logo

SCIENCE CHINA Life Sciences, https://doi.org/10.1007/s11427-020-1748-0

A new era for evolutionary developmental biology in non-model organisms

Fuwen Wei 1,2,3,*
More info
  • ReceivedApr 28, 2020
  • AcceptedMay 20, 2020
  • PublishedJun 12, 2020

Abstract

There is no abstract available for this article.


Funded by

the Strategic Priority Research Program of Chinese Academy of Sciences(XDB31000000)

the Key Research Program of Frontier Science of Chinese Academy of Sciences(QYZDY-SSW-SMC019)

the Creative Research Group Project of the National Natural Science Foundation of China(31821001)


Acknowledgment

This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31000000), the Key Research Program of Frontier Science of Chinese Academy of Sciences (QYZDY-SSW-SMC019) and the Creative Research Group Project of the National Natural Science Foundation of China (31821001).


Interest statement

The author(s) declare that they have no conflict of interest.


References

[1] Burga A., Wang W., Ben-David E., Wolf P.C., Ramey A.M., Verdugo C., Lyons K., Parker P.G., Kruglyak L.. A genetic signature of the evolution of loss of flight in the Galapagos cormorant. Science, 2017, 356: eaal3345 CrossRef Google Scholar

[2] Eckalbar W.L., Schlebusch S.A., Mason M.K., Gill Z., Parker A.V., Booker B.M., Nishizaki S., Muswamba-Nday C., Terhune E., Nevonen K.A., et al. Transcriptomic and epigenomic characterization of the developing bat wing. Nat Genet, 2016, 48: 528-536 CrossRef Google Scholar

[3] Hall, B.K. (2003). Evo-Devo: Evolutionary developmental mechanisms. Int J Dev Biol 47, 491–495. Google Scholar

[4] Hong W., Huang M., Wei Y., Wei X.. A new and promising application of gene editing: CRISPR-controlled smart materials for tissue engineering, bioelectronics, and diagnostics. Sci China Life Sci, 2019, 62: 1547-1549 CrossRef Google Scholar

[5] Hu Y., Wu Q., Ma S., Ma T., Shan L., Wang X., Nie Y., Ning Z., Yan L., Xiu Y., et al. Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas. Proc Natl Acad Sci USA, 2017, 114: 1081-1086 CrossRef Google Scholar

[6] Huan P., Wang Q., Tan S., Liu B.. Dorsoventral decoupling of Hox gene expression underpins the diversification of Molluscs. Proc Natl Acad Sci USA, 2020, 117: 503-512 CrossRef Google Scholar

[7] Kierzkowski D., Runions A., Vuolo F., Strauss S., Lymbouridou R., Routier-Kierzkowska A.L., Wilson-Sánchez D., Jenke H., Galinha C., Mosca G., et al. A growth-based framework for leaf shape development and diversity. Cell, 2019, 177: 1405-1418.e17 CrossRef Google Scholar

[8] Kvon E.Z., Kamneva O.K., Melo U.S., Barozzi I., Osterwalder M., Mannion B.J., Tissières V., Pickle C.S., Plajzer-Frick I., Lee E.A., et al. Progressive loss of function in a limb enhancer during snake evolution. Cell, 2016, 167: 633-642.e11 CrossRef Google Scholar

[9] Lin Q., Fan S., Zhang Y., Xu M., Zhang H., Yang Y., Lee A.P., Woltering J.M., Ravi V., Gunter H.M., et al. The seahorse genome and the evolution of its specialized morphology. Nature, 2016, 540: 395-399 CrossRef Google Scholar

[10] Luo Z., Yang Q., Geng B., Jiang S., Yang S., Li X., Cai Y., Dai J.. Whole genome engineering by synthesis. Sci China Life Sci, 2018, 61: 1515-1527 CrossRef Google Scholar

[11] Marlétaz F., Firbas P.N., Maeso I., Tena J.J., Bogdanovic O., Perry M., Wyatt C.D.R., de la Calle-Mustienes E., Bertrand S., Burguera D., et al. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature, 2018, 564: 64-70 CrossRef Google Scholar

[12] Martin A., Serano J.M., Jarvis E., Bruce H.S., Wang J., Ray S., Barker C.A., O’Connell L.C., Patel N.H.. CRISPR/Cas9 mutagenesis reveals versatile roles of Hox genes in Crustacean limb specification and evolution. Curr Biol, 2016, 26: 14-26 CrossRef Google Scholar

[13] Nowoshilow S., Schloissnig S., Fei J.F., Dahl A., Pang A.W.C., Pippel M., Winkler S., Hastie A.R., Young G., Roscito J.G., et al. The axolotl genome and the evolution of key tissue formation regulators. Nature, 2018, 554: 50-55 CrossRef Google Scholar

[14] Sun Y., Zhu Z.. Designing future farmed fishes using genome editing. Sci China Life Sci, 2019, 62: 420-422 CrossRef Google Scholar

[15] Zhang R., Guo C., Zhang W., Wang P., Li L., Duan X., Du Q., Zhao L., Shan H., Hodges S.A., et al. Disruption of the petal identity gene APETALA3-3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae). Proc Natl Acad Sci USA, 2013, 110: 5074-5079 CrossRef Google Scholar

  • Table 1   Table 1 A summary of recent representative advances of evo-devo study in non-model organisms

    Organism

    Key phenotype

    Scientific issue

    Methodology used

    Ref

    Mammals

    Wing of bats

    Genetic mechanism of bat wing development

    Genomics, transcriptomics, epigenomics, and gene functional validation

    Eckalbar et al., 2016

    Birds

    Flight loss of Galapagos cormorant

    Genetic mechanism of flightlessness evolution

    Genomics and CRISPR/Cas9-based experimental validation

    Burga et al., 2017

    Reptiles

    Limb loss of snakes

    Evolution of limb loss in snakes

    Phylogenetic analysis and CRISPR/Cas9-based experimental validation

    Kvon et al., 2016

    Amphibians

    Tail and limb regeneration of Salamander

    Evolution of key tissue formation regulators

    Genomics and CRISPR/Cas9-based experimental validation

    Nowoshilow et al., 2018

    Fishes

    Pelvic-fin loss and male pregnancy of seahorse

    Evolution of morphological innovations and phenotypic changes

    Phylogenetic analysis and CRISPR/Cas9-based experimental validation

    Lin et al., 2016

    Cephalochorda

    Body plan of amphioxus

    Evolution of vertebrate morphological innovations

    Genomics, epigenomics, transcriptomics and transgene experimental validation

    Marlétaz et al., 2018

    Crustaceans

    Diversified appendages arthropods

    Crustacean limb specification and evolution

    CRISPR/Cas9 and RNAi-based gene functional validation

    Martin et al., 2016

    Dicotyledon

    Leaf morphological diversity of Cardamine hirsuta

    Development and diversity of leaf shape

    Transgenes experiment validation, phenotypic analysis and modeling

    Kierzkowski et al., 2019

    Parallel petal losses within Ranunculaceae

    The genetic mechanism of parallel petal losses within Ranunculaceae

    Phylogenetic analysis and gene functional validation

    Zhang et al., 2013

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号