logo

SCIENCE CHINA Earth Sciences, Volume 59, Issue 6: 1138-1156(2016) https://doi.org/10.1007/s11430-016-5310-z

Homologous temperature of olivine: Implications for creep of the upper mantle and fabric transitions in olivine

More info
  • ReceivedJan 23, 2016
  • AcceptedApr 22, 2016
  • PublishedMay 11, 2016

Abstract

Abstract The homologues temperature of a crystalline material is defined as T/Tm, where T is temperature and Tm is the melting (solidus) temperature in Kelvin. It has been widely used to compare the creep strength of crystalline materials. The melting temperature of olivine system, (Mg,Fe)2SiO4, decreases with increasing iron content and water content, and increases with confining pressure. At high pressure, phase transition will lead to a sharp change in the melting curve of olivine. After calibrating previous melting experiments on fayalite (Fe2SiO4), the triple point of fayalite-Fe2SiO4 spinel-liquid is determined to be at 6.4 GPa and 1793 K. Using the generalized means, the solidus and liquidus of dry olivine are described as a function of iron content and pressure up to 6.4 GPa. The change of T/Tm of olivine with depth allows us to compare the strength of the upper mantle with different thermal states and olivine composition. The transition from semi-brittle to ductile deformation in the upper mantle occurs at a depth where T/Tm of olivine equals 0.5. The lithospheric mantle beneath cratons shows much smaller T/Tm of olivine than orogens and extensional basins until the lithosphere-asthenosphere boundary where T/Tm > 0.66, suggesting a stronger lithosphere beneath cratons. In addition, T/Tm is used to analyze deformation experiments on olivine. The results indicate that the effect of water on fabric transitions in olivine is closely related with pressure. The hydrogen-weakening effect and its relationship with T/Tm of olivine need further investigation. Below 6.4 GPa (<200 km), T/Tm of olivine controls the transition of dislocation glide from [100] slip to [001] slip. Under the strain rate of 10-12–10-15 s-1 and low stress in the upper mantle, the [100](010) slip system (A-type fabric) becomes dominant when T/Tm > 0.55–0.60. When T/Tm < 0.55–0.60, [001] slip is easier and low T/Tm favors the operation of [001](100) slip system (C-type fabric). This is consistent with the widely observed A-type olivine fabric in naturally deformed peridotites, and the C-type olivine fabric in peridotites that experienced deep subduction in ultrahigh-pressure metamorphic terranes. However, the B-type fabric will develop under high stress and relatively low T/Tm. Therefore, the homologues temperature of olivine established a bridge to extrapolate deformation experiments to rheology of the upper mantle. Seismic anisotropy of the upper mantle beneath cratons should be simulated using a four-layer model with the relic A-type fabric in the upper lithospheric mantle, the B-type fabric in the middle layer, the newly formed A- or B-type fabric near the lithosphere-asthenosphere boundary, and the asthenosphere dominated by diffusion creep below the Lehmann discontinuity. Knowledge about transition mechanisms of olivine fabrics is critical for tracing the water distribution and mantle flow from seismic anisotropy.


Acknowledgment

Acknowledgements I am grateful to Prof. Junfeng Zhang and another anonymous reviewer for their constructive review. This research was supported by the National Natural Science Foundation of China (Grant Nos. 41590623 & 41172182), and the Ministry of Land Resources Public Welfare Industry Special Scientific Research Projects (Grant No. 201311178-3).

References


References

[1] Akaogi M, Ito E, Navrotsky A. Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application. J Geophys Res, 1989, 94: 15671-15685 CrossRef Google Scholar

[2] Akimoto S I, Komada E, Kushiro I. Effect of pressure on the melting of olivine and spinel polymorph of Fe2SiO4. J Geophys Res, 1967, 72: 679-686 CrossRef Google Scholar

[3] Arndt N T. The formation and evolution of the continental crust. Geochem Perspectives, 2013, 2: 405-533 CrossRef Google Scholar

[4] Ashby M F, Verrall R A. Micromechanisms of flow and fracture, and their relevance to the rheology of the upper mantle. Philos Trans R Soc A-Math Phys Eng Sci, 1977, 288: 59-95 Google Scholar

[5] Aubaud C, Hauri E H, Hirschmann M M. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophys Res Lett, 31: L20611, doi. 2004, : 1029/2004GL021341 Google Scholar

[6] Bai Q, Mackwell S J, Kohlstedt D L. High-temperature creep of olivine single crystals, 1. Mechanical results for buffered samples. J Geophys Res, 1991, 96: 2441-2460 CrossRef Google Scholar

[7] Bell D R, Iginger P D, Rossman G R. Quantitative analysis of trace OH in garnet and pyroxene. Am Miner, 1995, 80: 465-474 CrossRef Google Scholar

[8] Bell D R, Rossman G R, Maldener J, Endisch D, Rauch F. Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum. J Geophys Res, 108: 2105, doi. 2003, : 1029/2001JB000679 Google Scholar

[9] Bell D R, Rossman G R. Water in Earth’s mantle: The role of nominally anhydrous minerals. Science, 1992, 255: 1391-1397 CrossRef Google Scholar

[10] Ben Ismaïl W, Barrol G, Mainprice D. The Kaapvaal craton seismic anisotropy: Petrological analyses of upper mantle kimberlite nodules. Geophys Res Lett, 2001, 28: 2497-2500 CrossRef Google Scholar

[11] Ben Ismaïl W, Mainprice D. An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy. Tectonophysics, 1998, 269: 145-157 Google Scholar

[12] Borch R S, Green H W. Dependence of creep in olivine on homologous temperature and its implications for flow in the mantle. Nature, 1987, 330: 345-348 CrossRef Google Scholar

[13] Boudier F, Nicolas A. Nature of the Moho transition zone in the Oman ophiolite. J Petrol, 1995, 36: 777-796 CrossRef Google Scholar

[14] Bowen N L, Schairer J F. The system MgO-FeO-SiO2. Am J Sci, 1935, 29: 151-217 Google Scholar

[15] Bürgmann R, Dresen G. Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations. Annu Rev Earth Planet Sci, 2008, 36: 531-567 CrossRef Google Scholar

[16] Bystricky M, Kunze K, Burlini L, Burg J P. High shear strain of olivine aggregates: Rheological and seismic consequences. Science, 2000, 290: 1564-1567 CrossRef Google Scholar

[17] Carter N L, Avé Lallemant H G. High temperature flow of dunite and peridotite. Geol Soc Am Bull, 1970, 81: 2181-2202 CrossRef Google Scholar

[18] Christensen N I. The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analysis of ultramafic tectonites. Geophys J Royal Astron Soc, 1984, 76: 89-111 CrossRef Google Scholar

[19] Clos F, Gilio M, van Roermund H L M. Fragments of deeper parts of the hanging wall mantle preserved as orogenic peridotites in the central belt of the Seve Nappe Complex, Sweden. Lithos, 192-195: 8–20. 2014, Google Scholar

[20] Cordier P, Rubie D C. Plastic deformation of minerals under extreme pressure using a multi-anvil apparatus. Mater Sci Eng A-Struct Mater Prop Microstruct Process, 2001, 309: 38-43 Google Scholar

[21] Couvy H, Frost D J, Heidelbach F, Nyilas K, Ungar T, Mackwell S, Cordier P. Shear deformation experiments of forsterite at 11 GPa-1400°C in the multianvil apparatus. Eur J Mineral, 2004, 16: 877-889 CrossRef Google Scholar

[22] Davis B T C, England J L. The melting of forsterite up to 50 kilobars. J Geophys Res, 1964, 69: 1113-1116 CrossRef Google Scholar

[23] Deuss A, Woodhouse J H. The nature of the Lehmann discontinuity from its seismological Clapeyron slopes. Earth Planet Sci Lett, 2004, 225: 295-304 CrossRef Google Scholar

[24] Durinck J, Legris A, Cordier P. Pressure sensitivity of olivine slip systems: First-principle calculations of generalized stacking faults. Phys Chem Miner, 2005, 32: 646-654 CrossRef Google Scholar

[25] Eaton D W, Darbyshire F, Evans R L, Grütter H, Jones A G, Yuan X H. The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons. Lithos, 2009, 109: 1-22 CrossRef Google Scholar

[26] Elkins-Tanton L T, Hess P C, Parmentier E M. Possible formation of ancient crust on Mars through magma ocean processes. J Geophys Res, 110: E12, doi. 2005, : 1029/2005JE002480 Google Scholar

[27] Evans B, Goetze C. The temperature variation of hardness of olivine and its implication for polycrystalline yield stress. J Geophys Res, 1979, 84: 5505-5524 CrossRef Google Scholar

[28] Fei H, Wiedenbeck M, Yamazaki D, Katsura T. Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients. Nature, 2013, 498: 213-215 CrossRef Google Scholar

[29] Frese K, Trommsdorf V, Kunze K. 2003. Olivine [100] normal to foliation: Lattice preferred orientation in prograde garnet peridotite formed at high H2O activity, Cima di Gagnone (Centre Apls). Contrib Mineral Petrol, 145: 73–86. Google Scholar

[30] Gao S, Zhang J F, Xu W L, Liu Y S. Delamination and destruction of the North China Craton. Chin Sci Bull, 2009, 54: 3367-3378 Google Scholar

[31] Green D H, Hibberson W O, Rosenthal A, Kovaca I, Yaxley G M, Falloon T J, Brink F. Experimental study of the influence of water on melting and phase assemblages in the upper mantle. J Petrol, 2014, 55: 2067-2096 CrossRef Google Scholar

[32] Green H W, Houston H. The mechanics of deep earthquakes. Annu Rev Earth Planet Sci, 1995, 23: 169-213 CrossRef Google Scholar

[33] Griffin W L, Belousova E A, O’Neill C, O’Reilly S Y, Malkovets V, Pearson N J, Spetsius S, Wilde S A. The world turns over: Hadean-Archean crust-mantle evolution. Lithos, 2014, 189: 2-15 CrossRef Google Scholar

[34] Griffin W L, O’Reilly S Y, Abe N, Aulbach S, Davies R M, Pearson N J, Doyle B J, Kivi K. The origin and evolution of Archean lithospheric mantle. Precambrian Res, 2003, 127: 19-41 CrossRef Google Scholar

[35] Grimm R E. Geophysical constraints on the lunar Procellarum KREEP Terrane. J Geophys Res Planets, 2013, 118: 768-777 CrossRef Google Scholar

[36] Hansen L N, Zimmerman M E, Kohlstedt D L. Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic- preferred orientation. J Geophys Res, 116: B08201. doi: 10. 2011, : 1029/ 2011JB008220 Google Scholar

[37] Hirschmann M M, Tenner T, Aubaud C, Withers A C. Dehydration melting of nominally anhydrous mantle: The primacy of partitioning. Phys Earth Planet Int, 2009, 176: 54-68 CrossRef Google Scholar

[38] Hirschmann M M. Mantle solidus: Experimental constraints and the effects of peridotite composition. Geochem Geophys Geosyst, 1: 1042–1067, doi. 2000, : 1029/2000GC000070 Google Scholar

[39] Hirschmann M M. Water, melting, and the deep Earth H2O cycle. Annu Rev Earth Planet Sci, 2006, 34: 62-653 Google Scholar

[40] Hirth G, Kohlstedt D L. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. In: Eiler J E, ed. Inside the Subduction Factory. Washington DC: American Geophysical Union. 2003, : 83-105 Google Scholar

[41] Hirth G, Kohlstedt D L. Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett, 1996, 144: 93-108 CrossRef Google Scholar

[42] Holtzman B K, Kohlstedt D L, Zimmerman M E, Heidelbach F, Hiraga T, Hustoft J. Melt segregation and strain partitioning: Implications for seismic anisotropy and mantle flow. Science, 2003, 301: 1227-1230 CrossRef Google Scholar

[43] Hsu L C. Melting of fayalite up to 40 kilobars. J Geophys Res, 1967, 72: 4235-4244 CrossRef Google Scholar

[44] Jaupart C, Mareschal J C. The thermal structure and thickness of continental roots. Lithos, 1999, 48: 93-114 CrossRef Google Scholar

[45] Jin D, Karato S, Obata M. Mechanisms of shear localization in the continental lithosphere: Inference from the deformation microstructures of peridotites from the Ivrea zone, northern Italy. J Struct Geol, 1998, 20: 195-209 CrossRef Google Scholar

[46] Jin Z M, Green II H W, Borch R S. Microstructures of olivine and stresses in the upper mantle beneath Eastern China. Tectonophysics, 1989, 169: 23-50 CrossRef Google Scholar

[47] Jung H, Karato S. Water-induced fabric transitions in olivine. Science, 2001, 293: 1460-1463 CrossRef Google Scholar

[48] Jung H, Katayama I, Jiang Z, Hiraga T, Karato S. Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics, 2006, 421: 1-22 CrossRef Google Scholar

[49] Jung H, Lee J, Ko B, Jung S, Park M, Cao Y, Song S, 2013. Natural type-C olivine fabrics in garnet peridotites in North Qaidam UHP collision belt, NW China. Tectonophysics, 594: 91–102. Google Scholar

[50] Jung H, Mo W, Green H W. Upper mantle seismic anisotropy resulting from pressure-induced slip transition in olivine. Nature Geosci, 2009, 2: 73-77 CrossRef Google Scholar

[51] Kameyama M, Yuan D A, Karato S. Thermal-mechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone. Earth Planet Sci Lett, 1999, 168: 159-172 CrossRef Google Scholar

[52] Karato S, Jung H, Katayama I, Skemer P. Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annu Rev Earth Planet Sci, 2008, 36: 59-95 CrossRef Google Scholar

[53] Karato S, Jung H. Effects of pressure on high-temperature dislocation creep in olivine polycrystals. Philos Mag A, 2003, 83: 401-414 CrossRef Google Scholar

[54] Karato S, Paterson M S, Fitzgerald J D. Rheology of synthetic olivine aggregates: Influence of grain size and water. J Geophys Res, 1986, 91: 8151-8176 CrossRef Google Scholar

[55] Karato S, Rubie D, Yan H. Dislocation recovery in olivine under deep upper mantle conditions: Implications for creep and diffusion. J Geophys Res, 1993, 98: 9761-9768 CrossRef Google Scholar

[56] Karato S, Toriumi M, Fujii T. Dynamic recrystallization of olivine single crystals during high temperature creep. Geophys Res Lett, 1980, 7: 649-652 CrossRef Google Scholar

[57] Karato S. On the Lehman discontinuity. Geophys Res Lett, 1992, 19: 2255-2258 CrossRef Google Scholar

[58] Katayama I, Jung H, Karato S. New type of olivine fabric at modest water content and low stress. Geology, 2004, 32: 1045-1048 CrossRef Google Scholar

[59] Katayama I, Karato S, Brandon M. Evidence of high water content in the deep upper mantle inferred from deformation microstructures. Geology, 2005, 33: 613-616 CrossRef Google Scholar

[60] Katayama I, Karato S. Effect of temperature on the B- to C-type olivine fabric transition and implication for flow pattern in subduction zones. Phys Earth Planet Inter, 2006, 157: 33-45 CrossRef Google Scholar

[61] Katsura T, Ito E. The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel. J Geophys Res, 1989, 94: 15663-15670 CrossRef Google Scholar

[62] Katsura T, Yamada H, Nishikawa O, Song M, Kubo A, Shinmei T, Yokoshi S, Aizawa Y, Yoshino T, Walter M J, Ito E, Funakoshi K. Olivine-wadsleyite transition in the system (Mg,Fe)2SiO4. J Geophys Res, 109: B02209, doi. 2004, : 1029/2003JB002438 Google Scholar

[63] Kawazoe T, Karato S, Otsuka K, Jing Z, Mookherjee M. Shear deformation of dry polycrystalline olivine under deep upper mantle conditions using a rotational Drickamer apparatus (RDA). Phys Earth Planet Inter, 2009, 174: 128-137 CrossRef Google Scholar

[64] Khan A, Connolly J A D, Maclennan J, Mosegaard K. Joint inversion of seismic and gravity data for lunar composition and thermal state. Geophys J Int, 2007, 168: 243-258 CrossRef Google Scholar

[65] Koeppen W C, Hamilton V E. Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data. J Geophys Res, 113: E05001, doi. 2008, : 1029/2007JE002984 Google Scholar

[66] Kohlstedt D L, Keppler H, Rubie D C. Solubility of water in the a, b and γ phases of (Mg,Fe)2SiO4. Contrib Mineral Petrol, 1996, 123: 345-357 CrossRef Google Scholar

[67] Kohlstedt D L, Mackwell S J. Diffusion of hydrogen and intrinsic point defects in olivine. Z Phys Chem, 1998, 207: 147-162 CrossRef Google Scholar

[68] Kohlstedt D L. The role of water in high-temperature rock deformation. Rev Mineral Geochem, 2006, 62: 377-396 CrossRef Google Scholar

[69] Kojitani H, Akaogi M. Melting enthalpies of mantle peridotite: Calorimetric determinations in the system CaO-MgO-Al2O3-SiO2 and application to magma generation. Earth Planet Sci Lett, 1997, 153: 209-222 CrossRef Google Scholar

[70] Korenaga J, Karato S. A new analysis of experimental data on olivine rheology. J Geophys Res, 113: B02403, doi. 2008, : 1029/ 2007JB005100 Google Scholar

[71] Lee J, Jung H. Lattice-preferred orientation of olivine found in diamond-bearing garnet peridotites in Finsch, South Africa and implications for seismic anisotropy. J Struct Geol, 2015, 70: 12-22 CrossRef Google Scholar

[72] Li L, Raterron P, Weidner D, Chen J. Olivine flow mechanism at 8 GPa. Phys Earth Planet Inter, 2003, 138: 113-129 CrossRef Google Scholar

[73] Li L. Studies of mineral properties at mantle condition using deformation multi-anvil apparatus. Prog Nat Sci, 2009, 19: 1467-1475 CrossRef Google Scholar

[74] Long M D, Becker T W. Mantle dynamics and seismic anisotropy. Earth Planet Sci Lett, 2010, 297: 341-354 CrossRef Google Scholar

[75] Mainprice D, Tommasi A, Couvy H, Cordier P, Frost D J. Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth’s upper mantle. Nature, 2005, 433: 731-733 CrossRef Google Scholar

[76] Mei S, Kohlstedt D L. Influence of water on plastic deformation of olivine aggregates 1. Diffusion creep regime. J Geophys Res, 2000a, 105: 21457-21469 CrossRef Google Scholar

[77] Mei S, Kohlstedt D L. Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J Geophys Res, 2000b, 105: 21471-21481 CrossRef Google Scholar

[78] Miyazaki T, Sueyoshi K, Hiraga T. Olivine crystals align during diffusion creep of Earth’s upper mantle. Nature, 2013, 502: 321-326 CrossRef Google Scholar

[79] Mizukami T, Wallis S R, Yarnamoto J. Natural examples of olivine lattice preferred orientation patterns with a flow-normal a-axis maximum. Nature, 2004, 427: 432-436 CrossRef Google Scholar

[80] Mosenfelder J L, Deligne N I, Asimow P D, Rossman G. Hydrogen incorporation in olivine from 2–12 GPa. Am Miner, 2006, 91: 285-294 CrossRef Google Scholar

[81] Nicolas A, Boudier F, Boullier A M. Mechanisms of flow in naturally and experimentally deformed peridotites. Am J Sci, 1973, 273: 853-876 CrossRef Google Scholar

[82] O’Reilly S Y, Griffin W L. Imaging global chemical and thermal heterogeneity in the subcontinental lithospheric mantle with garnets and xenoliths: Geophysical implications. Tectonophysics, 2006, 416: 289-319 CrossRef Google Scholar

[83] Ody A, Poulet F, Bibring J P, Loizeau D, Carter J, Gondet B, Langevin Y. Global investigation of olivine on Mars: Insights into crust and mantle compositions. J Geophys Res Planets, 2013, 118: 234-262 CrossRef Google Scholar

[84] Ohtani E, Moriwaki K, Kato T, Onuma K. Melting and crystal-liquid partitioning in the system Mg2SiO4-Fe2SiO4 to 25 GPa. Phys Earth Planet Inter, 1998, 107: 75-82 CrossRef Google Scholar

[85] Ohtani E. Melting relation of Fe2SiO4 up to about 200 kbar. J Phys Earth, 1979, 27: 189-208 CrossRef Google Scholar

[86] Ohuchi T, Irifune T. Development of A-type olivine fabric in water-rich deep upper mantle. Earth Planet Sci Lett, 2013, 362: 20-30 CrossRef Google Scholar

[87] Ohuchi T, Kawazoe T, Nishihara Y, Nishiyama N, Irifune T. High pressure and temperature fabric transitions in olivine and variations in upper mantle seismic anisotropy. Earth Planet Sci Lett, 2011, 304: 55-63 CrossRef Google Scholar

[88] Ohuchi T, Kawazoe T, Nishiyama N, Nishihara Y, Irifune T. Technical development of simple shear deformation experiments using a deformation-DIA apparatus. J Earth Sci, 2010, 21: 523-531 CrossRef Google Scholar

[89] Ohuchi T, Nishihara Y, Kawazoe T, Spengler D, Shiraishi R, Suzuki A, Kikegawa T, Ohtani E. Superplasticity in hydrous melt-bearing dunite: Implications for shear localization in Earth’s upper mantle. Earth Planet Sci Lett, 335-336: 59–71. 2012, Google Scholar

[90] Park J, Levin V. Seismic anisotropy: Tracing plate dynamics in the mantle. Science, 2002, 296: 485-489 CrossRef Google Scholar

[91] Paterson M S. The determination of hydroxyl by infrared absorption in quartz silicate glasses and similar materials. Bull Mineral, 1982, 105: 20-29 Google Scholar

[92] Paterson M S, Olgaard D L. Rock deformation tests to large shear strains in torsion. J Struct Geol, 2000, 22: 1341-1358 CrossRef Google Scholar

[93] Paterson M S. Rock deformation experimentation. In: Duba A G, Durham W B, Handin J W, Wang H F, eds. The Brittle-Ductile Transition in Rocks. Washington DC: AGU. 1990, : 187-194 Google Scholar

[94] Peacock S M. Thermal structure and metamorphic evolution of subduction slabs. In: Eiler J, ed. Inside the Subduction Factory. Washington DC: AGU Geophysical Monograph. 2003, : 7-22 Google Scholar

[95] Peslier A H, Woodland A B, Bell D R, Lazarov M. Olivine water contents in the continental lithosphere and the longevity of cratons. Nature, 2010, 467: 78-81 CrossRef Google Scholar

[96] Peslier A H. A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. J Volcanol Geotherm Res, 2010, 197: 239-258 CrossRef Google Scholar

[97] Pitzer K S, Sterner S M. Equations of state valid continuously from zero to extreme pressures for H2O and CO2. J Chem Phys, 1994, 101: 3111-3116 CrossRef Google Scholar

[98] Précigout J, Hirth G. B-type olivine fabric induced by gain boundary sliding. Earth Planet Sci Lett, 2014, 395: 231-240 CrossRef Google Scholar

[99] Presnall D C, Walter M J. Melting of forsterite, Mg2SiO4, from 9. 7 to 16. 5 GPa. J GeophysRes, 1993, 98: 19777-19783 CrossRef Google Scholar

[100] Presnall D C. Phase diagrams of Earth-forming minerals. In: Thomas J A, ed. Mineral Physics and Crystallography: A Handbook of Physical Constants. Washington DC: AGU Reference Shelf 2. 1995, : 248-268 Google Scholar

[101] Raterron P, Amiguet E, Chen J, Li L, Cordier P. Experimental deformation of olivine single crystals at mantle pressures and temperatures. Phys Earth Planet Inter, 2009, 172: 74-83 CrossRef Google Scholar

[102] Raterron P, Chen J, Li L, Weidner D, Cordier P. Pressure-induced slip system transition in forsterite: Single-crystal rheological properties at mantle pressure and temperature. Am Miner, 2007, 92: 1436-1445 CrossRef Google Scholar

[103] Raterron P, Wu Y, Weidner D J, Chen J. Low-temperature olivine rheology at high pressure. Phys Earth Planet Inter, 2004, 145: 149-159 CrossRef Google Scholar

[104] Savage M K. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Rev Geophys, 1999, 37: 65-106 Google Scholar

[105] Sawaguchi T. Deformation history and exhumation process of the Horoman Peridotite Complex, Hokkaido, Japan. Tectonophysics, 2004, 379: 109-126 CrossRef Google Scholar

[106] Skemer P, Katayama I, Karato S. Deformation fabrics of the Cima di Gagnone peridotite massif, Central Alps, Switzerland: Evidence of deformation at low temperatures in the presence of water. Contrib Mineral Petrol, 2006, 152: 43-51 CrossRef Google Scholar

[107] Stixrude L, Lithgow-Bertelloni C. Influence of phase transformations on lateral heterogeneity and dynamics in Earth’s mantle. Earth Planet Sci Lett, 2007, 263: 45-55 CrossRef Google Scholar

[108] Stixrude L. Structure and sharpness of phase transitions and mantle discontinuities. J Geophys Res, 1997, 102: 14835-14852 CrossRef Google Scholar

[109] Tommasi A, Vauchez A, Ionov D A. Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia). Earth Planet Sci Lett, 2008, 272: 65-77 CrossRef Google Scholar

[110] van der Wal D, Chopra P N, Drury M, Fitz Gerald J D. Relationships between dynamically recrystallized grain size and deformation conditions in experimentally deformed olivine rocks. Geophy Res Lett, 1993, 20: 1479-1482 CrossRef Google Scholar

[111] Wang Q, Xia Q K, O’Reilly S Y, Griffin G L, Beyer E E, Brueckner H K. Pressure- and stress-induced fabric transition in olivine from peridotites in the Western Gneiss Region (Norway): Implications for mantle seismic anisotropy. J Metamorph Geol, 2013b, 31: 91-111 Google Scholar

[112] Wang Q. A review of water contents and ductile deformation mechanisms of olivine: Implications for the lithosphere-asthenosphere boundary of continents. Lithos, 2010, 120: 30-41 CrossRef Google Scholar

[113] Wang Y F, Zhang J F, Shi F. The origin and geophysical implications of a weak C-type olivine fabric in the Xugou ultra-high pressure garnet peridotite. Earth Planet Sci Lett, 2013a, 376: 63-73 CrossRef Google Scholar

[114] Weertman J. Creep laws for the mantle of the Earth. Philos Trans R Soc A-Math Phys Eng Sci, 1978, 288: 9-26 CrossRef Google Scholar

[115] Wüstefel A, Bokelmann G, Barruol G, Montagner J P. Identifying global seismic anisotropy patterns by correlating shear-wave splitting and surface-wave data. Phys Earth Planet Inter, 2009, 176: 198-212 CrossRef Google Scholar

[116] Xu Y G, Li H Y, Pang C J, He B. On the timing and duration of the destruction of the North China Craton. Chin Sci Bull, 2009, 54: 3379-3396 Google Scholar

[117] Xu Z Q, Wang Q, Ji S C, Chen J, Zeng L S, Yang J S, Chen F Y, LiangF H, Wenk H R. Petrofabrics and seismic properties of garnet peridotite from the UHP Sulu terrane (China): Implications for olivine deformation mechanism in a cold and dry subducting continental slab. Tectonophysics, 2006, 421: 111-127 CrossRef Google Scholar

[118] Yagi T, Akaogi M, Shimomura O, Suzuki T, Akimoto S. In situ observation of the olivine-spinel phase transformation in Fe2SiO4 using synchrotron radiation. J Geophys Res, 1987, 92: 6207-6213 CrossRef Google Scholar

[119] Zhang H F. Peridotite-melt interaction: A key point for destruction of cratonic lithospheric mantle. Chin Sci Bull, 2009, 54: 3417-3437 Google Scholar

[120] Zhang J F, Green H W, Bozhilov K N, Jin Z M. Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust. Nature, 2004, 428: 633-636 CrossRef Google Scholar

[121] Zhang J F, Wang C, Wang Y F. Experimental constraints on the destruction mechanism of the North China Craton. Lithos, 2012, 149: 91-99 CrossRef Google Scholar

[122] Zhang S, Karato S, Gerald J F, Faul U H, Zhou Y. Simple shear deformation of olivine aggregates. Tectonophysics, 2000, 316: 133-152 CrossRef Google Scholar

[123] Zhao Y H, Ginsberg S B, Kohlstedt D L. Solubility of hydrogen in olivine: Dependence on temperature and iron content. Contrib Mineral Petrol, 2004, 147: 155-161 CrossRef Google Scholar

[124] Zhao Y H, Li X F, Li Y, Zimmerman M, Kohlstedt D L. Experimental study of high temperature and high pressure of fayalite. Acta Petrol Sin, 2007, 23: 2927-2932 Google Scholar

[125] Zhao Y H, Shi X, Zimmerman M, Kohlstedt D L. Effect of water on the rheology of iron rich olivine. Acta Petrol Sin, 2006, 22: 2381-2386 Google Scholar

[126] Zhao Y H, Zimmerman M E, Kohlstedt D L. Effect of iron content on the creep behavior of olivine: 1. Anhydrous conditions. Earth Planet Sci Lett, 2009, 287: 229-240 CrossRef Google Scholar

[127] Zheng Y F, Xia Q K, Chen R X, Gao X Y. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth Sci Rev, 2011, 107: 342-374 CrossRef Google Scholar

  • Figure 1

    Relationship between strength and homologues temperature of a crystalline material.

  • Figure 2

    Temperature-pressure isopleth for the composition Mg2SiO4 (modified after Presnall, 1995).

  • Figure 3

    Calibrated temperature-pressure isopleth for the composition Fe2SiO4.

  • Figure 4

    Phase diagram of Mg2SiO4-Fe2SiO4 system (modified after Katsura and Ito, 1989).

  • Figure 5

    Solidus and liquidus of dry olivine (Mg,Fe)2SiO4. The shadow area shows the composition range of olivine in the Earth’s mantle. The solidus of dry peridotite is calculated from eq. (13) (Hirschmann, 2000).

  • Figure 6

    Equilibrium diagram of Mg2SiO4-Fe2SiO4 system at 0.1 MPa and 6.4 GPa.

  • Figure 7

    Influence of water content on the solidus of peridotites beneath mid-ocean ridges (Hirschmann et al., 2009). Partial melting starts when the mantle adiabat intersects the solidus of peridotites. The number indicates the water content in peridotites in ppm H2O.

  • Figure 8

    Deformation map of dry olivine at high pressure (modified after Ashby and Verrall, 1977). Red lines represent the boundary of dominant deformation mechanisms, and green shadow shows the range of strain rate in the upper mantle.

  • Figure 9

    Thermal structure of the upper mantle (a) and profiles of the homologues temperature of olivine to 200 km beneath typical tectonic units in continents (b). (b) The gray shadow area shows T/Tm of olivine in the range of 0.55–0.60, which separates the dominant activation of [100] slip and [001] slip in olivine under the strain rate of 10-12–10-15 s-1.

  • Figure 10

    Deformation maps of (a) dry olivine and (b) water-poor olivine (modified after Wang, 2010). The solid curves are lines of constant strain rate at depth of 200 km (in black) and 400 km (in blue). The thick red solid curves and dashed blue curves separate the deformation regimes dominated by diffusion creep, dislocation creep and the Peierls mechanism at 200 and 400 km, respectively. The green shaded square indicates the ranges of stress and grain size in the upper mantle.

  • Figure 11

    Dependence of olivine fabrics on temperature and strain rate (modified after Carter and Avé Lallemant, 1970).

  • Figure 12

    Effects of T/Tm on olivine fabrics. Data are from Bystricky et al. (2000), Zhang et al. (2000), Jung and Karato (2001), Couvy et al. (2004), Katayama et al. (2004), Li et al. (2004), Jung et al. (2006, 2009), Katayama and Karato (2006).

  • Figure 13

    Olivine fabrics at high temperature and relatively low pressure. (a) Fabric diagram of olivine as a function of stress and water content; (b) lower hemisphere projection for pole figures of olivine crystallographic axes [100], [010] and [001] (Karato et al., 2008); and (c) fabric diagram of olivine as a function of stress and water saturation. Date are from experiments of Bystricky et al. (2000), Zhang et al. (2000), Jung and Karato (2001), Katayama et al. (2004), and Jung et al. (2006).

  • Figure 14

    Effect of pressure and stress on olivine fabrics. Data are from Bystricky et al. (2000), Zhang et al. (2000), Jung and Karato (2001), Couvy et al. (2004), Katayama et al. (2004); Li et al. (2004, 2006); Raterron et al. (2004, 2007); Jung et al. (2006, 2009); Katayama and Karato (2006), Ohuchi et al. (2011), Ohuchi and Irifune (2013).

  • Figure 15

    Distribution of olivine fabrics in the Western Gneiss Region in Norway (modified after Wang et al., 2013b).

  • Figure 16

    Olivine fabrics ((a)–(c)) and seismic anisotropy ((d)–(f)) of typical peridotite samples from the Western Gneiss Region in Norway (modified after Wang et al., 2013b). Equal-area projection, lower hemisphere. The contours at multiples of a uniform distribution are plotted and an inverse log grey scale is used to emphasize high densities. Structural directions are defined in the text. N, number of data points; pfJ, texture index.

  • Figure 17

    Deformation mechanisms of olivine and S-wave splitting in the upper mantle beneath cratons.

  • Table 1   Comparison of homologues temperature of olivine beneath different tectonic units

    Tectonic unit

    Olivine composition

    Moho

    Depth (km)

    (where T/Tm = 0.5)

    Lithosphere-asthenosphere boundary

    Depth (km)

    T (ºC)

    T/Tm

    Depth (km)

    T (ºC)

    T/Tm

    Western Superior Province

    Fo85

    42

    394

    0.33

    114

    209

    1300

    0.66

    Fo90

    42

    394

    0.32

    120

    209

    1300

    0.66

    Fo95

    42

    394

    0.31

    128

    209

    1300

    0.65

    Dabie Mountains

    Fo85

    40

    547

    0.41

    61

    120

    1300

    0.73

    Fo90

    40

    547

    0.40

    67

    120

    1300

    0.71

    Fo95

    40

    547

    0.38

    70

    120

    1300

    0.69

    North Jiangsu basin

    Fo85

    31

    664

    0.47

    35

    67

    1300

    0.76

    Fo90

    31

    664

    0.46

    37

    67

    1300

    0.73

    Fo95

    31

    664

    0.44

    39

    67

    1300

    0.71

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1