SCIENCE CHINA Earth Sciences, Volume 62, Issue 7: 1076-1091(2019) https://doi.org/10.1007/s11430-018-9355-2

Polar climate system modeling in China: Recent progress and future challenges

More info
  • ReceivedNov 28, 2018
  • AcceptedApr 8, 2019
  • PublishedApr 29, 2019


The first fully coupled atmosphere-ocean-sea ice model developed in China was released in the mid-1990s. Since then, significant advances in climate system model developments have been achieved by improving the representations of major physical processes, increasing resolutions, and including an ice-shelf component. There have also been many modeling studies in China on the polar climate system, including weather and sea-ice numerical forecasts to meet the national needs of polar scientific expeditions, assessments of the state-of-the-art coupled model performance, and process-oriented studies. Future model developments and modeling activities will need to address several big scientific questions originating from the polar climate system: i) How will polar ice mass balance evolve and affect global sea level? ii) How can we properly simulate open-ocean deep convection and quantify its role in driving the lower branch of the global overturning circulation? iii) How are Arctic and Antarctic connected and what caused the contrasting sea ice trends in the two polar regions over the last decades? To address these questions, polar climate system modelers will need to analyze extended observational datasets on a global scale and work together with other polar researchers to develop a more comprehensive and sustainable observation system in the polar regions.

Funded by

Ministry of Science and Technology of China(Grant,No.,2015CB953900)

by the Major State Basic Research Development Program of China(Grant,No.,2016YFA0601804)

by National Natural Science Foundation of China(Grant,No.,41876220)

and by “the Fundamental Research Funds for the Central Universities”(Grant,Nos.,2017B04814,&,2017B20714)

Dr Yang Wu

Mr Rui Bian

Ms Mingyi Gu

Ms Qing Qin and Ms Jiangchao Qian for their assistance during the preparation of this manuscript.


We would like to thank Dr Chengyan Liu, Dr Yang Wu, Mr Rui Bian, Ms Mingyi Gu, Ms Qing Qin and Ms Jiangchao Qian for their assistance during the preparation of this manuscript. This work was supported by the Global Change Research Program of China (Grant No. 2015CB953900), the Major State Basic Research Development Program of China (Grant No. 2016YFA0601804), the National Natural Science Foundation of China (Grant No. 41876220), and the Fundamental Research Funds for the Central Universities (Grant Nos. 2017B04814 & 2017B20714).


[1] Bintanja R, van Oldenborgh G J, Drijfhout S S, Wouters B, Katsman C A. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat Geosci, 2013, 6: 376-379 CrossRef ADS Google Scholar

[2] Böning C W, Rhein M, Dengg J, Dorow C. Modeling CFC inventories and formation rates of Labrador Sea Water. Geophys Res Lett, 2003, 30: 1050 CrossRef ADS Google Scholar

[3] Bougeault P, Toth Z, Bishop C, Brown B, Burridge D, Chen D H, Ebert B, Fuentes M, Hamill T M, Mylne K, Nicolau J, Paccagnella T, Park Y Y, Parsons D, Raoult B, Schuster D, Dias P S, Swinbank R, Takeuchi Y, Tennant W, Wilson L, Worley S. The THORPEX interactive grand global ensemble. Bull Am Meteor Soc, 2010, 91: 1059-1072 CrossRef ADS Google Scholar

[4] Brandt P, Funk A, Czeschel L, Eden C, Böning C W. Ventilation and transformation of Labrador Sea Water and its rapid export in the deep Labrador Current. J Phys Oceanogr, 2007, 37: 946-961 CrossRef ADS Google Scholar

[5] Bromwich D H, Otieno F O, Hines K M, Manning K W, Shilo E. Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic. J Geophys Res Atmos, 2013, 118: 274-292 CrossRef ADS Google Scholar

[6] Carmack E C. 1986. Circulation and mixing in ice-covered waters. In: Untersteiner N, ed. The Geophysics of Sea Ice. Boston: Springer. 641–712. Google Scholar

[7] Carsey F D. Microwave observation of the Weddell Polynya. Mon Weather Rev, 1980, 108: 2032-2044 CrossRef Google Scholar

[8] Chelton D B, deSzoeke R A, Schlax M G, El Naggar K, Siwertz N. Geographical variability of the first baroclinic Rossby Radius of deformation. J Phys Oceanogr, 1998, 28: 433-460 CrossRef Google Scholar

[9] Chen D, Yuan X. A Markov Model for seasonal forecast of Antarctic sea ice. J Clim, 2004, 17: 3156-3168 CrossRef Google Scholar

[10] Chen K, Jin X and Zhang X. 1997a. Discussion on the sensitivity and climate drift of coupled ocean atmosphere GCM (in Chinese with English abstract). Acta Oceanol Sin, 19: 38–51. Google Scholar

[11] Chen K, Zhang X and Jin X. 1997b. A coupled oceanatmosphere general circulation model for studies of global climate changes. I. Formulation and performance of the model (in Chinese with English abstract). Acta Oceanol Sin, 19: 21–32. Google Scholar

[12] Cheng C, Wang Z, Liu C, Xia R. Vertical modification on depth-integrated ice shelf water plume modeling based on an equilibrium vertical profile of suspended frazil ice concentration. J Phys Oceanogr, 2017, 47: 2773-2792 CrossRef ADS Google Scholar

[13] Collins W D, Rasch P J, Boville B A, Hack J J, McCaa J R, Williamson D L, Briegleb B P, Bitz C M, Lin S J, Zhang M. The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J Clim, 2006, 19: 2144-2161 CrossRef ADS Google Scholar

[14] Comiso J C, Gordon A L. Recurring polynyas over the Cosmonaut Sea and the Maud Rise. J Geophys Res, 1987, 92: 2819-2833 CrossRef ADS Google Scholar

[15] Cunningham S A, Marsh R. Observing and modeling changes in the Atlantic MOC. WIREs Clim Change, 2010, 1: 180-191 CrossRef Google Scholar

[16] DeConto R M, Pollard D. Contribution of Antarctica to past and future sea-level rise. Nature, 2016, 531: 591-597 CrossRef PubMed ADS Google Scholar

[17] Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, Monge-Sanz B M, Morcrette J J, Park B K, Peubey C, de Rosnay P, Tavolato C, Thépaut J N, Vitart F. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc, 2011, 137: 553-597 CrossRef ADS Google Scholar

[18] Delworth T, Manabe S, Stouffer R J. Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J Clim, 1993, 6: 1993-2011 CrossRef Google Scholar

[19] Dinniman M, Asay-Davis X, Galton-Fenzi B, Holland P, Jenkins A, Timmermann R. Modeling ice shelf/ocean interaction in Antarctica: A review. Oceanography, 2016, 29: 144-153 CrossRef Google Scholar

[20] Dong Z, Smith N R, Kerry K R, Wright S. 1984. Summer Water Masses and Circulation in Prydz Bay, Antarctica (in Chinese with English abstract). Proceedings of Chinese Antarctic Scientific Expedition (Volume II). Google Scholar

[21] Fahrbach E, Hoppema M, Rohardt G, Boebel O, Klatt O, Wisotzki A. Warming of deep and abyssal water masses along the Greenwich meridian on decadal time scales: The Weddell gyre as a heat buffer. Deep Sea Res Part II—Top Stud Oceanogr, 2011, 58: 2509-2523 CrossRef ADS Google Scholar

[22] Falina A, Sarafanov A, Sokov A. Variability and renewal of Labrador Sea Water in the Irminger Basin in 1991–2004. J Geophys Res, 2007, 112: C01006 CrossRef ADS Google Scholar

[23] Fang Y, Chu M, Wu T, Zhang L, Nie S. 2017. Couping of CICE5.0 with BCC_CSM2.0 model and its performance evaluation on Arctic sea ice simulation (in Chinese). Acta Oceanol Sin, 39: 33–43. Google Scholar

[24] Fang Z. 1986. The interaction between Northern Hemisphere subtropical high and Arctic sea ice (in Chinese). Chin Sci Bull, 31: 286–289. Google Scholar

[25] Fu C. 1981. The possible linkage between variability of Mei-yu over the Yangtze River valley and state of the Antarctic snow and ice (in Chinese with English abstract). Chin Sci Bull, 26: 484–486. Google Scholar

[26] Garabato A C N, Forryan A, Dutrieux P, Brannigan L, Biddle L C, Heywood K J, Jenkins A, Firing Y L, Kimura S. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf. Nature, 2017, 542: 219-222 CrossRef PubMed ADS Google Scholar

[27] Goldberg D N, Gourmelen N, Kimura S, Millan R, Snow K. How accurately should we model ice shelf melt rates?. Geophys Res Lett, 2019, 46: 189-199 CrossRef ADS Google Scholar

[28] Golledge N R, Kowalewski D E, Naish T R, Levy R H, Fogwill C J, Gasson E G W. The multi-millennial Antarctic commitment to future sea-level rise. Nature, 2015, 526: 421-425 CrossRef PubMed ADS Google Scholar

[29] Gordon A L, Comiso J C. Polynyas in the Southern Ocean. Sci Am, 1988, 258: 90-97 CrossRef ADS Google Scholar

[30] Gordon A L, Huber B A. Southern Ocean winter mixed layer. J Geophys Res, 1990, 95: 11655-11672 CrossRef ADS Google Scholar

[31] Gordon A L, Visbeck M, Comiso J C. A possible link between the Weddell Polynya and the Southern Annular Mode. J Clim, 2007, 20: 2558-2571 CrossRef ADS Google Scholar

[32] Gordon A L. Southern Ocean polynya. Nat Clim Change, 2014, 4: 249-250 CrossRef ADS Google Scholar

[33] Griffies S M, Harrison M J, Pacanowski R C and Rosati A. 2004. A technical guide to MOM4. GFDL Ocean Group Technical Report No 5. NOAA/Geophysical Fluid Dynamics Laboratory. Google Scholar

[34] Griffies S M. 2010. Elements of MOM4p1, GFDL Ocean Group Technical Report 6. NOAA/Geophysical Fluid Dynamics Laboratory. Google Scholar

[35] Guan X, Ou H W, Chen D. Tidal effect on the dense water discharge, Part 2: A numerical study. Deep Sea Res Part II—Top Stud Oceanogr, 2009, 56: 884-894 CrossRef ADS Google Scholar

[36] Hall A, Visbeck M. Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J Clim, 2002, 15: 3043-3057 CrossRef Google Scholar

[37] Heuzé C, Heywood K J, Stevens D P, Ridley J K. Southern Ocean bottom water characteristics in CMIP5 models. Geophys Res Lett, 2013, 40: 1409-1414 CrossRef ADS Google Scholar

[38] Holland M M, Blanchard-Wrigglesworth E, Kay J, Vavrus S. Initial-value predictability of Antarctic sea ice in the community climate system model 3. Geophys Res Lett, 2013, 40: 2121-2124 CrossRef ADS Google Scholar

[39] Hosking J S, Orr A, Marshall G J, Turner J, Phillips T. The influence of the Amundsen-Bellingshausen seas low on the climate of west Antarctica and its representation in coupled climate model simulations. J Clim, 2013, 26: 6633-6648 CrossRef ADS Google Scholar

[40] Hunke E C, Lipscomb W H, Turner A K, Jeffery N and Elliott S. 2010. CICE: The Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 4.1 LA-CC-06-012. Los Alamos National Laboratory. Google Scholar

[41] Hunke E C, Lipscomb W H, Turner A K, Jeffery N and Elliott S. 2008. CICE: The Los Alamos sea ice model, documentation and software user’s manual version 4.0, LA-CC-06-012. Los Alamos National Laboratory. Google Scholar

[42] Hunke E C, Lipscomb W H, Turner A K, Jeffery N and Elliott S. 2013. CICE: The Los Alamos Sea Ice Model, documentation and software user’s manual, version 5.0 LA-CC-06-012. Los Alamos National Laboratory. Google Scholar

[43] Jordan J R, Holland P R, Goldberg D, Snow K, Arthern R, Campin J M, Heimbach P, Jenkins A. Ocean-forced ice-shelf thinning in a synchronously coupled ice-ocean model. J Geophys Res Oceans, 2018, 123: 864-882 CrossRef ADS Google Scholar

[44] Korhonen H, Carslaw K S, Forster P M, Mikkonen S, Gordon N D, Kokkola H. 2010. Aerosol climate feedback due to decadal increases in Southern Hemisphere wind speeds. Geophys Res Lett, 37, doi: 10.1029 /2009GL041320. Google Scholar

[45] Lambeck K, Chappell J. Sea level change through the last glacial cycle. Science, 2001, 292: 679-686 CrossRef PubMed ADS Google Scholar

[46] Lewis E L. 1985. The “Ice Pump”, a mechanism for ice-shelf melting. In: Glaciers, Ice Sheets, and Sea Level: Effect of a CO2-Induced Climate Change, Rep. DOE/EV/60235-1. Washington, D. C: U.S. Dep. of Energy, 275–278. Google Scholar

[47] Li L, Xie X, Wang B, Dong L. Evaluating the Performances of GAMIL1.0 and GAMIL2.0 during TWPICE with CAPT. Atmos Ocean Sci Lett, 2012, 5: 38-42 CrossRef Google Scholar

[48] Liang X, Yang Q, Nerger L, Losa S N, Zhao B, Zheng F, Zhang L, Wu L. Assimilating Copernicus SST Data into a pan-Arctic ice-ocean coupled model with a local SEIK filter. J Atmos Ocean Technol, 2017, 34: 1985-1999 CrossRef ADS Google Scholar

[49] Lin P, Yu Y, Liu H. Oceanic climatology in the coupled model FGOALS-g2: Improvements and biases. Adv Atmos Sci, 2013, 30: 819-840 CrossRef ADS Google Scholar

[50] Lindsay R W, Holland D M, Woodgate R A. Halo of low ice concentration observed over the Maud Rise seamount. Geophys Res Lett, 2004, 31: L13302 CrossRef ADS Google Scholar

[51] Liu C, Wang Z, Cheng C, Xia R, Li B, Xie Z. Modeling modified circumpolar deep water intrusions onto the Prydz Bay continental shelf, east Antarctica. J Geophys Res Oceans, 2017, 122: 5198-5217 CrossRef ADS Google Scholar

[52] Liu C, Wang Z, Cheng C, Wu Y, Xia R, Li B, Li X. On the modified Circumpolar Deep Water upwelling over the Four Ladies Bank in Prydz Bay, East Antarctica. J Geophys Res Oceans, 2018, 123: 7819-7838 CrossRef ADS Google Scholar

[53] Liu H, Lin P, Yu Y, Zhang X. The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2. Acta Meteorol Sin, 2012, 26: 318-329 CrossRef ADS Google Scholar

[54] Liu H, Zhang X, Li W, Yu Y, Yu R. An eddy-permitting oceanic general circulation model and its preliminary evaluation. Adv Atmos Sci, 2004, 21: 675-690 CrossRef ADS Google Scholar

[55] Liu J, Curry J A, Martinson D G. Interpretation of recent Antarctic sea ice variability. Geophys Res Lett, 2004, 31: L02205 CrossRef ADS Google Scholar

[56] Losch M, Menemenlis D, Campin J M, Heimbach P, Hill C. On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Model, 2010, 33: 129-144 CrossRef ADS Google Scholar

[57] Losch M. Modeling ice shelf cavities in a z coordinate ocean general circulation model. J Geophys Res, 2008, 113: C08043 CrossRef ADS Google Scholar

[58] Lozier M S. Overturning in the North Atlantic. Annu Rev Mar Sci, 2012, 4: 291-315 CrossRef PubMed ADS Google Scholar

[59] Lozier M S, Li F, Bacon S, Bahr F, Bower A S, Cunningham S A, de Jong M F, de Steur L, deYoung B, Fischer J, Gary S F, Greenan B J W, Holliday N P, Houk A, Houpert L, Inall M E, Johns W E, Johnson H L, Johnson C, Karstensen J, Koman G, Le Bras I A, Lin X, Mackay N, Marshall D P, Mercier H, Oltmanns M, Pickart R S, Ramsey A L, Rayner D, Straneo F, Thierry V, Torres D J, Williams R G, Wilson C, Yang J, Yashayaev I, Zhao J. A sea change in our view of overturning in the subpolar North Atlantic. Science, 2019, 363: 516-521 CrossRef PubMed Google Scholar

[60] Lu Y, Zhou M, Wu T. 2013. Validation of parameterizations for the surface turbulent fluxes over sea ice with CHINARE 2010 and SHEBA data. Polar Res, 32: 291–294. Google Scholar

[61] Marsh R. Recent variability of the North Atlantic thermohaline circulation inferred from surface heat and freshwater fluxes. J Clim, 2000, 13: 3239-3260 CrossRef Google Scholar

[62] Marshall J, Adcroft A, Hill C, Perelman L, Heisey C. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res, 1997a, 102: 5753-5766 CrossRef ADS Google Scholar

[63] Marshall J, Hill C, Perelman L, Adcroft A. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J Geophys Res, 1997b, 102: 5733-5752 CrossRef ADS Google Scholar

[64] Marshall J, Armour K C, Scott J R, Kostov Y, Hausmann U, Ferreira D, Shepherd T G, Bitz C M. The ocean’s role in polar climate change: Asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Philos Trans R Soc A-Math Phys Eng Sci, 2014, 372: 20130040 CrossRef PubMed ADS Google Scholar

[65] Marshall J, Schott F. Open-ocean convection: Observations, theory, and models. Rev Geophys, 1999, 37: 1-64 CrossRef ADS Google Scholar

[66] Martinson D G. Evolution of the southern ocean winter mixed layer and sea ice: Open ocean deepwater formation and ventilation. J Geophys Res, 1990, 95: 11641-11654 CrossRef ADS Google Scholar

[67] Mathiot P, Jenkins A, Harris C, Madec G. Explicit representation and parametrised impacts of under ice shelf seas in the z* coordinate ocean model NEMO 3.6. Geosci Model Dev, 2017, 10: 2849-2874 CrossRef ADS Google Scholar

[68] Mauritzen C, Häkkinen S. On the relationship between dense water formation and the “meridional overturning cell” in the North Atlantic Ocean. Deep Sea Res Part I—Oceanogr Res Paper, 1999, 46: 877-894 CrossRef ADS Google Scholar

[69] Menemenlis D, Heimbach P, Hill C, Lee T, Nguyen A, Schodlok M and Zhang H. 2008. ECCO2: High-resolution global ocean and sea ice data synthesis. AGU Fall Meeting Abstracts ID: OS31C-1292. Google Scholar

[70] Mu L, Yang Q, Losch M, Losa S N, Ricker R, Nerger L, Liang X. Improving sea ice thickness estimates by assimilating CryoSat-2 and SMOS sea ice thickness data simultaneously. Q J R Meteorol Soc, 2018, 144: 529-538 CrossRef ADS Google Scholar

[71] Neale R B, Richter J H, Conley A J, Park S, Lauritzen P H, Gettelman A. 2010. Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Technical Notes. Google Scholar

[72] Ou H W, Guan X, Chen D. Tidal effect on the dense water discharge. Part 1: Analytical model. Deep Sea Res Part II—Top Stud Oceanogr, 2009, 56: 874-883 CrossRef ADS Google Scholar

[73] Park Y Y, Buizza R, Leutbecher M. TIGGE: Preliminary results on comparing and combining ensembles. Q J R Meteorol Soc, 2008, 134: 2029-2050 CrossRef ADS Google Scholar

[74] Parkinson C L, Cavalieri D J. Antarctic sea ice variability and trends, 1979–2010. Cryosphere, 2012, 6: 871-880 CrossRef ADS Google Scholar

[75] Parkinson C L, Comiso J C. On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning and an August storm. Geophys Res Lett, 2013, 40: 1356-1361 CrossRef ADS Google Scholar

[76] Parkinson C L, Washington W M. A large-scale numerical model of sea ice. J Geophys Res, 1979, 84: 311-337 CrossRef ADS Google Scholar

[77] Pham D T, Verron J, Roubaud M C. A singular evolutive extended Kalman filter for data assimilation in oceanography. J Marine Syst, 1998, 16: 323-340 CrossRef Google Scholar

[78] Pickart R S, Torres D J, Clarke R A. Hydrography of the Labrador Sea during active convection. J Phys Oceanogr, 2002, 32: 428-457 CrossRef Google Scholar

[79] Pickart R S, Straneo F, Moore G W K. Is Labrador Sea Water formed in the Irminger Basin?. Deep Sea Res Part I-Oceanographic Res Papers, 2003, 50: 23-52 CrossRef ADS Google Scholar

[80] Qiao F, Song Z, Bao Y, Song Y, Shu Q, Huang C, Zhao W. Development and evaluation of an Earth System Model with surface gravity waves. J Geophys Res Oceans, 2013, 118: 4514-4524 CrossRef ADS Google Scholar

[81] Qiu B, Zhang L, Chu M. 2015. Performance analysis of arctic sea ice simulation in climate system models (in Chinese with English abstract). Chin J Polar Res, 27: 47–55. Google Scholar

[82] Raphael M N. The influence of atmospheric zonal wave three on Antarctic sea ice variability. J Geophys Res, 2007, 112: D12112 CrossRef ADS Google Scholar

[83] Rayner D, Hirschi J J M, Kanzow T, Johns W E, Wright P G, Frajka-Williams E, Bryden H L, Meinen C S, Baringer M O, Marotzke J, Beal L M, Cunningham S A. Monitoring the Atlantic meridional overturning circulation. Deep Sea Res Part II-Top Stud Oceanogr, 2011, 58: 1744-1753 CrossRef ADS Google Scholar

[84] Rhein M, Fischer J, Smethie W M, Smythe-Wright D, Weiss R F, Mertens C, Min D H, Fleischmann U, Putzka A. Labrador Sea Water: Pathways, CFC inventory, and formation rates. J Phys Oceanogr, 2002, 32: 648-665 CrossRef Google Scholar

[85] Rhein M, Kieke D, Hüttl-Kabus S, Roessler A, Mertens C, Meissner R, Klein B, Böning C W, Yashayaev I. Deep water formation, the subpolar gyre, and the meridional overturning circulation in the subpolar North Atlantic. Deep Sea Res Part II—Top Stud Oceanogr, 2011, 58: 1819-1832 CrossRef ADS Google Scholar

[86] Schaffer J, Timmermann R, Arndt J E, Savstrup Kristensen S, Mayer C, Morlighem M, Steinhage D. A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth Syst Sci Data, 2016, 8: 543-557 CrossRef ADS Google Scholar

[87] Schodlok M P, Menemenlis D, Rignot E J. Ice shelf basal melt rates around Antarctica from simulations and observations. J Geophys Res Oceans, 2016, 121: 1085-1109 CrossRef ADS Google Scholar

[88] Shu Q, Song Z, Qiao F. Assessment of sea ice simulations in the CMIP5 Models. Cryosphere, 2015, 9: 399-409 CrossRef ADS Google Scholar

[89] Shu Q, Ma H, Qiao F. Observation and simulation of a floe drift near the North Pole. Ocean Dyn, 2012, 62: 1195-1200 CrossRef ADS Google Scholar

[90] Simmonds I, Jacka T H. Relationships between the interannual variability of Antarctic sea ice and the Southern Oscillation. J Clim, 1995, 8: 637-647 CrossRef Google Scholar

[91] Smith N R, Zhaoqian D, Kerry K R, Wright S. Water masses and circulation in the region of Prydz Bay, Antarctica. Deep Sea Res Part A—Oceanogr Res Paper, 1984, 31: 1121-1147 CrossRef ADS Google Scholar

[92] Smith R, Jones P, Briegleb B, Bryan F, Danabasoglu G, Dennis J, Hecht M. 2010. The parallel ocean program (POP) reference manual. Los Alamos National Laboratory, LAUR-10-01853. Google Scholar

[93] Stammerjohn S, Massom R, Rind D, Martinson D. Regions of rapid sea ice change: An inter-hemispheric seasonal comparison. Geophys Res Lett, 2012, 39: L06501 CrossRef ADS Google Scholar

[94] Stössel A, Zhang Z, Vihma T. The effect of alternative real-time wind forcing on Southern Ocean sea ice simulations. J Geophys Res, 2011, 116: C11021 CrossRef ADS Google Scholar

[95] Stouffer R J, Yin J, Gregory J M, Dixon K W, Spelman M J, Hurlin W, Weaver A J, Eby M, Flato G M, Hasumi H, Hu A, Jungclaus J H, Kamenkovich I V, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier W R, Robitaille D Y, Sokolov A, Vettoretti G, Weber S L. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim, 2006, 19: 1365-1387 CrossRef ADS Google Scholar

[96] Stroeve J C, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, Meier W N. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett, 2012, 39: L16502 CrossRef ADS Google Scholar

[97] Sun Q, Zhang L, Zhang Z, Yang Q. 2016. Numerical simulation of summer katabatic wind at Zhongshan station, Antarctica: A case study (in Chinese with English abstract). Acta Oceanol Sin, 38: 71–81. Google Scholar

[98] Sun Q Z, Ding Z M, Shen H, Yang Q H & Zhang L. 2017. Polar numerical weather prediction system: Preliminary establishment and application (in Chinese with English abstract). Marine Forecast, 34: 1–10. Google Scholar

[99] Talley L D, Reid J L, Robbins P E. Data-based meridional overturning streamfunctions for the global ocean. J Clim, 2003, 16: 3213-3226 CrossRef Google Scholar

[100] Tan H, Zhang L, Chu M, Wu T, Qiu B, Li J. 2015. An analysis of simulated global sea ice extent, thickness, and causes of error with the BCC_CSM Model (in Chinese with English abstract). Chin J Atmos Sci, 39: 197–209. Google Scholar

[101] Turner J, Bracegirdle T J, Phillips T, Marshall G J, Hosking J S. An initial assessment of Antarctic sea ice extent in the CMIP5 models. J Clim, 2013, 26: 1473-1484 CrossRef ADS Google Scholar

[102] Turner J, Comiso J C, Marshall G J, Lachlan-Cope T A, Bracegirdle T, Maksym T, Meredith M P, Wang Z, Orr A. Non‐annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys Res Lett, 2009, 36: L08502 CrossRef ADS Google Scholar

[103] Våge K, Pickart R S, Thierry V, Reverdin G, Lee C M, Petrie B, Agnew T A, Wong A, Ribergaard M H. Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nat Geosci, 2009, 2: 67-72 CrossRef ADS Google Scholar

[104] Venables H J, Meredith M P. Feedbacks between ice cover, ocean stratification, and heat content in Ryder Bay, western Antarctic Peninsula. J Geophys Res Oceans, 2014, 119: 5323-5336 CrossRef ADS Google Scholar

[105] Wang Z, Huang S. 1994. The responses of atmospheric circulations to Antarctic sea ice anomalies in July (in Chinese with English abstract). Meteor Sci Sin, 14: 311–321. Google Scholar

[106] Wang Z, Wu Y, Lin X, Liu C, Xie Z. Impacts of open-ocean deep convection in the Weddell Sea on coastal and bottom water temperature. Clim Dyn, 2017, 48: 2967-2981 CrossRef ADS Google Scholar

[107] Wang Z, Turner J, Sun B, Li B, Liu C. Cyclone-induced rapid creation of extreme Antarctic sea ice conditions. Sci Rep, 2014, 4: 5317 CrossRef PubMed ADS Google Scholar

[108] Wang Z, Zhang X, Guan Z, Sun B, Yang X, Liu C. An atmospheric origin of the multi-decadal bipolar seesaw. Sci Rep, 2015, 5: 8909 CrossRef PubMed ADS Google Scholar

[109] Wang Z, Meredith M P. Density-driven Southern Hemisphere subpolar gyres in coupled climate models. Geophys Res Lett, 2008, 35: L14608 CrossRef ADS Google Scholar

[110] Wang Z. On the response of Southern Hemisphere subpolar gyres to climate change in coupled climate models. J Geophys Res Oceans, 2013, 118: 1070-1086 CrossRef ADS Google Scholar

[111] Williams G D, Herraiz-Borreguero L, Roquet F, Tamura T, Ohshima K I, Fukamachi Y, Fraser A D, Gao L, Chen H, McMahon C R, Harcourt R, Hindell M. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay. Nat Commun, 2016, 7: 12577 CrossRef PubMed ADS Google Scholar

[112] Winton M. A reformulated three-layer sea ice model. J Atmos Ocean Technol, 2000, 17: 525-531 CrossRef Google Scholar

[113] Wu T, Yu R, Zhang F. A modified dynamic framework for the atmospheric spectral model and its application. J Atmos Sci, 2008, 65: 2235-2253 CrossRef ADS Google Scholar

[114] Wu T, Yu R, Zhang F, Wang Z, Dong M, Wang L, Jin X, Chen D, Li L. The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate. Clim Dyn, 2010, 34: 123-147 CrossRef ADS Google Scholar

[115] Wu T, Song L, Li W, Wang Z, Zhang H, Xin X, Zhang Y, Zhang L, Li J, Wu F, Liu Y, Zhang F, Shi X, Chu M, Zhang J, Fang Y, Wang F, Lu Y, Liu X, Wei M, Liu Q, Zhou W, Dong M, Zhao Q, Ji J, Li L, Zhou M. An overview of BCC climate system model development and application for climate change studies. Acta Meteorol Sin, 2014, 28: 34-56 CrossRef ADS Google Scholar

[116] Wu T. A mass-flux cumulus parameterization scheme for large-scale models: Description and test with observations. Clim Dyn, 2012, 38: 725-744 CrossRef ADS Google Scholar

[117] Wu Y, Zhai X, Wang Z. Impact of synoptic atmospheric forcing on the mean ocean circulation. J Clim, 2016, 29: 5709-5724 CrossRef ADS Google Scholar

[118] Wu Y, Wang Z, Liu C. On the response of the Lorenz energy cycle for the Southern Ocean to intensified westerlies. J Geophys Res Oceans, 2017, 122: 2465-2493 CrossRef ADS Google Scholar

[119] Xie Z and Wang Z. 2017. The inter-comparison study between atmospheric reanalysis data and station data in Prydz Bay (in Chinese with English abstract). Polar Res, 29: 368–377. Google Scholar

[120] Yang Q, Losa S N, Losch M, Liu J, Zhang Z, Nerger L, Yang H. Assimilating summer sea-ice concentration into a coupled ice-ocean model using a LSEIK filter. Ann Glaciol, 2015a, 56: 38-44 CrossRef ADS Google Scholar

[121] Yang Q, Losa S N, Losch M, Tian-Kunze X, Nerger L, Liu J, Kaleschke L, Zhang Z. Assimilating SMOS sea ice thickness into a coupled ice-ocean model using a local SEIK filter. J Geophys Res Oceans, 2015b, 119: 6680-6692 CrossRef ADS Google Scholar

[122] Yang Q, Losch M, Losa S N, Jung T, Nerger L. Taking into account atmospheric uncertainty improves sequential assimilation of SMOS sea ice thickness data in an ice-ocean model. J Atmos Ocean Technol, 2016a, 33: 397-407 CrossRef ADS Google Scholar

[123] Yang Q, Losch M, Losa S, Jung T, Nerger L, Lavergne T. The challenge and benefit of using sea ice concentration satellite data products with uncertainty estimates in summer sea ice data assimilation. Cryosphere Discuss, 2016b, 10: 761-774 CrossRef ADS Google Scholar

[124] Yang X, Huang S. 1992. A numerical experiment of climate effect of Antarctic sea ice during the Northern Hemisphere summer (in Chinese). Chin J Atmos Sci, 16: 80–89. Google Scholar

[125] Yashayaev I. Hydrographic changes in the Labrador Sea, 1960–2005. Prog Oceanogr, 2007, 73: 242-276 CrossRef ADS Google Scholar

[126] Yashayaev I, Loder J W. Further intensification of deep convection in the Labrador Sea in 2016. Geophys Res Lett, 2017, 44: 1429-1438 CrossRef ADS Google Scholar

[127] Yu R, Jin X, Zhang X. Design and numerical simulation of an Arctic Ocean circulation and thermodynamic sea-ice model. Adv Atmos Sci, 1995, 12: 289-310 CrossRef ADS Google Scholar

[128] Yu Y, Zheng W, Wang B, Liu H, Liu J. Versions g1.0 and g1.1 of the LASG/IAP Flexible Global Ocean-Atmosphere-Land System model. Adv Atmos Sci, 2011, 28: 99-117 CrossRef ADS Google Scholar

[129] Yu Y. 2014. Overview of FGOALS contribution to international climate modeling community during past years. In: Zhou T, Yu Y, Liu Y, Wang B, eds. Flexible Global Ocean-Atmosphere-Land System Model. Berlin: Springer. Google Scholar

[130] Yuan X, Chen D, Li C, Wang L, Wang W. Arctic sea ice seasonal prediction by a linear Markov model. J Clim, 2016, 29: 8151-8173 CrossRef ADS Google Scholar

[131] Zeng Q C, Zhang X H, Liang X Z, Chen S F. 1989. Documentation of IAP (Institute of Atmospheric Physics) two-level atmospheric general circulation model. DOE/ER/60314-H1. Washington, D. C.: U.S. Dept. of Energy: 383. Google Scholar

[132] Zhang X, Liang X. A numerical world ocean general circulation model. Adv Atmos Sci, 1989, 6: 44-61 CrossRef ADS Google Scholar

[133] Zhang X H, Bao N, Yu R C and Wang W Q. 1992. Coupling scheme experiments based on an atmospheric and an oceanic GCM (in Chinese). Chin J Atmos Sci, 16: 129–144. Google Scholar

[134] Zhang X H, Chen K M, Jin X Z, Lin W Y, Yu Y Q. Simulation of thermohaline circulation with a twenty-layer oceanic general circulation model. Theor Appl Climatol, 1996, 55: 65-87 CrossRef ADS Google Scholar

[135] Zhang Z, Vihma T, Stössel A, Uotila P. The role of wind forcing from operational analyses for the model representation of Antarctic coastal sea ice. Ocean Model, 2015, 94: 95-111 CrossRef ADS Google Scholar

[136] Zhang Z, Uotila P, Stössel A, Vihma T, Liu H, Zhong Y. Seasonal southern hemisphere multi-variable reflection of the southern annular mode in atmosphere and ocean reanalyses. Clim Dyn, 2018, 50: 1451-1470 CrossRef ADS Google Scholar

[137] Zhao J, Cheng B, Yang Q, Vihma T, Zhang L. Observations and modelling of first-year ice growth and simultaneous second-year ice ablation in the Prydz Bay, East Antarctica. Ann Glaciol, 2017, 58: 59-67 CrossRef ADS Google Scholar

[138] Zhou L, Bao Q, Liu Y, Wu G, Wang W C, Wang X, He B, Yu H, Li J. Global energy and water balance: Characteristics from Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1). J Adv Model Earth Syst, 2015, 7: 1-20 CrossRef ADS Google Scholar

[139] Zhou T, Yu R, Wang Z and Wu T. 2005. Atmospheric General Circulation Model-SAMIL and Its Coupled General Circulation Model-FGOALS_s (in Chinese with English abstract). Impacts of the Ocean-Land-Atmosphere Interaction Over the Asian Monsoon Domain on the Climate Change Over China, 4. Google Scholar

[140] Zwally H J, Gloersen P. Passive microwave images of the polar regions and research applications. Polar Record, 1977, 18: 431-450 CrossRef Google Scholar

  • Figure 1

    A schematic diagram of the three major physical components of the global climate system. In and only in the polar regions, are there strong interactions among the atmosphere, the ocean and the cryosphere.

  • Figure 2

    A schematic diagram of the atmosphere, ocean, sea ice, and ice shelf system. To understand this complex system, a comprehensive observation system will need to be established, and a high resolution modeling system that can resolve all major processes will also need to be developed. AUV, autonomous underwater vehicle; CDW, circumpolar deep water; HSSW, high salinity shelf water; ISW, ice shelf water; mCDW, modified CDW.

  • Figure 3

    (a) Zonally averaged SSTs for CMIP5 models and WOA13 (World Ocean Atlas, 2013) observations; (b) the differences in zonally averaged SST between CMIP5 models and WOA13. SSTs are the climatological means over 1976 to 2005. The grey lines are for other seventeen CMIP5 models aside from BCC-CSM1-1-m (green) and BCC-CSM1-1 (blue), including ACCESS1-0, ACCESS1-3, CanCM4, CanESM2, CNRM-CM5, CSIRO-Mk3, GFDL-CM2, GFDL-CM3, GFDL-ESM2M, inmcm4, MPI-ESM-LR, MPI-ESM-MR, MPI-ESM-P, MRI-CGCM3, MRI-ESM1, NorESM1-M and NorESM1-ME. Note that the largest biases are in the subpolar regions, around 60°S and 60°N.

  • Figure 4

    MLDmax in six CMIP5 models. MLDmax is maximum monthly MLD (mixed layer depth) during 1976 to 2005.

  • Figure 5

    Standard deviations (m) of MLDmax across the selected CMIP5 models (see caption of Figure 3).

  • Figure 6

    Monthly mean sea ice extents from 1979 to 2017 for (a) winter (March for the Arctic and September for the Antarctic), (b) spring (June for the Arctic and December for the Antarctic), (c) summer (September for the Arctic and March for the Antarctic), (d) autumn (December for the Arctic and June for the Antarctic). The straight lines are the best linear fits.

  • Table 1   List of coupled climate models developed by Chinese institutes that participated in CMIP5




    Atmosphere Model

    Lat×Lon (°); Levels

    Ocean Model

    Lat×Lon (°); Levels

    Sea-Ice Model

    Vertical Layers; Ice Thickness Category





    (Wu et al., 2008, 2010; Wu, 2012)

    2.7906×2.8125 (T42); 26


    (Griffies et al., 2004)

    0.3333, 1×1; 40


    (Winton, 2000)

    1 snow 2 ice; 5





    (Wu, 2012)

    1×1 (T106); 26


    (Griffies et al., 2004)

    0.3333, 1×1; 40


    (Winton, 2000)

    1 snow 2 ice; 5





    (Neale et al., 2010)

    2.7906×2.8125 (T42); 26


    (Griffies, 2010)

    0.3333, 1×1; 50


    (Hunke et al., 2010)

    1 snow 4 ice; 5





    (Li et al., 2012)

    2.7906×2.8125 (T42); 26


    (Liu et al., 2012)

    0.5, 1×1;30

    CICE4_LASG (Hunke et al., 2008)

    1 snow 4 ice; 5





    (Zhou et al., 2005)

    1.6590×2.8125 (R42); 26


    (Liu et al., 2012)

    0.5, 1×1; 30

    CICE4_LASG (Hunke et al., 2008)

    1 snow 4 ice; 5





    (Collins et al., 2006)

    2.7906×2.8125 (T42); 26


    (Smith et al., 2010)

    0.3–0.5×1.1; 40


    (Hunke et al., 2008)

    1 snow 4 ice; 5

    BCC, Beijing Climate Center, China Meteorological Administration; BNU, College of Global Change and Earth System Science, Beijing Normal University; LASG, The State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences; CESS, Center for Earth System Science, Tsinghua University; FIO, The First Institute of Oceanography, State Oceanic Administration, China

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有