obesity. Eur J Nutr, 2018, 57: 1957-1967 CrossRef PubMed Google Scholar

[69] Zingg J.M., Hasan S.T., Nakagawa K., Canepa E., Ricciarelli R., Villacorta L., Azzi A., Meydani M.. Modulation of cAMP levels by high-fat diet and curcumin and regulatory effects on CD36/FAT scavenger receptor/fatty acids transporter gene expression. Biofactors, 2017, 43: 42-53 CrossRef PubMed Google Scholar

  • Figure 1

    Excess ROS-induced oxidative stress is the primary cause of Mets. Many key protein transporters and the molecules are involved with the development of Mets. Polyphenols have exerted extraordinary function on anti-Mets.

  • Table 1   Table 1 Summary of the effects of dietary polyphenols on metabolism and inflammationa)

    Polyphenols and dosages

    Model used




    Oxidative stress


    EGCG (50–100 mg kg–1)

    HFD-fed male C57BL/6J mice

    ¯ Epididymal adipose tissue weight

    ¯ Serum triglycerides, cholesterol and LDL-C

    ­ Serum HDL-C

    (Li F et al., 2018)

    EGCG (25–75 mg kg–1)

    HFD-fed male C57BL/6J mice

    ¯ Body weight

    ¯ Plasma insulin

    ¯ Blood glucose

    ¯ Advanced glycation end products

    ­ GSH/GSSG ratio

    (Sampath et al., 2017)

    EGCG (3.2 g kg–1 diet)

    HFD-fed male C57BL/6J mice

    ­ Insulin sensitivity

    ¯ MCP-1 expression

    (Bose et al., 2008)

    EGCG (25 mg kg–1)

    Tumor-bearing Kunming mice

    ¯ ROS generation

    ­ SOD activity

    (Yao et al., 2017)

    EGCG (5 mg kg–1)

    Partial bladder outlet obstruction Sprague-Dawley rats

    ­ Activity of SOD, GSH-Px and CAT, ¯ serum MDA

    (Gu et al., 2018)

    EGCG (2 g L–1, in drinking water)

    High-fat-and high fructose-fed C57BL/6J mice

    ¯ Body weight and blood insulin

    ¯ TNF-α expression

    (Mi et al., 2017)

    Gallic acid (20 mg kg–1)

    HFD-fed male and female C57BL6/J mic

    ¯ Plasma glucose, insulin and triglycerides

    ¯ Liver pro-inflammatory cytokines (NF-κB and TNF-α)

    (Setayesh et al., 2018)

    Gallic acid (40 mg kg–1)

    Diabetic male albino rats

    ¯ Serum glucose, triglycerides, LDL-C, T-cholesterol and VLDL-C

    ¯ Serum HDL-C

    ¯ Serum TNF-α and

    adiponectin levels

    (Abdel-Moneim et al., 2018)

    Gallic acid (10 mg kg–1)

    HFD-fed male C57BL/6 mice

    ­ Glucose tolerance

    ­ Lipid metabolism

    ¯ Serum triglyceride

    (Bak et al., 2013)

    Gallic acid (20 mg kg–1)

    Type 2 diabetic male Wistar rats

    ­ Glucose uptake

    (Gandhi et al., 2014)

    Gallic acid (46 μg mL–1)

    LPS treated macrophage cell

    line RAW 264

    ¯ ROS generation

    (Tanaka et al., 2018)

    Gallic acid (40 μmol L–1)

    Tert-butyl hydroperoxide treated L02 cells

    ­ GSH-Px level

    ­ GSH/GSSG ratio

    (Feng et al., 2018)

    Gallic acid (100 nmol L–11 μmol L–1)

    Umbilical vein endothelial cell

    ­ GSH activity

    (Goszcz et al., 2017)

    Oleuropein (50 mg kg–1)

    Cholesterol-rich diet-fed male Wistar rats

    ¯ Body weight and adipose tissue mass

    ¯ Liver triglycerides

    ­ Serum adiponectin

    (Hadrich et al., 2016)

    Oleuropein (100 mg kg–1)

    Male SV129 PPARα-null mice

    ¯ Serum cholesterol and triglycerides

    (Malliou et al., 2018)

    Oleuropein (7.4–29.6 μmol L–1)

    H2O2 treated L02 cells

    ­ Protein expression of SOD1, CAT and GSH-Px

    (Shi et al., 2017)

    Oleuropein (60 mg kg–1)

    Spontaneously hypertensive rats

    ­ Plasma GSH/GSSG ratio and SOD activity

    ¯ Plasma MDA expression of Complex II and IV

    ¯ Plasma TNF-α, IL-1β, IL-6

    (Sun et al., 2017)

    Resveratrol (200 mg kg–1)

    HFD-fed male Wistar rats

    ¯ Body weight

    ¯ Serum leptin, triglycerides, glucose and insulin

    (Ardid-Ruiz et al., 2018)

    Resveratrol (20 mg kg–1)

    HFD-fed male Wistar rats

    ¯ Body weight and adipose tissue mass

    ¯ Free fatty acids β-oxidation, and triglycerides intestinal absorption

    (Khaleel et al., 2018)

    Resveratrol (25 mg kg–1)

    Li-Pilocarpine treated male Wistar rats

    ¯ Mitochondria 3-NT, 4-HNE

    (Folbergrová et al., 2018)

    Resveratrol (25 mg kg–1)

    Periodontitis models in male Wistar rats

    ­ Gingival tissue SOD concentration

    ¯ Gingival tissue NADPH oxidase concentration

    (Corrêa et al., 2019)

    Resveratrol (0.4% in diet)

    HFD-fed male C57BL/6J mice

    ¯ Protein expression of pro-inflammatory cytokines (IL-6, MCP-1 and TNF-α)

    (Kim et al., 2011)

    Resveratrol (100 µmol L–1)

    Palmitate treated C2C12 cells

    ¯ TNF-α and IL-6 expression

    (Sadeghi et al., 2017)

    Berberine (200–300 mg kg–1)

    HFD-fed male C57BL/6 mice

    ¯ Body weight gain and insulin resistance

    (Hu et al., 2018)

    Berberine (75–150 mg kg–1)

    HFD-fed male C57BL/6 mice

    ¯ Serum insulin and free fatty acids

    ¯ Adipose tissue mass

    (Wang et al., 2018)

    Berberine (150 mg kg–1)

    HFD-fed male C57BL/6 mice

    ¯ Serum triglycerides

    ¯ Hepatic triglycerides

    ¯ Hepatic CD36 expression

    (Sun et al., 2017)

    Berberine (380 mg kg–1)

    Type 2 diabetic Sprague-Dawley rats

    ¯ Fasting glucose

    ­ Insulin sensitivity

    (Xia et al., 2011)

    Berberine (50–100 mg kg–1)

    Male mice

    ­ Protein expression of GSH-Px-1/2 and GR

    ¯ MDA and LPO levels

    ¯ Expression of NF-κB elements

    (He et al., 2017)

    Curcumin (100 mg kg–1)

    Otsuka-Long-Evans-Tokushima Fatty rats

    ¯ Serum triglycerides, cholesterol and free fatty acids

    (Kim et al., 2016)

    Curcumin (500–1500 mg kg–1)

    HFD-fed male C57BL/6 mice

    ¯ Liver CD36/FAT protein expression

    (Zingg et al., 2017)

    Curcumin (50–100 mg kg–1)

    Dalton’s Lymphoma model in Mus musculus

    ­ Liver GR and NQO1 activity and expression

    (Das and Vinayak, 2015)

    Curcumin (5–20 µmol L–1)

    Palmitate treated 3T3-L1 adipocytes

    ¯ TNF-α and IL-6 expression and secretion

    ¯ NF-κB p65 and nucleic NF-κB p65 protein expression

    (Wang et al., 2009)

    Curcumin (100 µmol L–1)

    H2O2 treated 3T3-L1 adipocytes

    ¯ IL-6, TNF-α, MCP-1 secretion, and NF-κB gene expression

    (Septembre-Malaterre et al., 2016)

    EGCG, epigallocatechin gallate; HFD, high fat diet; LDL-C, LDL cholesterol; HDL-C, HDL cholesterol; VLDL, VLDL cholesterol; GSH, glutathione; GSSG, glutathione disulfide; GR, glutathione reductase; GSH-Px, glutathione peroxidase; SOD, superoxide dismutase; CAT, catalase; MDA, malondialdehyde; 4-HNE, 4-hydroxynonenal; LPO, lipid peroxide; 3-NT, 3-nitrotyrosine; NQO1, NAD(P)H:quinone acceptor oxidoreductase 1; MCP, monocyte chemoattractant protein; TNF, tumor necrosis factor; NF-κB, nuclear factor-κB; IL-1β, interleukin-1β; IL-6, interleukin-6; CD36/FAT, fatty acid transporter.

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号