logo

SCIENCE CHINA Earth Sciences, Volume 63, Issue 2: 212-223(2020) https://doi.org/10.1007/s11430-019-9475-2

Pliocene flora and paleoenvironment of Zanda Basin, Tibet, China

Jian HUANG1,2, Tao SU1,2, Shufeng LI1,2, Feixiang WU2,4,5, Tao DENG2,4,5, Zhekun ZHOU1,2,3,*
More info
  • ReceivedMay 10, 2019
  • AcceptedAug 12, 2019
  • PublishedNov 7, 2019

Abstract

This paper describes a plant megafossil assemblage from the Pliocene strata of Xiangzi, Zanda Basin in the western Qinghai-Tibet Plateau. Twenty-one species belonging to 12 genera and 10 families were identified. Studies show that the Pliocene vegetation in Zanda Basin was mostly deciduous shrub composed of Cotoneaster, Spiraea, Caragana, Hippophae, Rhododendron, Potentilla fruticosa, etc. Leaf sizes of these taxa were generally small. Paleoclimate reconstruction using Coexistence Analysis and CLAMP showed that this area had higher temperature and precipitation in the Pliocene than today, and distinct seasonal precipitation variability was established. The reconstructed paleoelevation of Zanda Basin in the Pliocene was similar to modern times. In the context of central Asian aridification, the gradual drought in the area beginning in the late Cenozoic caused vegetation to transition from shrub to desert, and the flora composition also changed.


Funded by

Strategic Priority Research Program of CAS(Grant,Nos.,XDA2007030102,XDB26000000,XDA20070203)

NSFC-NERC(Natural,Environment,Research,Council,of,the,United,Kingdom)

CAS(Grant,No.,2017439)

CAS(Grant,No.,QYZDB-SSW-SMC016)


Acknowledgment

We are grateful to the colleagues from the Xishuangbanna Tropical Botanical Garden (XTBG), Chinese Academy of Sciences (CAS), Institute of Vertebrate Paleontology and Paleoanthropology, CAS and Kunming Institute of Botany, CAS , for their assistance with fossil collection. Public Technology Service Center, XTBG helped with imaging. This work was supported by the Strategic Priority Research Program of CAS (Grant Nos. XDA2007030102, XDB26000000, XDA20070203), the Second Tibetan Plateau Scientific Expedition and Research (STEP) (Grant No. 2019QZKK0705), the NSFC-NERC (the National Natural Science Foundation of China-Natural Environment Research Council of the United Kingdom) joint research program (Grant Nos. 41661134049, NE/P013805/1), the Youth Innovation Promotion Association, CAS (Grant No. 2017439) and the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDB-SSW-SMC016).


References

[1] Ai K K, Shi G L, Zhang K X, Ji J L, Song B W, Shen T Y, Guo S X. The uppermost Oligocene Kailas flora from southern Tibetan Plateau and its implications for the uplift history of the southern Lhasa terrane. Palaeogeogr Palaeoclimatol Palaeoecol, 2019, 515: 143-151 CrossRef ADS Google Scholar

[2] An Z S, Kutzbach J E, Prell W L, Porter S C. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 2001, 411: 62-66 CrossRef PubMed Google Scholar

[3] An Z S, Zhang P Z, Wang E Q, Wang S M, Qiang X K, Li L, Song Y G, Chang H, Liu X D, Zhou W J. 2006. Changes of the monsoon-arid environment in China and growth of the Tibetan Plateau since the Miocene (in Chinese). Quat Sci, 26: 678–693. Google Scholar

[4] Brookfield M E. Evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: Rivers draining north from the Pamir syntaxis. Geomorphology, 2008, 100: 296-311 CrossRef ADS Google Scholar

[5] Deng T, Ding L. Paleoaltimetry reconstructions of the Tibetan Plateau: Progress and contradictions. Natl Sci Rev, 2015, 2: 417-437 CrossRef Google Scholar

[6] Deng T, Li Q, Tseng Z J, Takeuchi G T, Wang Y, Xie G P, Wang S Q, Hou S K, Wang X M. Locomotive implication of a Pliocene three-toed horse skeleton from Tibet and its paleo-altimetry significance. Proc Natl Acad Sci USA, 2012, 109: 7374-7378 CrossRef PubMed ADS Google Scholar

[7] Deng T, Wang X M, Fortelius M, Li Q, Wang Y, Tseng Z J, Takeuchi G T, Saylor J E, Säilä L K, Xie G P. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores. Science, 2011, 333: 1285-1288 CrossRef PubMed ADS Google Scholar

[8] Deng T, Wang X M, Wang S Q, Li Q, Hou S K. 2015. Evolution of the Chinese Neogene mammalian faunas and its relationship to uplift of the Tibetan Plateau (in Chinese). Adv Earth Sci, 30: 407–415. Google Scholar

[9] Dodds W K, Gido K, Whiles M R, Daniels M D, Grudzinski B P. The stream biome gradient concept: Factors controlling lotic systems across broad biogeographic scales. Freshwater Sci, 2014, 34: 1-19 CrossRef Google Scholar

[10] Dupont-Nivet G, Hoorn C, Konert M. Tibetan uplift prior to the Eocene-Oligocene climate transition: Evidence from pollen analysis of the Xining Basin. Geology, 2008, 36: 987-990 CrossRef ADS Google Scholar

[11] Fang X M, Wu F L, Han W X, Wang Y D, Zhang Y Z, Zhang W L. 2008. Plio-Pleistocene drying process of Asian inland-sporopollen and salinity records from Yahu section in the central Qaidam Basin (in Chinese). Quat Sci, 28: 874–882. Google Scholar

[12] Guo S X. 1980. Miocene flora in Zekog County of Qinghai (in Chinese). Act Palaeontol Sin, 19: 406–411, 441. Google Scholar

[13] Jacobs B F. Estimation of rainfall variables from leaf characters in tropical Africa. Palaeogeogr Palaeoclimatol Palaeoecol, 1999, 145: 231-250 CrossRef ADS Google Scholar

[14] Jia L B, Su T, Huang Y J, Wu F X, Deng T, Zhou Z K. First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai-Tibetan Plateau: Implications for morphological evolution and biogeography. Jnl Sytematics Evol, 2018, 57: 94-104 CrossRef Google Scholar

[15] Kempf O, Blisniuk P M, Wang S F, Fang X M, Wrozyna C, Schwalb A. Sedimentology, sedimentary petrology, and paleoecology of the monsoon-driven, fluvio-lacustrine Zhada Basin, SW-Tibet. Sediment Geol, 2009, 222: 27-41 CrossRef ADS Google Scholar

[16] Li H M, Guo S X. 1976. The Miocene flora from Namling of Xizang (in Chinese). Act Palaeontol Sin, 15: 598–609. Google Scholar

[17] Li J G, Zhou Y. 2001. Pliocene palynoflora from the Zanda Basin west Xizang (Tibet), and the palaeoenvironment (in Chinese). Act Micropalaeontol Sin, 18: 89–96. Google Scholar

[18] Li J J, Fang X M. Uplift of the Tibetan Plateau and environmental changes. Chin Sci Bull, 1999, 44: 2117-2124 CrossRef ADS Google Scholar

[19] Li X C, Xiao L, Lin Z C, He W, Yang Q, Yao Y Z, Ren D, Guo J F, Guo S X. Fossil fruits of Koelreuteria (Sapindaceae) from the Miocene of northeastern Tibetan Plateau and their palaeoenvironmental, phytogeographic and phylogenetic implications. Rev Palaeobot Palynol, 2016, 234: 125-135 CrossRef Google Scholar

[20] Liu J, Su T, Spicer R A, Tang H, Deng W Y D, Wu F X, Srivastava G, Spicer T, Van Do T, Deng T, Zhou Z K. Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene. Palaeogeogr Palaeoclimatol Palaeoecol, 2019, 524: 33-40 CrossRef ADS Google Scholar

[21] Liu S W, Pan J T, Zhang H Z. 1979. Flora of Ngari, Tibet (in Chinese). In: Qinghai Province Institute of Biology, ed. Beijing: Science Press. 73–78. Google Scholar

[22] Meng X G, Zhu D G, Shao Z G, Yang C, Sun L Q, Wang J P, Han T L, Du J J, Han J E, Yu J. 2004. Discovery of rhinoceros fossils in the Pliocene in the Zanda Basin, Ngari, Tibet (in Chinese). Geol Bull Chin, 23: 609–611. Google Scholar

[23] Meng X G, Zhu D G, Shao Z G, Yang C B, Han J E, Yu J, Meng Q W. 2005. Discovery of fossil teeth of Pliocene Ochotona in the Zanda Basin, Ngari, Tibet, China (in Chinese). Geol Bull Chin, 24: 1175–1178. Google Scholar

[24] Miao Y F, Fang X M, Wu F L, Cai M T, Song C H, Meng Q Q, Xu L. Late Cenozoic continuous aridification in the western Qaidam Basin: Evidence from sporopollen records. Clim Past, 2013, 9: 1863-1877 CrossRef ADS Google Scholar

[25] Miao Y F, Herrmann M, Wu F L, Yan X L, Yang S L. What controlled Mid-Late Miocene long-term aridification in Central Asia?—Global cooling or Tibetan Plateau uplift: A review. Earth-Sci Rev, 2012, 112: 155-172 CrossRef ADS Google Scholar

[26] Pan J T, Zhang H Z, Liu S W. 1979. Vegetation of Ngari, Tibet (in Chinese). In: Qinghai Province Institute of Biology, ed. Beijing: Science Press. 73–78. Google Scholar

[27] Peppe D J, Royer D L, Cariglino B, Oliver S Y, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams J M, Correa E, Currano E D, Erickson J M, Hinojosa L F, Hoganson J W, Iglesias A, Jaramillo C A, Johnson K R, Jordan G J, Kraft N J B, Lovelock E C, Lusk C H, Niinemets U, Peñuelas J, Rapson G, Wing S L, Wright I J. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications. New Phytol, 2011, 190: 724-739 CrossRef PubMed Google Scholar

[28] Qian F. 1999. Study on magnetostratigraphy in Qinghai-Tibetan Plateau in late Cenozoic (in Chinese). J Geomech, 5: 22–34. Google Scholar

[29] Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate. Nature, 1992, 359: 117-122 CrossRef ADS Google Scholar

[30] Ruddiman W F, Kutzbach J E. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American West. J Geophys Res, 1989, 94: 18409-18427 CrossRef ADS Google Scholar

[31] Saylor J, DeCelles P G, Quade J. Climate-driven environmental change in the Zhada Basin, southwestern Tibetan Plateau. Geosphere, 2010, 6: 74-92 CrossRef ADS Google Scholar

[32] Saylor J, DeCelles P G, Gehrels G. 2007. Origin of the Zhada Basin, SW Tibet: a tectonically dammed paleo-river valley. 2007 GSA Denver Annual Meeting. 39: 437. Google Scholar

[33] Saylor J E, Quade J, Dettman D L, DeCelles P G, Kapp P A, Ding L. The late Miocene through present paleoelevation history of southwestern Tibet. Am J Sci, 2009, 309: 1-42 CrossRef ADS Google Scholar

[34] Spicer R A, Harris N B W, Widdowson M, Herman A B, Guo S X, Valdes P J, Wolfe J A, Kelley S P. Constant elevation of southern Tibet over the past 15 million years. Nature, 2003, 421: 622-624 CrossRef PubMed ADS Google Scholar

[35] Spicer R A, Valdes P J, Spicer T E V, Craggs H J, Srivastava G, Mehrotra R C, Yang J. New developments in CLAMP: Calibration using global gridded meteorological data. Palaeogeogr Palaeoclimatol Palaeoecol, 2009, 283: 91-98 CrossRef Google Scholar

[36] Su T, Farnsworth A, Spicer R A, Huang J, Wu F X, Liu J, Li S F, Xing Y W, Huang Y J, Deng W Y D, Tang H, Xu C L, Zhao F, Srivastava G, Valdes P J, Deng T, Zhou Z K. No high Tibetan Plateau until the Neogene. Sci Adv, 2019, 5: eaav2189 CrossRef PubMed ADS Google Scholar

[37] Su T, Spicer R A, Li S H, Xu H, Huang J, Sherlock S, Huang Y J, Li S F, Wang L, Jia L B, Deng W Y D, Liu J, Deng C L, Zhang S T, Valdes P J, Zhou Z K. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet. Natl Sci Rev, 2018, 6: 495-504 CrossRef Google Scholar

[38] Sun J M, Liu W G, Liu Z H, Deng T, Windley B F, Fu B H. Extreme aridification since the beginning of the Pliocene in the Tarim Basin, western China. Palaeogeogr Palaeoclimatol Palaeoecol, 2017, 485: 189-200 CrossRef ADS Google Scholar

[39] Tao J R. 1988. Plant fossils from Liuqu formation in Lhaze County, Xizang and their paleoclimatological significances (in Chinese). Memoirs of the Institute of Geology, Chinese Academy of Sciences, 3: 223–238. Google Scholar

[40] Tao J R, Zhou Z K, Liu Y S. 2000. The Evolution of the Late Cretaceous-Cenozoic Floras in China (in Chinese). Beijing: Science Press. 56–57. Google Scholar

[41] Wang S F, Zhang W L, Fang X M, Dai S, Kempf O. Magnetostratigraphy of the Zanda Basin in southwest Tibet Plateau and its tectonic implications. Chin Sci Bull, 2008, 53: 1393-1400 CrossRef Google Scholar

[42] Wang X M, Li Q, Xie G P, Saylor J E, Tseng Z J, Takeuchi G T, Deng T, Wang Y, Hou S K, Liu J, Zhang C, Wang N, Wu F. Mio-Pleistocene Zanda Basin biostratigraphy and geochronology, pre-Ice Age fauna, and mammalian evolution in western Himalaya. Palaeogeogr Palaeoclimatol Palaeoecol, 2013, 374: 81-95 CrossRef ADS Google Scholar

[43] Wang X M, Wang Y, Li Q, Tseng Z J, Takeuchi G T, Deng T, Xie G P, Chang M M, Wang N. Cenozoic vertebrate evolution and paleoenvironment in Tibetan Plateau: Progress and prospects. Gondwana Res, 2015, 27: 1335-1354 CrossRef ADS Google Scholar

[44] Wang Y, Deng T, Biasatti D. Ancient diets indicate significant uplift of southern Tibet after ca. 7 Ma. Geology, 2006, 34: 309 CrossRef ADS Google Scholar

[45] Whittaker R H. 1975. Communities and Ecosystems. New York: MacMillan Publishing Company, Inc. Google Scholar

[46] Woodward F I, Lomas M R, Kelly C K. 2004. Global climate and the distribution of plant biomes. Philos Trans R Soc Lond B Biol Sci, 359: 1465–1476. Google Scholar

[47] Wu F L, Herrmann M, Fang X M. Early Pliocene paleo-altimetry of the Zanda Basin indicated by a sporopollen record. Palaeogeogr Palaeoclimatol Palaeoecol, 2014, 412: 261-268 CrossRef Google Scholar

[48] Wu Z Y. 1987. Flora of Tibet (in Chinese). Beijing: Science Press. Google Scholar

[49] Xu C L, Su T, Huang J, Huang Y J, Li S F, Zhao Y S, Zhou Z K. Occurrence of Christella (Thelypteridaceae) in Southwest China and its indications of the paleoenvironment of the Qinghai-Tibetan Plateau and adjacent areas. Jnl Sytemat Evol, 2019, 57: 169-179 CrossRef Google Scholar

[50] Xu H, Su T, Zhang S T, Deng M, Zhou Z K. The first fossil record of ring-cupped oak (Quercus L. subgenus Cyclobalanopsis (Oersted) Schneider) in Tibet and its paleoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol, 2016, 442: 61-71 CrossRef ADS Google Scholar

[51] Xu R. 1973. On the discovery of some plant fossils from the Mt. Jolmo Lungma region, southern Tibet, and its significance (in Chinese). Act Bot Sin, 15: 254–258. Google Scholar

[52] Xu R, Tao J R, Sun X J. 1973. On the discovery of a Quercus semicarpifolia bed at Mount Shisha Pangma and its significance in botany and geology (in Chinese). Act Bot Sin, 15: 103–114. Google Scholar

[53] Yang J, Spicer R A, Spicer T E V, Li C S. ‘CLAMP Online’: A new web-based palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North America. Palaeobio Palaeoenv, 2011, 91: 163-183 CrossRef Google Scholar

[54] Yu J, Luo P, Han J E, Meng Q W, Lu R P, Meng X G, Zhu D G, Shao Z G. 2007. Sporopollen records from the Guge section of the Zanda Basin, Tibet, and paleoenvironmental information reflected by it (in Chinese). Geol Chin, 34: 55-60. Google Scholar

[55] Zhang J W, Li B S, Wang J T, Chen W L. 1988. Vegetation of Tibet (in Chinese). Beijing: Science Press. 1–589. Google Scholar

[56] Zhang M L, Fritsch P W. Evolutionary response of Caragana (Fabaceae) to Qinghai-Tibetan Plateau uplift and Asian interior aridification. Plant Syst Evol, 2010, 288: 191-199 CrossRef Google Scholar

[57] Zhang Q S, Wang F B, Ji H X, Huang W B. 1981. Pliocene strata in the Zanda Basin, Tibet (in Chinese). J Stratigr, (3): 62–66. Google Scholar

[58] Zhang X S. 1991. Indirect gradient analysis, quantitative classification and environmental interpretation of plant communities in Ngari, Xizang (Tibet) (in Chinese). Act Phytoecol Geobot Sin, 15: 101–113. Google Scholar

[59] Zhou Y, Ding L, Deng W M, Zhang J J. 2000. Tectonic cyclothems in the Zanda Basin and its significance (in Chinese). Chin J Geol, (3): 305–315. Google Scholar

[60] Zhou Z K, Yang Q S, Xia K. 2007. Fossils of Quercus sect. Heterobalanus can help explain the uplift of the Himalayas (in Chinese). Chin Sci Bull, 52: 238. Google Scholar

[61] Zhu D G, Meng X G, Shao Z G, Yang C B, Sun L Q, Wang J P, Han T L, Han J E, Du J J, Yu J. 2004. Features of Pliocene- Lower Pleistocene sedimentary facies and tectonic evolution in the Zanda Basin, Ngari area, Tibet (in Chinese). J Geomech, 10: 245–252. Google Scholar

  • Figure 1

    Location of Zanda Xiangzi flora in the Zanda Basin. The specific location is indicated by the star symbol.

  • Figure 2

    Conditions of the Zanda Xiangzi flora fossil locality. (a) The environment of fossil locality, the outcrop is formed by terrace cut by a river, the arrow indicates the position of fossil layer; (b) fossil-bearing layers; (c) small-sized leaf fossils preserved in grey-whitish mudstone; (d) lithology, magnetostratigraphic histograms of Zanda Basin, and its correlations with the geomagnetic polarity time scale (GPTS). The leaf symbol indicates the approximate horizon of the Xiangzi flora.

  • Figure 3

    Taxa from Zanda Xiangzi flora: Nanophyll & Leptophyll. (a)–(c) Spiraea cf. myrtilloides; (d)–(e) Lonicera sp.1; (f) Spiraea sp.1; (g) Spiraea sp.2; (h) Caragana sp.1; (i) Caragana cf.versicolor; (j)–(l) Caragana cf.gerardiana; (m) Potentilla fruticosa; (n) Lonicera cf.spinosa.

  • Figure 4

    Taxa from Zanda Xiangzi flora: Microphyll. (a) (l) Hippophae sp.; (b) Cotoneaster sp.1; (c) Dictphyllum sp.1; (d) Rhododendron sp.1; (e) Salix sp.1; (f) Ceratostigma sp.; (g) Cotoneaster sp.2; (h) Dictphyllum sp.2; (i) Salix sp.3; (j) Rhododendron sp.2; (k) Salix sp.2; (m) Polygonum sp.; (n) Kobresia sp.; (o) Berberis sp.

  • Figure 5

    Vegetation types of western Qinghai-Tibet Plateau and Nearest Living Relatives (NLRs) of fossil taxa. (a) Plateau desert vegetation composed of Artemisia, Ephedra and etc. (Zanda); (b) valley dwarf forest-shrubs composed of Hippophae, Lonicera and Myricaria (Zanda); (c) Plateau shrubs composed of Caragana, Potentilla fruticosa, Berberis and etc. (Purang); (d) Plateau dark coniferous forest composed by Picea, Abies and etc. (Gyirong); (e) Spiraea myrtilloides; (f) Lonicera minutifolia; (g) Caragana gerardiana; (h) Lonicera spinosa; (i) Potentilla fruticosa; (j) Cotoneaster adpressus; (k) Berberis dictyophylla; (l) Hippophae rhamnoides; (m) Cotoneaster acuminatus; (n) Salix atopantha; (o) Rhododendron lepidotum; (p) Salix caesia; (q) Rhododendron hypenanthum; (r) Ceratostigma minus; (s) Polygonum aviculare; (t) Kobresia tibetica.

  • Figure 6

    Canonical correlation analysis (CCA) plots to show the Zanda Xiangzi flora in the Global378 leaf physiognomy datasets.

  • Table 1   Taxa list of Zanda Xiangzi flora (in order of APG IV system)

    Family

    Fossil taxa

    Nearest Living Relatives

    Proportion of specimens

    Cyperaceae

    Kobresia sp.

    Kobresia tibetica

    1.4%

    Berberidaceae

    Berberis sp.

    Berberis dictyophylla

    1.4%

    Fabaceae

    Caragana cf.gerardiana

    Caragana gerardiana

    12.2%

    Caragana cf.versicolor

    Caragana versicolor

    6.8%

    Caragana sp.

    Caragana

    1.4%

    Rosaceae

    Cotoneaster sp.1

    Cotoneaster acuminatus

    14.9%

    Cotoneaster sp.2

    Cotoneaster adpressus

    9.5%

    Potentilla fruticosa

    Potentilla fruticosa

    4.1%

    Spiraea cf. myrtilloides

    Spiraea myrtilloides

    17.6%

    Spiraea sp.1

    Spiraea

    1.4%

    Spiraea sp.2

    Spiraea

    1.4%

    Elaeagnaceae

    Hippophae sp.

    Hippophae rhamnoides

    5.4%

    Salicaceae

    Salix sp.1

    Salix

    1.4%

    Salix sp.2

    Salix caesia

    1.4%

    Salix sp.3

    Salix atopantha

    1.4%

    Polygonaceae

    Polygonum sp.

    Polygonum aviculare

    1.4%

    Plumbaginaceae

    Ceratostigma sp.

    Ceratostigma minus

    1.4%

    Ericaceae

    Rhododendron sp.1

    Rhododendron lepidotum

    2.7%

    Rhododendron sp.2

    Rhododendron hypenanthum

    2.7%

    Caprifoliaceae

    Lonicera cf.spinosa

    Lonicera spinosa

    1.4%

    Lonicera sp.

    Lonicera minutifolia

    4.1%

    Unassigned

    Dictphyllum sp.1

    4.1%

    Dictphyllum sp.2

    1.4%

  • Table 2   Reconstructed paleoclimate of Zanda Xiangzi flora comapare with modern climate of QTP

    Parameters

    Modern climate

    Reconstructed paleoclimate

    Shiquanhe

    Lhaze

    Nyingchi

    CA

    CLAMP

    MAT (°C)

    1.0

    7.0

    9.1

    3.05–10.42

    6.78±4.10

    MTWM (°C)

    14.4

    15.1

    16.2

    10.16–17.90

    20.66±3.97

    MTCM (°C)

    –12.0

    –1.9

    1.0

    –4.23–1.45

    –8.30±6.92

    GRS (month)

    8.78±1.92

    MAP/GSP (mm)

    66.4

    328.3

    692.5

    505–893

    677.5±569.6

    MMGSP (mm)

    5.5

    27.4

    57.7

    42.08–74.42

    75.8±61.1

    MPWET (mm)

    23.8

    118.5

    143.3

    104.25–162.75

    MPDRY (mm)

    0.3

    0.1

    1.0

    2.5–0

    MPWAR (mm)

    21.4

    43.3

    143.3

    101.5–182.25

    X3.WET (mm)

    50.9

    272.2

    384.7

    246.5±335.5

    X3.DRY (mm)

    2.6

    0.3

    6.7

    112.2±134.0

    Altitude (m)

    ~4250

    ~4000

    ~2900

    3536–4176

    Potential Vegetation

    Desert-Grassland

    Grassland-Shrub

    Shrub-Dark coniferousforest

    Shrub-Dark

    coniferous forest

    Shrub-Dark coniferousforest

    MAT, Mean Annual Temperature; MTWM, Mean Temperature of Warmest Month; MTCM, Mean Temperature of Coldest Month; GRS, Growing Season; MAP, Mean Annual Precipitation; GSP, Growing Season Precipitation; MMGSP, Monthly Mean Precipitation of Growing Season; MPWET, Mean Precipitation of Wettest Month; MPDRY, Mean Precipitation of Driest Month; MPWAR, Mean Precipitation of Warmest Month; X3.WET, Mean Precipitation of Wettest 3 Months; X3.DRY, Mean Precipitation of Driest 3 Months

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1