logo

SCIENCE CHINA Earth Sciences, Volume 62, Issue 7: 1033-1052(2019) https://doi.org/10.1007/s11430-018-9346-6

Subduction-zone peridotites and their records of crust-mantle interaction

More info
  • ReceivedOct 6, 2018
  • AcceptedMar 13, 2019
  • PublishedApr 25, 2019

Abstract

Subduction is the core process of plate tectonics. The mantle wedge in subduction-zone systems represents a key tectonic unit, playing a significant role in material cycling and energy exchange between Earth’s layers. This study summarizes research progresses in terms of subduction-related peridotite massifs, including supra-subduction zone (SSZ) ophiolites and mantle-wedge-type (MWT) orogenic peridotites. We also provide the relevant key scientific questions that need be solved in the future. The mantle sections of SSZ ophiolites and MWT orogenic peridotites represent the mantle fragments from oceanic and continental lithosphere in subduction zones, respectively. They are essential targets to study the crust-mantle interaction in subduction zones. The nature of this interaction is the complex chemical exchanges between the subducting slab and the mantle wedge under the major control of physical processes. The SSZ ophiolites can record melt/fluid-rock interaction, metamorphism, deformation, concentration of metallogenic elements and material exchange between crust and mantle, during the stages from the generation of oceanic lithosphere at spreading centers to the initiation, development, maturation and ending of oceanic subduction at continental margins. The MWT orogenic peridotites reveal the history of strong metamorphism and deformation during subduction, the multiple melt/fluid metasomatism (including silicatic melts, carbonatitic melts and silicate-bearing C-H-O fluids/supercritical fluids), and the complex cycling of crust-mantle materials, during the subduction/collision and exhumation of continental plates. In order to further reveal the crust-mantle interaction using subduction-zone peridotites, it is necessary to utilize high-spatial-resolution and high-precision techniques to constrain the complex chemical metasomatism, metamorphism, deformation at micro scales, and to reveal their connections with spatial-temporal evolution in macro-scale tectonics.


Funded by

the National Natural Science Foundation of China(Grant,Nos.,41520104003,&,41873032)

the Fundamental Research Funds for the Central Universities

China University of Geosciences(Wuhan)


Acknowledgment

We thank Prof Y. F. Zheng for his organization, invitation and suggestions, and three anonymous reviewers for their constructive comments. Profs J. S. Yang and W. L. Griffin provide valuable suggestions, Dr Y. Cao supplies the original picture of Figure 5b, and X. Zhou, W. W. Wu, H. Liang, L. R. Tian, Y. X. Li and H. D. Zheng help to complete this manuscript. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41520104003 & 41873032) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Grant No. CUG180604).


References

[1] Abelson M, Baer G, Agnon A. Evidence from gabbro of the Troodos ophiolite for lateral magma transport along a slow-spreading mid-ocean ridge. Nature, 2001, 409: 72-75 CrossRef PubMed Google Scholar

[2] Anonymous. 1972. Penrose field conference on ophiolites. Geotimes, 17: 24–25. Google Scholar

[3] Bailey E H, Blake M C, Jones D L. 1970. On-land Mesozoic oceanic crust in California Coast Ranges. Geol Survey Res, U.S. Geol Survey Prof Paper, 700: 70–81. Google Scholar

[4] Batanova V G, Sobolev A V. Compositional heterogeneity in subduction-related mantle peridotites, Troodos massif, Cyprus. Geology, 2000, 28: 55-58 CrossRef Google Scholar

[5] Bebout G E. Metamorphic chemical geodynamics of subduction zones. Earth Planet Sci Lett, 2007, 260: 373-393 CrossRef ADS Google Scholar

[6] Bebout G E. 2014. Chemical and isotopic cycling in subduction zones. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier. 703–747. Google Scholar

[7] Behn M D, Kelemen P B, Hirth G, Hacker B R, Massonne H J. Diapirs as the source of the sediment signature in arc lavas. Nat Geosci, 2011, 4: 641-646 CrossRef ADS Google Scholar

[8] Bodinier J L, Godard M. 2014. Orogenic, ophiolitic, and abyssal peridotites. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier. 103–167. Google Scholar

[9] Braga R, Bargossi G M. 2014. Crust-mantle relationships close at hands. Walking through the Ulten-Nonsberg orogenic lower crust. Geol Field Trips Società Geol Italiana, 6: 1–46. Google Scholar

[10] Brongniart A. 1813. Essai de classify cation minéralogique des roches mélanges. J des Mines, 34: 190–199. Google Scholar

[11] Brueckner H K, Carswell D A, Griffin W L. Paleozoic diamonds within a Precambrian peridotite lens in UHP gneisses of the Norwegian Caledonides. Earth Planet Sci Lett, 2002, 203: 805-816 CrossRef ADS Google Scholar

[12] Campione M, Tumiati S, Malaspina N. Primary spinel+chlorite inclusions in mantle garnet formed at ultrahigh-pressure. Geochem Persp Lett, 2017, 4: 19-23 CrossRef Google Scholar

[13] Cao Y, Jung H, Song S, Park M, Jung S, Lee J. Plastic deformation and seismic properties in fore-arc mantles: A petrofabric analysis of the Yushigou harzburgites, North Qilian suture zone, NW China. J Petrol, 2015, 56: 1897-1944 CrossRef ADS Google Scholar

[14] Cao Y, Song S, Su L, Jung H, Niu Y. Highly refractory peridotites in Songshugou, Qinling orogen: Insights into partial melting and melt/fluid-rock reactions in forearc mantle. Lithos, 2016, 252-253: 234-254 CrossRef ADS Google Scholar

[15] Cao Y, Jung H, Song S. Olivine fabrics and tectonic evolution of fore-arc mantles: A natural perspective from the Songshugou dunite and harzburgite in the Qinling orogenic belt, central China. Geochem Geophys Geosyst, 2017, 18: 907-934 CrossRef ADS Google Scholar

[16] Carswell D A. 1983. The petrogenesis of contrasting Fe-Ti and Mg-Cr garnet-peridotite types in the high grade gneiss complex of western Norway. Bull Mineral, 106: 727–750. Google Scholar

[17] Carswell D A, van Roermund H L M. On multi-phase mineral inclusions associated with microdiamond formation in mantle-derived peridotite lens at Bardane on Fjørtoft, west Norway. Eur J Mineral, 2005, 17: 31-42 CrossRef ADS Google Scholar

[18] Chan G H N, Aitchison J C, Crowley Q G, Horstwood M S A, Searle M P, Parrish R R, Chan J S L. U-Pb zircon ages for Yarlung Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic implications. Gondwana Res, 2015, 27: 719-732 CrossRef ADS Google Scholar

[19] Chen R X, Li H Y, Zheng Y F, Zhang L, Gong B, Hu Z, Yang Y. Crust-mantle interaction in a continental subduction channel: Evidence from orogenic peridotites in North Qaidam, Northern Tibet. J Petrol, 2017, 58: 191-226 CrossRef ADS Google Scholar

[20] Chen S Z, Yang J S, Li T F. Petrological investigation of the Ganyu peridotite in the Sulu ultrahigh-pressure terrane, eastern China. Tectonophysics, 2009, 475: 383-395 CrossRef ADS Google Scholar

[21] Chen Y, Ye K, Guo S, Wu T F, Liu J B. Multistage metamorphism of garnet orthopyroxenites from the Maowu mafic-ultramafic complex, Dabieshan UHP terrane, eastern China. Int Geol Rev, 2013a, 55: 1239-1260 CrossRef Google Scholar

[22] Chen Y, Ye K, Wu Y W, Guo S, Su B, Liu J B. Hydration and dehydration in the lower margin of a cold mantle wedge: Implications for crust-mantle interactions and petrogeneses of arc magmas. Int Geol Rev, 2013b, 55: 1506-1522 CrossRef Google Scholar

[23] Chen Y, Su B, Guo S. The Dabie-Sulu orogenic peridotites: Progress and key issues. Sci China Earth Sci, 2015, 58: 1679-1699 CrossRef Google Scholar

[24] Chen Y, Su B, Chu Z Y. Modification of an ancient subcontinental lithospheric mantle by continental subduction: Insight from the Maowu garnet peridotites in the Dabie UHP belt, eastern China. Lithos, 2017, 278-281: 54-71 CrossRef ADS Google Scholar

[25] Chopin C. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth Planet Sci Lett, 2003, 212: 1-14 CrossRef ADS Google Scholar

[26] Cluzel D, Aitchison J C, Picard C. Tectonic accretion and underplating of mafic terranes in the Late Eocene intraoceanic fore-arc of New Caledonia (Southwest Pacific): Geodynamic implications. Tectonophysics, 2001, 340: 23-59 CrossRef ADS Google Scholar

[27] Cluzel D, Ulrich M, Jourdan F, Meffre S, Paquette J L, Audet M A, Secchiari A, Maurizot P. Early Eocene clinoenstatite boninite and boninite-series dikes of the ophiolite of New Caledonia; a witness of slab-derived enrichment of the mantle wedge in a nascent volcanic arc. Lithos, 2016, 260: 429-442 CrossRef ADS Google Scholar

[28] Coltorti M, Bonadiman C, Hinton R W, Siena F, Upton B G J. 1999. Carbonatite metasomatism of the oceanic upper mantle: Evidence from clinopyroxenes and glasses in ultramafic xenoliths of grande comore, indian ocean. Acta Math Hung, 134: 269–285. Google Scholar

[29] Dilek Y. 2003. Ophiolite concept and its evolution. In: Dilek Y, Newcomb S, eds. Ophiolite Concept and the Evolution of Geological Thought. Geol Soc Am, 373: 1–16. Google Scholar

[30] Dilek Y, Furnes H. 2009. Structure and geochemistry of tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos, 113: 1–20. Google Scholar

[31] Dilek Y, Furnes H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol Soc Am Bull, 2011, 123: 387-411 CrossRef ADS Google Scholar

[32] Ernst W G, Liou J G. High- and ultrahigh-pressure metamorphism: Past results and future prospects. Am Miner, 2008, 93: 1771-1786 CrossRef ADS Google Scholar

[33] Ferrando S, Frezzotti M L, Dallai L, Compagnoni R. Multiphase solid inclusions in UHP rocks (Su-Lu, China): Remnants of supercritical silicate-rich aqueous fluids released during continental subduction. Chem Geol, 2005, 223: 68-81 CrossRef ADS Google Scholar

[34] Frezzotti M L, Ferrando S. The chemical behavior of fluids released during deep subduction based on fluid inclusions. Am Miner, 2015, 100: 352-377 CrossRef ADS Google Scholar

[35] Fu B, Touret J L R, Zheng Y F. Fluid inclusions in coesite-bearing eclogites and jadeite quartzite at Shuanghe, Dabie Shan (China). J Metamorph Geol, 2001, 19: 531-547 CrossRef ADS Google Scholar

[36] Gao J, John T, Klemd R, Xiong X. Mobilization of Ti-Nb-Ta during subduction: Evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China. Geochim Cosmochim Acta, 2007, 71: 4974-4996 CrossRef ADS Google Scholar

[37] Gao T S, Chen J F, Xie Z. 2015. Petrology and geochemistry of ultramafic rocks at Hujialin, Sulu Orogen (in Chinese with English abstract). Bull Mineral Petrol Geochem, 34: 601–618. Google Scholar

[38] Gao X Y, Zheng Y F, Chen Y X. Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen: Evidence from multiphase solid inclusions in garnet. J Metamorph Geol, 2012, 30: 193-212 CrossRef ADS Google Scholar

[39] Gass I G. 1968. Is the Troodos massif of Cyprus a fragment of Mesozoic ocean floor? Nature, 220: 39–42. Google Scholar

[40] Gerya T V, Stöckhert B, Perchuk A L. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 2002, 21: 6-1-6-19 CrossRef ADS Google Scholar

[41] González-Jiménez J M, Griffin W L, Proenza J A, Gervilla F, O’Reilly S Y, Akbulut M, Pearson N J, Arai S. Chromitites in ophiolites: How, where, when, why? Part II. The crystallization of chromitites. Lithos, 2014, 189: 140-158 CrossRef ADS Google Scholar

[42] Guillot S, Hattori K, Agard P, Schwartz S, Vidal O. 2009. Exhumation processes in oceanic and continental subduction contexts: A review. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics. Frontiers in Earth Sciences. Heidelberg: Springer. 175–205. Google Scholar

[43] Guo S, Tang P, Su B, Chen Y, Ye K, Zhang L G, Gao Y J, Liu J B, Yang Y H. Unusual replacement of Fe-Ti oxides by rutile during retrogression in amphibolite-hosted veins (Dabie UHP terrane): A mineralogical record of fluid-induced oxidation processes in exhumed UHP slabs. Am Miner, 2017, 102: 2268-2283 CrossRef ADS Google Scholar

[44] Hébert R, Bézard R, Guilmette C, Dostal J, Wang C S, Liu Z F. 2012. The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys. Gondwana Res, 22: 377–397. Google Scholar

[45] Hermann J, Rubatto D. 2014. Subduction of continental crust to mantle depths: Geochemistry of ultrahigh-pressure rocks. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier. 309–339. Google Scholar

[46] Hermann J, Spandler C J. Sediment melts at sub-arc depths: An experimental study. J Petrol, 2008, 49: 717-740 CrossRef ADS Google Scholar

[47] Hermann J, Zheng Y F, Rubatto D. Deep fluids in subducted continental crust. Elements, 2013, 9: 281-287 CrossRef Google Scholar

[48] Hiramatsu N, Banno S, Hirajima T, Cong B. Ultrahigh-pressure garnet lherzolite from Chijiadian, Rongcheng County, in the Su-Lu region of eastern China. Isl Arc, 1995, 4: 324-333 CrossRef Google Scholar

[49] Hiramatsu N, Hirajima T. Petrology of the Hujialin garnet clinopyroxenite in the Su-Lu ultrahigh-pressure province, eastern China. Isl Arc, 1995, 4: 310-323 CrossRef Google Scholar

[50] Hofmann A W. Mantle geochemistry: The message from oceanic volcanism. Nature, 1997, 385: 219-229 CrossRef ADS Google Scholar

[51] Hwang S L, Shen P, Chu H T, Yui T F, Lin C C. Genesis of microdiamonds from melt and associated multiphase inclusions in garnet of ultrahigh-pressure gneiss from Erzgebirge, Germany. Earth Planet Sci Lett, 2001, 188: 9-15 CrossRef ADS Google Scholar

[52] Hyndman R D, Peacock S M. Serpentinization of the forearc mantle. Earth Planet Sci Lett, 2003, 212: 417-432 CrossRef ADS Google Scholar

[53] Ionov D A, Bigot F, Braga R. The provenance of the lithospheric mantle in continental collision zones: Petrology and geochemistry of peridotites in the Ulten-Nonsberg Zone (Eastern Alps). J Petrol, 2017, 58: 1451-1472 CrossRef ADS Google Scholar

[54] Jahn B, Fan Q, Yang J J, Henin O. Petrogenesis of the Maowu pyroxenite-eclogite body from the UHP metamorphic terrane of Dabieshan: Chemical and isotopic constraints. Lithos, 2003, 70: 243-267 CrossRef ADS Google Scholar

[55] Kessel R, Schmidt M W, Ulmer P, Pettke T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437: 724–727. Google Scholar

[56] John T, Gussone N, Podladchikov Y Y, Bebout G E, Dohmen R, Halama R, Klemd R, Magna T, Seitz H M. Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nat Geosci, 2012, 5: 489-492 CrossRef ADS Google Scholar

[57] Kelemen P B, Dick H J B. Focused melt flow and localized deformation in the upper mantle: Juxtaposition of replacive dunite and ductile shear zones in the Josephine peridotite, SW Oregon. J Geophys Res, 1995, 100: 423-438 CrossRef ADS Google Scholar

[58] Kelemen P B, Hanghoj K, Greene A R. 2014. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier. 749–805. Google Scholar

[59] Konrad-Schmolke M, O’Brien P J, Zack T. Fluid migration above a subducted slab-constraints on amount, pathways and major element mobility from partially overprinted eclogite-facies rocks (Sesia Zone, Western Alps). J Petrol, 2011, 52: 457-486 CrossRef ADS Google Scholar

[60] Lee C T A, Cheng X, Horodyskyj U. The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: Insights from the Sierra Nevada, California. Contrib Mineral Petrol, 2006, 151: 222-242 CrossRef ADS Google Scholar

[61] Li J L, John T, Gao J, Klemd R, Wang X S. Subduction channel fluid-rock interaction and mass transfer: Constraints from a retrograde vein in blueschist (SW Tianshan, China). Chem Geol, 2017, 456: 28-42 CrossRef ADS Google Scholar

[62] Li Z Y, Zheng J P, Moskowitz B M, Liu Q S, Xiong Q, Yang J S, Hu X Y. Magnetic properties of serpentinized peridotites from the Dongbo ophiolite, SW Tibet: Implications for suture-zone magnetic anomalies. J Geophys Res-Solid Earth, 2017, 122: 4814-4830 CrossRef ADS Google Scholar

[63] Li H Y, Chen R X, Zheng Y F, Hu Z, Xu L. Crustal metasomatism at the slab-mantle interface in a continental subduction channel: Geochemical evidence from orogenic peridotite in the Sulu orogen. J Geophys Res-Solid Earth, 2018a, 123: 2174-2198 CrossRef ADS Google Scholar

[64] Li H Y, Chen R X, Zheng Y F, Hu Z. Water in garnet pyroxenite from the Sulu orogen: Implications for crust-mantle interaction in continental subduction zone. Chem Geol, 2018b, 478: 18-38 CrossRef ADS Google Scholar

[65] Liou J G, Ernst W G, Zhang R Y, Tsujimori T, Jahn B M. Ultrahigh-pressure minerals and metamorphic terranes—The view from China. J Asian Earth Sci, 2009, 35: 199-231 CrossRef ADS Google Scholar

[66] Liou J G, Zhang R Y, Ernst W G. Very high-pressure orogenic garnet peridotites. Proc Natl Acad Sci USA, 2007, 104: 9116-9121 CrossRef PubMed ADS Google Scholar

[67] Liu L, Sun Y, Xiao P X, Chen Z C, Luo J H, Chen D L, Wang Y, Zhang A D, Chen L. 2002. Ultra-high (>3.8 GPa) garnet lherzolite discovered in the Altyn Orogen (in Chinese with English abstract). Chin Sci Bull, 47: 657–662. Google Scholar

[68] Liu Q S, Zeng Q L, Zheng J P, Yang T, Qiu N, Liu Z, Luo Y H, Jin Z M. Magnetic properties of serpentinized garnet peridotites from the CCSD main hole in the Sulu ultrahigh-pressure metamorphic belt, eastern China. J Geophys Res, 2010, 115: B06104 CrossRef ADS Google Scholar

[69] Liu Q S, Qiu N, Zheng J P, Li Z Y, Wang H C. Crustal large-scale serpentinized mantle peridotite body in the Sulu ultrahigh-pressure metamorphic belt, eastern China: Evidence from gravity and magnetic anomalies. J Struct Geol, 2015, 70: 190-199 CrossRef ADS Google Scholar

[70] McDonough W F, Sun S S. The composition of the Earth. Chem Geol, 1995, 120: 223-253 CrossRef ADS Google Scholar

[71] Malaspina N, Hermann J, Scambelluri M, Compagnoni R. Polyphase inclusions in garnet-orthopyroxenite (Dabie Shan, China) as monitors for metasomatism and fluid-related trace element transfer in subduction zone peridotite. Earth Planet Sci Lett, 2006, 249: 173-187 CrossRef ADS Google Scholar

[72] Malaspina N, Hermann J, Scambelluri M. Fluid/mineral interaction in UHP garnet peridotite. Lithos, 2009a, 107: 38-52 CrossRef ADS Google Scholar

[73] Malaspina N, Poli S, Fumagalli P. The oxidation state of metasomatized mantle wedge: Insights from C-O-H-bearing garnet peridotite. J Petrol, 2009b, 50: 1533-1552 CrossRef ADS Google Scholar

[74] Malaspina N, Scambelluri M, Poli S, Van Roermund H L M, Langenhorst F. The oxidation state of mantle wedge majoritic garnet websterites metasomatised by C-bearing subduction fluids. Earth Planet Sci Lett, 2010, 298: 417-426 CrossRef ADS Google Scholar

[75] Malaspina N, Langenhorst F, Fumagalli P, Tumiati S, Poli S. Fe3+ distribution between garnet and pyroxenes in mantle wedge carbonate-bearing garnet peridotites (Sulu, China) and implications for their oxidation state. Lithos, 2012, 146-147: 11-17 CrossRef ADS Google Scholar

[76] Malaspina N, Alvaro M, Campione M, Wilhelm H, Nestola F. Dynamics of mineral crystallization from precipitated slab-derived fluid phase: First in situ synchrotron X-ray measurements. Contrib Mineral Petrol, 2015, 169: 26 CrossRef ADS Google Scholar

[77] Malaspina N, Langenhorst F, Tumiati S, Campione M, Frezzotti M L, Poli S. The redox budget of crust-derived fluid phases at the slab-mantle interface. Geochim Cosmochim Acta, 2017, 209: 70-84 CrossRef ADS Google Scholar

[78] Manning C E. The chemistry of subduction-zone fluids. Earth Planet Sci Lett, 2004, 223: 1-16 CrossRef ADS Google Scholar

[79] Marchesi C, Garrido C J, Godard M, Belley F, Ferré E. Migration and accumulation of ultra-depleted subduction-related melts in the massif du sud ophiolite (New Caledonia). Chem Geol, 2009, 266: 171-186 CrossRef ADS Google Scholar

[80] Marocchi M, Hermann J, Morten L. Evidence for multi-stage metasomatism of chlorite-amphibole peridotites (Ulten Zone, Italy): Constraints from trace element compositions of hydrous phases. Lithos, 2007, 99: 85-104 CrossRef ADS Google Scholar

[81] Marocchi M, Hermann J, Tropper P, Bargossi G M, Mair V. Amphibole and phlogopite in “hybrid” metasomatic bands monitor trace element transfer at the interface between felsic and ultramafic rocks (Eastern Alps, Italy). Lithos, 2010, 117: 135-148 CrossRef ADS Google Scholar

[82] Marschall H R, Schumacher J C. Arc magmas sourced from mélange diapirs in subduction zones. Nat Geosci, 2012, 5: 862-867 CrossRef ADS Google Scholar

[83] Mibe K, Kawamoto T, Matsukage K N, Fei Y, Ono S. 2011. Slab melting versus slab dehydration in subduction-zone magmatism. Proc Nat Acad Sci USA, 108: 8177–8182. Google Scholar

[84] Miyashiro A. 1973. Metamorphism and Metamorphic Belts. Lond George Allen Unwin. 492. Google Scholar

[85] Moores E M, Jackson E D. Ophiolites and oceanic crust. Nature, 1974, 250: 136-139 CrossRef ADS Google Scholar

[86] Moores E M, Kellogg L H, Dilek Y. 2000. Tethyan ophiolites, mantle convection and tectonic “historical contingency”: A resolution of the “ophiolite conundrum” . In: Dilek Y, Moores E M, Elthon D, Nicolas A, eds. Ophiolites and Ocean Crust: New Insights from Field Studies and the Ocean Drilling Program. Boulder: Geological Society of America Special Paper 349. 3–12. Google Scholar

[87] Morris A, Maffione M. 2016. Is the Troodos ophiolite (Cyprus) a complete, transform fault-bounded Neotethyan ridge segment? Geology, 44: 199–202. Google Scholar

[88] Ni H W, Zheng Y F, Mao Z, Wang Q, Chen R X, Zhang L. Distribution, cycling and impact of water in the Earth’s interior. Natl Sci Rev, 2017, 4: 879-891 CrossRef Google Scholar

[89] Nie H, Yang J, Zhou G, Liu C, Zheng J, Zhang W X, Zhao Y J, Wang H, Wu Y B. Geochemical and Re-Os isotope constraints on the origin and age of the Songshugou peridotite massif in the Qinling orogen, central China. Lithos, 2017, 292-293: 307-319 CrossRef ADS Google Scholar

[90] Nimis P, Morten L. P-T evolution of ‘crustal’ garnet peridotites and included pyroxenites from Nonsberg area (upper Austroalpine), NE Italy: From the wedge to the slab. J Geodyn, 2000, 30: 93-115 CrossRef ADS Google Scholar

[91] Nuriel P, Katzir Y, Abelson M, Valley J W, Matthews A, Spicuzza M J, Ayalon A. Fault-related oceanic serpentinization in the Troodos ophiolite, Cyprus: Implications for a fossil oceanic core complex. Earth Planet Sci Lett, 2009, 282: 34-46 CrossRef ADS Google Scholar

[92] O’Reilly S Y, Griffin W L. 2013. Mantle metsomatism. In: Harlov D E, Austrheim H, eds. Metasomatism and the Chemical Transformation of Rock, Lecture Notes in Earth System Sciences. Heidelberg: Springer-Verlag. 471–533. Google Scholar

[93] Pagé P, Bédard J H, Schroetter J M, Tremblay A. Mantle petrology and mineralogy of the Thetford Mines ophiolite complex. Lithos, 2008, 100: 255-292 CrossRef ADS Google Scholar

[94] Pagé P, Bédard J H, Tremblay A. Geochemical variations in a depleted fore-arc mantle: The Ordovician Thetford Mines ophiolite. Lithos, 2009, 113: 21-47 CrossRef ADS Google Scholar

[95] Pagé P, Barnes S J. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines ophiolite, Quebec, Canada. Econ Geol, 2009, 104: 997-1018 CrossRef Google Scholar

[96] Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geol Soc Lond Spec Publ, 1984, 16: 77-94 CrossRef ADS Google Scholar

[97] Pearce J A, Robinson P T. The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Res, 2010, 18: 60-81 CrossRef ADS Google Scholar

[98] Philippot P, Selverstone J. Trace-element-rich brines in eclogitic veins: Implications for fluid composition and transport during subduction. Contr Mineral Petrol, 1991, 106: 417-430 CrossRef ADS Google Scholar

[99] Pirard C, Hermann J, O’Neill H S C. Petrology and geochemistry of the crust-mantle boundary in a nascent arc, Massif du Sud ophiolite, New Caledonia, SW Pacific. J Petrol, 2013, 54: 1759-1792 CrossRef ADS Google Scholar

[100] Rampone E, Morten L. Records of crustal metasomatism in the garnet peridotites of the Ulten Zone (Upper Austroalpine, Eastern Alps). J Petrol, 2001, 42: 207-219 CrossRef ADS Google Scholar

[101] Ren Y F, Yang J S, Zhang Z M, Li T F. 2007. Study of the Macaokuang peridotite body from the PP6 Drill Hole of the Chinese Continental Scientific Drilling (CCSD) Project (in Chinese with English abstract). Acta Geol Sin, 81: 1004–1016. Google Scholar

[102] Richards J P. Giant ore deposits formed by optimal alignments and combinations of geological processes. Nat Geosci, 2013, 6: 911-916 CrossRef ADS Google Scholar

[103] Rielli A, Tomkins A G, Nebel O, Brugger J, Etschmann B, Zhong R, Yaxley G M, Paterson D. Evidence of sub-arc mantle oxidation by sulphur and carbon. Geochem Persp Lett, 2017, 3: 124-132 CrossRef Google Scholar

[104] Ringwood A E. The petrological evolution of island arc systems. J Geol Soc, 1974, 130: 183-204 CrossRef ADS Google Scholar

[105] Robinson P T, Melson W G, O’Hearn T, Schmincke H U. Volcanic glass compositions of the Troodos ophiolite, Cyprus. Geology, 1983, 11: 400-404 CrossRef Google Scholar

[106] Sapienza G T, Scambelluri M, Braga R. Dolomite-bearing orogenic garnet peridotites witness fluid-mediated carbon recycling in a mantle wedge (Ulten Zone, Eastern Alps, Italy). Contrib Mineral Petrol, 2009, 158: 401-420 CrossRef ADS Google Scholar

[107] Scambelluri M, Philippot P. Deep fluids in subduction zones. Lithos, 2001, 55: 213-227 CrossRef ADS Google Scholar

[108] Scambelluri M, Hermann J, Morten L, Rampone E. Melt-versus fluid-induced metasomatism in spinel to garnet wedge peridotites (Ulten Zone, Eastern Italian Alps): Clues from trace element and Li abundances. Contrib Mineral Petrol, 2006, 151: 372-394 CrossRef ADS Google Scholar

[109] Scambelluri M, Pettke T, van Roermund H L M. Majoritic garnets monitor deep subduction fluid flow and mantle dynamics. Geology, 2008, 36: 59-62 CrossRef ADS Google Scholar

[110] Scambelluri M, van Roermund H L M, Pettke T. Mantle wedge peridotites: Fossil reservoirs of deep subduction zone processes. Lithos, 2010, 120: 186-201 CrossRef ADS Google Scholar

[111] Scambelluri M, Pettke T, Cannaò E. Fluid-related inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle (Cima di Gagnone, Swiss Alps). Earth Planet Sci Lett, 2015, 429: 45-59 CrossRef ADS Google Scholar

[112] Schmidt M W, Poli S. 2014. Devolatilization during subduction. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier. 669–701. Google Scholar

[113] Secchiari A, Montanini A, Bosch D, Macera P, Cluzel D. Melt extraction and enrichment processes in the New Caledonia lherzolites: Evidence from geochemical and Sr-Nd isotope data. Lithos, 2016, 260: 28-43 CrossRef ADS Google Scholar

[114] Secchiari A, Montanini A, Bosch D, Macera P, Cluzel D. The contrasting geochemical message from the New Caledonia gabbronorites: Insights on depletion and contamination processes of the sub-arc mantle in a nascent arc setting. Contrib Mineral Petrol, 2018, 173: 66 CrossRef ADS Google Scholar

[115] Shen A H, Keppler H. Direct observation of complete miscibility in the albite-H2O system. Nature, 1997, 385: 710-712 CrossRef ADS Google Scholar

[116] Shi R D, Griffin W L, O’Reilly S Y, Zhao G C, Huang Q S, Li J, Xu J F. Evolution of the Lüliangshan garnet peridotites in the North Qaidam UHP belt, Northern Tibetan Plateau: Constraints from Re-Os isotopes. Lithos, 2010, 117: 307-321 CrossRef ADS Google Scholar

[117] Shirey S B, Richardson S H. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science, 2011, 333: 434-436 CrossRef PubMed ADS Google Scholar

[118] Shreve R L, Cloos M. Dynamics of sediment subduction, melange formation, and prism accretion. J Geophys Res, 1986, 91: 10229-10245 CrossRef ADS Google Scholar

[119] Song S G, Zhang L F, Niu Y L. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China. Am Miner, 2004, 89: 1330-1336 CrossRef ADS Google Scholar

[120] Song S G, Zhang L F, Niu Y L, Su L, Jian P, Liu D Y. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision. Earth Planet Sci Lett, 2005a, 234: 99-118 CrossRef ADS Google Scholar

[121] Song S G, Zhang L F, Chen J, Liou J G, Niu Y L. Sodic amphibole exsolutions in garnet from garnet-peridotite, North Qaidam UHPM belt, NW China: Implications for ultradeep-origin and hydroxyl defects in mantle garnets. Am Miner, 2005b, 90: 814-820 CrossRef ADS Google Scholar

[122] Song S G, Su L, Niu Y L, Zhang L F, Zhang G B. Petrological and geochemical constraints on the origin of garnet peridotite in the North Qaidam ultrahigh-pressure metamorphic belt, northwestern China. Lithos, 2007, 96: 243-265 CrossRef ADS Google Scholar

[123] Song S G, Su L, Niu Y L, Lai Y, Zhang L F. CH4 inclusions in orogenic harzburgite: Evidence for reduced slab fluids and implication for redox melting in mantle wedge. Geochim Cosmochim Acta, 2009, 73: 1737-1754 CrossRef ADS Google Scholar

[124] Soret M, Agard P, Dubacq B, Vitale-Brovarone A, Monié P, Chauvet A, Whitechurch H, Villemant B. Strain localization and fluid infiltration in the mantle wedge during subduction initiation: Evidence from the base of the New Caledonia ophiolite. Lithos, 2016, 244: 1-19 CrossRef ADS Google Scholar

[125] Spandler C, Pirard C. Element recycling from subducting slabs to arc crust: A review. Lithos, 2013, 170-171: 208-223 CrossRef ADS Google Scholar

[126] Steinmann G. 1927. Der ophiolitischen Zonen in der Mediterranean Kettengebirgen. Madrid: 14th International Geological Congress. 638–667. Google Scholar

[127] Stern R J. 2002. Subduction zones. Rev Geophys, 40: 1–38. Google Scholar

[128] Spengler D, van Roermund H L M, Drury M R, Ottolini L, Mason P R D, Davies G R. Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway. Nature, 2006, 440: 913-917 CrossRef PubMed ADS Google Scholar

[129] Su B, Chen Y, Guo S, Chu Z Y, Liu J B, Gao Y J. Carbonatitic metasomatism in orogenic dunites from Lijiatun in the Sulu UHP terrane, eastern China. Lithos, 2016, 262: 266-284 CrossRef ADS Google Scholar

[130] Su B, Chen Y, Guo S, Liu J B. Dolomite dissociation indicates ultra-deep (>150 km) subduction of a garnet-bearing dunite block (the Sulu UHP terrane). Am Miner, 2017, 102: 2295-2306 CrossRef ADS Google Scholar

[131] Su B X, Teng F Z, Hu Y, Shi R D, Zhou M F, Zhu B, Liu F, Gong X H, Huang Q S, Xiao Y, Chen C, He Y S. Iron and magnesium isotope fractionation in oceanic lithosphere and sub-arc mantle: Perspectives from ophiolites. Earth Planet Sci Lett, 2015, 430: 523-532 CrossRef ADS Google Scholar

[132] Tang Y, Zhai Q G, Hu P Y, Wang J, Xiao X C, Wang H T, Tang S H, Lei M. Rodingite from the Beila ophiolite in the Bangong-Nujiang suture zone, northern Tibet: New insights into the formation ofophiolite-related rodingite. Lithos, 2018, 316-317: 33-47 CrossRef ADS Google Scholar

[133] Tang Y J, Zhang H F, Ying J F, Su B X. 2013. Widespread refertilization of cratonic and circum-cratonic lithospheric mantle. Earth Sci Rev, 118: 45–68. Google Scholar

[134] Tatsumi Y. Migration of fluid phases and genesis of basalt magmas in subduction zones. J Geophys Res, 1989, 94: 4697-4707 CrossRef ADS Google Scholar

[135] Tatsumi Y, Kogiso T. The subduction factory: Its role in the evolution of the Earth’s crust and mantle. Geol Soc Lond Spec Publ, 2003, 219: 55-80 CrossRef ADS Google Scholar

[136] Tumiati S, Thöni M, Nimis P, Martin S, Mair V. Mantle-crust interactions during Variscan subduction in the Eastern Alps (Nonsberg-Ulten zone): Geochronology and new petrological constraints. Earth Planet Sci Lett, 2003, 210: 509-526 CrossRef ADS Google Scholar

[137] Ulrich M, Picard C, Guillot S, Chauvel C, Cluzel D, Meffre S. Multiple melting stages and refertilization as indicators for ridge to subduction formation: The New Caledonia ophiolite. Lithos, 2010, 115: 223-236 CrossRef ADS Google Scholar

[138] van Roermund H. Recent progress in Scandian ultrahigh-pressure metamorphism in the northernmost domain of the Western Gneiss Complex, SW Norway: Continental subduction down to 180–200 km depth. J Geol Soc, 2009a, 166: 739-751 CrossRef ADS Google Scholar

[139] van Roermund H. Mantle-wedge garnet peridotites from the northernmost ultra-high pressure domain of the Western Gneiss Region, SW Norway. Eur J Mineral, 2009b, 21: 1085-1096 CrossRef ADS Google Scholar

[140] van Roermund H L M, Drury M R. Ultra-high pressure (P>6 GPa) garnet peridotites in Western Norway: Exhumation of mantle rocks from >185 km depth. Terra Nova, 1998, 10: 295-301 CrossRef ADS Google Scholar

[141] Van Roermund H L M, Ronde D. Super-silicic garnet microstructures from an orogenic garnet peridotite, evidence for an ultra-deep (>6 GPa) origin. J Metamorph Geol, 2000, 18: 135-147 CrossRef ADS Google Scholar

[142] van Roermund H L M, Carswell D A, Drury M R, Heijboer T C. Microdiamonds in a megacrystic garnet websterite pod from Bardane on the island of Fjørtoft, western Norway: Evidence for diamond formation in mantle rocks during deep continental subduction. Geology, 2002, 30: 959-962 CrossRef Google Scholar

[143] Vrijmoed J C, Austrheim H, John T, Hin R C, Corfu F, Davies G R. Metasomatism in the ultrahigh-pressure Scartberget garnet-peridotite (Western Gneiss Region, Norway): Implications for the transport of crust-derived fluids within the mantle. J Petrol, 2013, 54: 1815-1848 CrossRef ADS Google Scholar

[144] Wang C, Liu L, Chen D L, Cao Y T. 2011. Petrology, geochemistry, geochronology, and metamorphic evolution of garnet peridotites from South Altyn Tagh UHP Terrane, Northwestern China. In: Coleman R G, Wang X, eds. Utrahigh Pressure Metamorphism. Cambridge: Cambridge University Press. 541–577. Google Scholar

[145] Wang L, Kusky T M, Polat A, Wang S J, Jiang X F, Zong K Q, Wang J P, Deng H, Fu J M. Partial melting of deeply subducted eclogite from the Sulu orogen in China. Nat Commun, 2014, 5: 5604 CrossRef PubMed ADS Google Scholar

[146] Whitehead J, Reynolds P H, Spray J G, Gates A E, Gundersen L C S. 1995. The sub-ophiolitic metamorphic rocks of the quebec appalachians. J Geodyn, 19: 325–350. Google Scholar

[147] Wilde S A, Valley J W, Peck W H, Graham C M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 2001, 409: 175-178 CrossRef PubMed Google Scholar

[148] Woelki D, Regelous M, Haase K M, Romer R H W, Beier C. Petrogenesis of boninitic lavas from the Troodos Ophiolite, and comparison with Izu-Bonin-Mariana fore-arc crust. Earth Planet Sci Lett, 2018, 498: 203-214 CrossRef ADS Google Scholar

[149] Wu Y B, Gao S, Zhang H F, Yang S H, Liu X C, Jiao W F, Liu Y S, Yuan H L, Gong H J, He M C. U-Pb age, trace-element, and Hf-isotope compositions of zircon in a quartz vein from eclogite in the western Dabie Mountains: Constraints on fluid flow during early exhumation of ultrahigh-pressure rocks. Am Miner, 2009, 94: 303-312 CrossRef ADS Google Scholar

[150] Xiao Y L, Hoefs J, Van Den Kerkhof A M, Li S G. Geochemical constraints of the eclogite and granulite facies metamorphism as recognized in the Raobazhai complex from North Dabie Shan, China. J Metamorph Geol, 2001, 19: 3-19 CrossRef ADS Google Scholar

[151] Xiao Y L, Hoefs J, van K A M, Simon K, Fiebig J, Zheng Y F. Fluid evolution during HP and UHP metamorphism in Dabie Shan, China: Constraints from mineral chemistry, fluid inclusions and stable isotopes. J Petrol, 2002, 43: 1505-1527 CrossRef ADS Google Scholar

[152] Xiao Y L, Sun H, Gu H O, Huang J, Li W Y, Liu L. Fluid/melt in continental deep subduction zones: Compositions and related geochemical fractionations. Sci China Earth Sci, 2015, 58: 1457-1476 CrossRef Google Scholar

[153] Xiong Q, Zheng J P, Griffin W L, O’Reilly S Y, Zhao J H. Zircons in the Shenglikou ultrahigh-pressure garnet peridotite massif and its country rocks from the North Qaidam terrane (western China): Meso-Neoproterozoic crust-mantle coupling and early Paleozoic convergent plate-margin processes. Precambrian Res, 2011, 187: 33-57 CrossRef ADS Google Scholar

[154] Xiong Q, Zheng J P, Griffin W L, O’Reilly S Y, Pearson N J. Pyroxenite dykes in orogenic peridotite from North Qaidam (NE Tibet, China) track metasomatism and segregation in the mantle wedge. J Petrol, 2014, 55: 2347-2376 CrossRef ADS Google Scholar

[155] Xiong Q, Griffin W L, Zheng J P, O’Reilly S Y, Pearson N J. Episodic refertilization and metasomatism of Archean mantle: Evidence from an orogenic peridotite in North Qaidam (NE Tibet, China). Contrib Mineral Petrol, 2015, 169: 31 CrossRef ADS Google Scholar

[156] Xiong Q, Griffin W L, Zheng J P, O’Reilly S Y, Pearson N J, Xu B, Belousova E A. Southward trench migration at ~130–120 Ma caused accretion of the Neo-Tethyan forearc lithosphere in Tibetan ophiolites. Earth Planet Sci Lett, 2016, 438: 57-65 CrossRef ADS Google Scholar

[157] Xiong Q, Griffin W L, Zheng J P, Pearson N J, O’Reilly S Y. Two-layered oceanic lithospheric mantle in a Tibetan ophiolite produced by episodic subduction of Tethyan slabs. Geochem Geophys Geosyst, 2017a, 18: 1189-1213 CrossRef ADS Google Scholar

[158] Xiong Q, Henry H, Griffin W L, Zheng J P, Satsukawa T, Pearson N J, O’Reilly S Y. High- and low-Cr chromitite and dunite in a Tibetan ophiolite: Evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean. Contrib Mineral Petrol, 2017b, 172: 45 CrossRef ADS Google Scholar

[159] Yang J J. Titanian clinohumite-garnet-pyroxene rock from the Su-Lu UHP metamorphic terrane, China: Chemical evolution and tectonic implications. Lithos, 2003, 70: 359-379 CrossRef ADS Google Scholar

[160] Yang J J. Ca-rich garnet-clinopyroxene rocks at Hujialin in the Su-Lu terrane (eastern China): Deeply subducted arc cumulates?. J Petrol, 2006, 47: 965-990 CrossRef ADS Google Scholar

[161] Yang J J, Godard G, Kienast J R, Lu Y Z, Sun J X. Ultrahigh-pressure (60 Kbar) magnesite-bearing garnet peridotites from northeastern Jiangsu, China. J Geol, 1993, 101: 541-554 CrossRef ADS Google Scholar

[162] Yang J J, Zhu H, Deng J F, Lai S C, Zhou T Z. 1994. The discovery of garnet peridotite in Northern Chaidam Mountains and its significance (in Chinese with English abstract). Acta Petrol Mineral, 13: 97–105. Google Scholar

[163] Yang J J, Jahn B M. Deep subduction of mantle-derived garnet peridotites from the Su-Lu UHP metamorphic terrane in China. J Metamorph Geol, 2000, 18: 167-180. CrossRef ADS Google Scholar

[164] Yang J J, Powell R. Ultrahigh-pressure garnet peridotites from the devolatilization of sea-floor hydrated ultramafic rocks. J Metamorph Geol, 2008, 26: 695-716 CrossRef ADS Google Scholar

[165] Yang J S, Li T F, Zhang Z M, Chen S Y, Zhang R Y. 2006. Petrogenesis of the Zhimafang ultramafic body in the Sulu ultrahigh pressure metamorphic belt: CCSD-PP1 core study (in Chinese with English abstract). Earth Sci-J China Uni Geosci, 31: 437–456. Google Scholar

[166] Yang J S, Zhang R Y, Li T F, Zhang Z M, Liou J G. Petrogenesis of the garnet peridotite and garnet-free peridotite of the Zhimafang ultramafic body in the Sulu ultrahigh-pressure metamorphic belt, eastern China. J Metamorph Geol, 2007, 25: 187-206 CrossRef ADS Google Scholar

[167] Yang J S, Robinson P T, Dilek Y. 2014. Diamonds in ophiolites: A little-known diamond occurrence. Elements, 10: 123–126. Google Scholar

[168] Ye K, Xu P. 1992. Petrogenesis of eclogites and related peridotitic rocks in Datuan area of Rongcheng County, Shandong Province (in Chinese with English abstract). Acta Petrol Sin, 8: 27–39. Google Scholar

[169] Ye K, Song Y R, Chen Y, Xu H J, Liu J B, Sun M. Multistage metamorphism of orogenic garnet-lherzolite from Zhimafang, Sulu UHP terrane, E. China: Implications for mantle wedge convection during progressive oceanic and continental subduction. Lithos, 2009, 109: 155-175 CrossRef ADS Google Scholar

[170] Yoshida D, Hirajima T, Ishiwatari A. Pressure-temperature path recorded in the Yangkou garnet peridotite, in Su-Lu ultrahigh-pressure metamorphic belt, eastern China. J Petrol, 2004, 45: 1125-1145 CrossRef ADS Google Scholar

[171] Yu H, Zhang H F, Santosh M. Mylonitized peridotites of Songshugou in the Qinling orogen, central China: A fragment of fossil oceanic lithosphere mantle. Gondwana Res, 2017, 52: 1-17 CrossRef ADS Google Scholar

[172] Yu S Y, Zhang J X, Sun D Y, Li Y S, Gong J H. Anatexis of ultrahigh-pressure eclogite during exhumation in the North Qaidam ultrahigh-pressure terrane: Constraints from petrology, zircon U-Pb dating, and geochemistry. Geol Soc Am Bull, 2015, 127: 1290-1312 CrossRef ADS Google Scholar

[173] Yuan H L, Gao S, Rudnick R L, Jin Z M, Liu Y S, Puchtel I S, Walker R J, Yu R D. Re-Os evidence for the age and origin of peridotites from the Dabie-Sulu ultrahigh pressure metamorphic belt, China. Chem Geol, 2007, 236: 323-338 CrossRef ADS Google Scholar

[174] Zeng L S, Liang F H, Asimow P, Chen F Y, Chen J. Partial melting of deeply subducted continental crust and the formation of quartzofeldspathic polyphase inclusions in the Sulu UHP eclogites. Chin Sci Bull, 2009, 54: 2580-2594 CrossRef Google Scholar

[175] Zhang C, Liu C Z, Wu F Y, Zhang L L, Ji W Q. Geochemistry and geochronology of mafic rocks from the Luobusa ophiolite, South Tibet. Lithos, 2016, 245: 93-108 CrossRef ADS Google Scholar

[176] Zhang R Y, Liou J G, Cong B. Petrogenesis of garnet-bearing ultramafic rocks and associated eclogites in the Su-Lu ultrahigh-P metamorphic terrane, eastern China. J Metamorph Geol, 1994, 12: 169-186 CrossRef ADS Google Scholar

[177] Zhang R Y, Hirajima T, Banno S, Cong B, Liou J G. Petrology of ultrahigh-pressure rocks from the southern Su-Lu region, eastern China. J Metamorph Geol, 1995, 13: 659-675 CrossRef ADS Google Scholar

[178] Zhang R Y, Liou J G, Yang J S, Yui T F. Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China. J Metamorph Geol, 2000, 18: 149-166. CrossRef ADS Google Scholar

[179] Zhang R Y, Liou J G, Zheng J P. Ultrahigh-pressure corundum-rich garnetite in garnet peridotite, Sulu terrane, China. Contrib Mineral Petrol, 2004, 147: 21-31 CrossRef ADS Google Scholar

[180] Zhang R Y, Liou J G, Zheng J P, Griffin W, Yui T F, O’Reilly S Y. Petrogenesis of the Yangkou layered garnet-peridotite complex, Sulu UHP terrane, China. Am Miner, 2005, 90: 801-813 CrossRef ADS Google Scholar

[181] Zhang R Y, Li T, Rumble D, Yui T F, Li L, Yang J S, Pan Y, Liou J G. Multiple metasomatism in Sulu ultrahigh-P garnet peridotite constrained by petrological and geochemical investigations. J Metamorph Geol, 2007, 25: 149-164 CrossRef ADS Google Scholar

[182] Zhang R Y, Pan Y M, Yang Y H, Li T F, Liou J G, Yang J S. Chemical composition and ultrahigh-P metamorphism of garnet peridotites from the Sulu UHP terrane, China: Investigation of major, trace elements and Hf isotopes of minerals. Chem Geol, 2008, 255: 250-264 CrossRef ADS Google Scholar

[183] Zhang R Y, Liou J G, Ernst W G. The Dabie-Sulu continental collision zone: A comprehensive review. Gondwana Res, 2009, 16: 1-26 CrossRef ADS Google Scholar

[184] Zhang R Y, Jahn B M, Liou J G, Yang J S, Chiu H Y, Chung S L, Li T F, Lo C H. Origin and tectonic implication of an UHP metamorphic mafic-ultramafic complex from the Sulu UHP terrane, eastern China: Evidence from petrological and geochemical studies of CCSD-Main Hole core samples. Chem Geol, 2010, 276: 69-87 CrossRef ADS Google Scholar

[185] Zhang Z M, Shen K, Sun W D, Liu Y S, Liou J G, Shi C, Wang J L. Fluids in deeply subducted continental crust: Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochim Cosmochim Acta, 2008, 72: 3200-3228 CrossRef ADS Google Scholar

[186] Zhang Z M, Dong X, Liou J G, Liu F, Wang W, Yui F. Metasomatism of garnet peridotite from Jiangzhuang, southern Sulu UHP belt: Constraints on the interactions between crust and mantle rocks during subduction of continental lithosphere. J Metamorph Geol, 2011, 29: 917-937 CrossRef ADS Google Scholar

[187] Zhao R X, Zhang R Y, Liou J G, Booth A L, Pope E C, Chamberlain C P. Petrochemistry, oxygen isotopes and U-Pb SHRIMP geochronology of mafic-ultramafic bodies from the Sulu UHP terrane, China. J Metamorph Geol, 2007, 25: 207-224 CrossRef ADS Google Scholar

[188] Zheng J P. 2009. Comparison of mantle-derived matierals from different spatiotemporal settings: Implications for destructive and accretional processes of the North China Craton. Chin Sci Bull, 54: 3397–3416. Google Scholar

[189] Zheng J P, Dai H K. Subduction and retreating of the western Pacific plate resulted in lithospheric mantle replacement and coupled basin-mountain respond in the North China Craton. Sci China Earth Sci, 2018, 61: 406-424 CrossRef Google Scholar

[190] Zheng J P, Zhang R Y, Griffin W L, Liou J G, O’Reilly S Y. Heterogeneous and metasomatized mantle recorded by trace elements in minerals of the Donghai garnet peridotites, Sulu UHP terrane, China. Chem Geol, 2005, 221: 243-259 CrossRef ADS Google Scholar

[191] Zheng J P, Griffin W L, O’Reilly S Y, Yang J S, Zhang R Y. A refractory mantle protolith in younger continental crust, east-central China: Age and composition of zircon in the Sulu ultrahigh-pressure peridotite. Geology, 2006a, 34: 705 CrossRef ADS Google Scholar

[192] Zheng J P, Griffin W L, O’Reilly S Y, Yang J, Li T, Zhang M, Zhang R Y, Liou J G. Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: Constraints on mantle evolution beneath eastern China. J Petrol, 2006b, 47: 2233-2256 CrossRef ADS Google Scholar

[193] Zheng J P, Griffin W L, O’Reilly S Y, Yu C M, Zhang H F, Pearson N, Zhang M. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta, 2007, 71: 5203-5225 CrossRef ADS Google Scholar

[194] Zheng J P, Sun M, Griffin W L, Zhou M F, Zhao G C, Robinson P, Tang H Y, Zhang Z H. Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China: Petrogenetic and geodynamic implications. Chem Geol, 2008, 247: 282-304 CrossRef ADS Google Scholar

[195] Zheng J P, Tang H Y, Xiong Q, Griffin W L, O’Reilly S Y, Pearson N, Zhao J H, Wu Y B, Zhang J F, Liu Y S. Linking continental deep subduction with destruction of a cratonic margin: Strongly reworked North China SCLM intruded in the Triassic Sulu UHP belt. Contrib Mineral Petrol, 2014, 168: 1-21 CrossRef ADS Google Scholar

[196] Zheng J P, Zhao Y, Xiong Q. 2018. Zircon from orogenic peridotites is an ideal indicator for mantle-crust interaction (in Chinese with English abstract). Earth Sci-J China Uni Geosci, doi: 10.3799/dqkx.2018.275. Google Scholar

[197] Zheng Y F. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 2012, 328: 5-48 CrossRef ADS Google Scholar

[198] Zheng Y F, Xia Q X, Chen R X, Gao X Y. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Sci Rev, 2011, 107: 342-374 CrossRef ADS Google Scholar

[199] Zheng Y F, Zhao Z F, Chen Y X. Continental subduction channel processes: Plate interface interaction during continental collision. Chin Sci Bull, 2013, 58: 4371-4377 CrossRef ADS Google Scholar

[200] Zheng Y F, Hermann J. Geochemistry of continental subduction-zone fluids. Earth Planet Space, 2014, 66: 93 CrossRef ADS Google Scholar

[201] Zheng Y F, Chen Y X. Continental versus oceanic subduction zones. Natl Sci Rev, 2016, 3: 495-519 CrossRef Google Scholar

[202] Zheng Y F, Chen R X, Xu Z, Zhang S B. The transport of water in subduction zones. Sci China Earth Sci, 2016, 59: 651-682 CrossRef Google Scholar

[203] Zheng Y, Xu Z, Zhao Z, Dai L. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Sci China Earth Sci, 2018, 61: 353-385 CrossRef Google Scholar

[204] Zhou M F, Robinson P T, Malpas J, Li Z. Podiform chromitites in the Luobusa ophiolite (Southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. J Petrol, 1996, 37: 3-21 CrossRef ADS Google Scholar

[205] Zhou M F, Robinson P T, Malpas J, Edwards S J, Qi L. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet. J Petrol, 2005, 46: 615-639 CrossRef ADS Google Scholar

[206] Zhou X Z. 1996. The genesis of eclogite and garnet diopsidite in Datan, Shandong Province (in Chinese with English abstract). Acta Petrol Mineral, 15: 110–125. Google Scholar

[207] Zong K, Liu Y. Carbonate metasomatism in the lithospheric mantle: Implications for cratonic destruction in North China. Sci China Earth Sci, 2018, 61: 711-729 CrossRef Google Scholar

  • Figure 1

    Sketch diagrams of three types of subduction zones and their mantle wedges. (a) Oceanic-oceanic subduction, e.g., the Izu-Bonin-Mariana subduction zone, Western Pacific; (b) oceanic-continental subduction, e.g., continental arcs in the western coast of America; (c) continental-continental subduction, e.g., the Himalayan orogen and the Dabie-Sulu orogen.

  • Figure 2

    Sketch diagrams of crust-mantle interaction in two end-member-type subduction zones. (a) Oceanic subduction (modified after Konrad-Schmolke et al., 2011); (b) continental subduction (modified after Zheng et al., 2013).

  • Figure 3

    Locations of representative SSZ ophiolites and MWT orogenic peridotites in this study. Modified from Liou et al. (2009); the massif abbreviations: TR, Troodos; NC, New Caledonia; TM, Thetford Mines; LBS, Luobusa; ZD, Zedang; BL, Beila; YSG, Yushigou; SSG, Songshugou; SV, Svartberget; YI, Yinggelisayi; BXL, Bixiling; OF, Otrøy-Fjørtoft; UL, Ulten; SLK, Shenglikou; MW, Maowu; RC, Rongcheng; YK, Yangkou; XG/ZMF, Xugou/Zhimafang.

  • Figure 4

    Outcrop features of melt-rock or water-rock reactions in representative SSZ ophiolites. (a) The dunite lenses in harzburgite of the Luobusha ophiolite, Yarlung Zangbo suture zone; (b) the podiform chromitites and dunites in the Luobusha ophiolite, Yarlung Zangbo suture zone; (c) harzburgites in the Mirdita ophiolite, Albania, which was intersected by former dunites and later pyroxenites; (d) the rodingitic veins in the Xigaze ophiolite, Yarlung Zangbo suture zone.

  • Figure 5

    Photomicrographs ((a), (b)) and backscattering electronic (BSE) images ((c), (d)) showing melt/fluid metasomatism in representative SSZ ophiolites. (a) The Cpx-Amp intergrowth vein in a dunite lense of the Yushigou ophiolite, North Qilian orogen; (b) the euhedral Amp in dunites of the Songshugou ophiolite, North Qingling orogen (Cao et al., 2016); (c) and (d) the hydrous inclusions in chromites from the Zedang ophiolites, Yarlung Zangbo suture zone (Xiong et al., 2017b). Mineral abbreviations: Cpx, clinopyroxene; Opx, orthopyroxene; Ol, olivine; Ch, chromite; Amp, amphibole; Phl, phlogopite; Serp, serpentine.

  • Figure 6

    Variations of (Zr/Yb)N and (Li/Yb)N of whole rocks and Cpx in representative SSZ ophiolites. The data of the Songshugou peridotites are from Cao et al. (2016) and Yu et al. (2017). The whole rock data of the Zedang harzburgites and lherzolites and Cpx data are from Xiong et al. (2017a); N represents the elemental ratios normalized to Primitive Mantle (McDonough and Sun, 1995).

  • Figure 7

    Outcrop and hand-specimen features of melt/fluid metasomatism in representative MWT orogenic peridotites. (a) and (b), garnet pyroxenite dykes in the Otrøy-Fjørtoft dunites, Norway, suggesting silicate melt metasomatism and silicate-bearing carbonatitic melt metasomatism, respectively; (c) garnet pyroxenite dykes in the Ulten garnet-amphibole peridotites from the Eastern Alps orogen, Italy, indicating hydrous metasomatism and hydrous silicate melt metasomatism (Braga and Bargossi, 2014); (d) garnet harzburgites and garnet lherzolites are interbedded in the Shenglikou peridotites from the North Qaidam orogen (Xiong et al., 2015).

  • Figure 8

    Photomicrographs ((a), (b), (e)–(h)) and backscattering electronic (BSE) images ((c), (d)) showing melt/fluid modal metasomatism in representative MWT orogenic peridotites. (a) and (b), garnet pyroxenite dykes and garnet-clinopyroxene aggregates in the Otrøy-Fjørtoft dunites, Norway, suggesting silicate melt metasomatism; (c) and (d), in-situ zircon in the Shenglikou pyroxenites of the North Qaidam orogen (Xiong et al., 2014) and in the Maowu pyroxenites of the Dabie orogen, suggesting the high-density fluid activities; (e) and (f), carbonate megacrysts in the Maowu dunites of the Dabie orogen and the magnesite-calcite assemblages in the Rongcheng region from the Sulu orogen (Su et al., 2017), suggesting carbonatitic melt metasomatism; (g) and (h), Ti-clinohumites and phlogopites in the Donghai peridotites from the Sulu orogen, suggesting silicate-bearing fluid metasomatism. Mineral abbreviations: Cpx, clinopyroxene; Opx, orthopyroxne; Ol, olivine; Gt, garnet; Zir, zircon; Kely, kelyphite; Ru, rutile; Phl, phlogopite; Srp, serpentine; Ti-chu, titanclinohumite.

  • Figure 9

    Variations of Mg# and CaO/Al2O3 (a) and (La/Yb)N and Ti/Eu (b) of Cpx in representative MWT orogenic peridotites. The dashed lines in (a) come from Zong and Liu (2018); (b) is modified from Coltorti et al. (1999). These data are collected from the Rongcheng (Ye and Xu, 1992; Zhang et al., 1994; Zhou, 1996; Hiramatsu et al., 1995; Ren et al., 2007; Zhao et al., 2007; Su et al., 2016), Yangkou (Yoshida et al.,2004; Zhang et al., 2005), Rizhao (Zhang et al., 1994; Hiramatsu et al., 1995; Zhao et al., 2007; Gao et al., 2015; Li et al., 2018b), Ganyu (Chen et al., 2009) and Xugou-Donghai regions (Zhang R Y et al., 1994, 2000, 2008, 2010; Yang and Jahn, 2000; Zheng et al., 2005, 2006b; Yuan et al., 2007; Yang et al., 2007; Malaspina et al., 2009a; Ye et al., 2009).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1