logo

SCIENCE CHINA Earth Sciences, Volume 63, Issue 2: 224-234(2020) https://doi.org/10.1007/s11430-019-9477-8

Fossil leaves of Berhamniphyllum (Rhamnaceae) from Markam, Tibet and their biogeographic implications

More info
  • ReceivedMay 7, 2019
  • AcceptedAug 23, 2019
  • PublishedNov 22, 2019

Abstract

A new occurrence of buckthorn fossil leaves is reported from the upper Eocene strata of Markam Basin, southeastern Tibet, China. The leaf margin is either entire or slightly sinuous. Secondary veins are regularly spaced, forming eucamptodromous venation. These secondaries exist as straight lines from midvein to near margin and then arch abruptly upward and enter into a margin vein. The tertiary veins are densely spaced and parallel, and are percurrent to secondary veins. This leaf architecture conforms with Berhamniphyllum Jones and Dilcher, an extinct fossil genus reported from America. Our fossils are characterized by their dense secondaries, with secondary veins on the upper half portion of the blade accounting for over 40% of all secondaries. A new species, Berhamniphyllum junrongiae Z. K. Zhou, T. X. Wang et J. Huang sp. nov., is proposed. Further analysis shows that confident assignment among Rhamnidium, Berchemia, and Karwinskia cannot be made based on leaf characters alone. Berhamniphyllum might represent an extinct common ancestor of these genera. In this study, several fossil Berchemia from Yunnan and Shandong are emended and reassigned to Berhamniphyllum. A new complex, namely the Berchemia Complex, is proposed based on morphology, molecular evidence, and the fossil record. This complex contains the fossil leaves of Rhamnidium, Karwinskia, Berchemia, and Berhamniphyllum. The historical biogeography of the Berchemia Complex is also discussed in this paper. This complex might have originated in the late Cretaceous in Colombia, South America, and dispersed to North America via Central America during the Eocene. Subsequently, the complex moved from North America to East Asia via the Bering Land Bridge no later than the late Eocene. Besides, the complex migrated from North America to Europe via the North Atlantic Land Bridge and then migrated further to Africa. In East Asia, it first appeared in Markam on the Qinghai-Tibetan Plateau, and then dispersed to other regions of Asia.


Funded by

the Strategic Priority Research Program of CAS(Grant,Nos.,XDA2007030102,&,XDB26000000)

the NSFC(the,National,Natural,Science,Foundation,of,China)

CAS(Grant,No.,2019QZKK0705)

Youth Innovation Promotion Association

CAS(Grant,No.,2017439)

Key Research Program of Frontier Sciences

CAS(Grant,No.,QYZDB-SSW-SMC016)


Acknowledgment

We thank colleagues from Xishuangbanna Tropical Botanical Garden (XTBG), Chinese Academy of Sciences (CAS), and Kunming Institute of Botany, CAS for field work; Tibetan villagers from Kajun village for their kind help during field work; Dr. Gongle Shi for photographing fossil from Xiaolongtan flora; Prof. Lutz Kunzmann, Ms. Yuqing Wang and Prof. Steven Manchester for providing literature; Dr. Linbo Jia and Prof. Steven Manchester for discussion and comments; the Public Technology Service Center, XTBG, CAS for providing microscopes and experimental facilities; Teresa Spicer for improving the English manuscript. We are also grateful to two anonymous reviewers for their constructive advices. This study was supported by the Strategic Priority Research Program of CAS (Grant Nos. XDA2007030102 & XDB26000000), the NSFC (the National Natural Science Foundation of China)-NERC (Natural Environment Research Council of the United Kingdom) joint research program (Grant Nos. 41661134049 & NE/P013805/1); The Second Tibetan Plateau Scientific Expedition and Research Program (STEP), CAS (Grant No. 2019QZKK0705), Youth Innovation Promotion Association, CAS (Grant No. 2017439) and Key Research Program of Frontier Sciences, CAS (Grant No. QYZDB-SSW-SMC016).


References

[1] Ai K K, Shi G L, Zhang K X, Ji J L, Song B W, Shen T Y, Guo S X. The uppermost Oligocene Kailas flora from southern Tibetan Plateau and its implications for the uplift history of the southern Lhasa terrane. Palaeogeogr Palaeoclimatol Palaeoecol, 2019, 515: 143-151 CrossRef ADS Google Scholar

[2] Basinger J F, Dilcher D L. Ancient bisexual flowers. Science, 1984, 224: 511-513 CrossRef PubMed ADS Google Scholar

[3] Becker H F. 1969. Fossil plants of the Tertiary Beaverhead Basins in souothwestern Montana. Palaeontogr Abt B, 127: 1–142. Google Scholar

[4] Berry E W. 1916a. The lower Eocene floras of southeastern North America. US Geol Surv Prof Pap, 91: 1–149. Google Scholar

[5] Berry E W. 1916b. The physical conditions indicated by the flora of the Calvert formation. US Geol Surv Prof Pap, 98: 61–73. Google Scholar

[6] Bozukov V. 2000. Miocene macroflora of the Satovcha Graben (Western Rhodopes). Phytol Balcan, 5: 15–30. Google Scholar

[7] Bozukov V, Palamarev E, Petkova A. 2008. The fossil macroflora of the Vulche Pole Molasse formation (SE Bulgaria). Phytol Balcan, 14: 173–184. Google Scholar

[8] Büchler W. 1990. Eine fossile Flora aus dem oberen Oligozän von Ebnat-Kappel. Bot Helv, 100: 133–166. Google Scholar

[9] Chaney R W, Hu H H. 1940. A Miocene Flora from Shantung Province, China. Washington: Publication of Carnegie Institute. 1–507. Google Scholar

[10] Chen Y, Schirarend C. 2007. Rhamnaceae. In: Wu Z Y, Raven P H, Hong D Y, eds. Flora of China. Beijing: Science Press. St. Louis: Missouri Botanical Garden Press. 12: 115–168. Google Scholar

[11] Collinson M E, Andrews P, Bamford M K. Taphonomy of the early miocene flora, Hiwegi formation, Rusinga Island, Kenya. J Human Evol, 2009, 57: 149-162 CrossRef PubMed Google Scholar

[12] Collinson M E, Manchester S R, Wilde V. 2012. Fossil fruits and seeds of the Middle Eocene Messel biota, Germany. Abh Senckenb Ges Naturforsch, 570: 1–251. Google Scholar

[13] Correa E, Jaramillo C, Manchester S, Gutierrez M. A fruit and leaves of Rhamnaceous affinities from the late Cretaceous (Maastrichtian) of Colombia. Am J Bot, 2010, 97: 71-79 CrossRef PubMed Google Scholar

[14] Davis C C, Bell C D, Mathews S, Donoghue M J. Laurasian migration explains Gondwanan disjunctions: Evidence from Malpighiaceae. Proc Natl Acad Sci USA, 2002, 99: 6833-6837 CrossRef PubMed ADS Google Scholar

[15] Denk T, Grímsson F, Zetter R. Episodic migration of oaks to Iceland: Evidence for a North Atlantic “land bridge” in the latest Miocene. Am J Bot, 2010, 97: 276-287 CrossRef PubMed Google Scholar

[16] Deng T, Wang X, Wu F, Wang Y, Li Q, Wang S, Hou S. Review: Implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau. Glob Planet Change, 2019, 174: 58-69 CrossRef ADS Google Scholar

[17] Dilcher D L, Lott T A. 2005. A middle Eocene fossil plant assemblage (Powers Clay Pit) from western Tennessee. Bull Florida Museum Nat Hist, 45: 1–43. Google Scholar

[18] Ding L, Spicer R A, Yang J, Xu Q, Cai F, Li S, Lai Q, Wang H, Spicer T E V, Yue Y, Shukla A, Srivastava G, Khan M A, Bera S, Mehrotra R. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 2017, 45: 215-218 CrossRef ADS Google Scholar

[19] Dong W, Qi G. 2013. Hominoid-producing localities and biostratigraphy in Yunnan. In: Wang X M, Flynn L J, Fortelius M, eds. Fossil Mammals of Asia—Neogene Biostratigraphy and Chronology. New York: Colombia University Press. 293–313. Google Scholar

[20] Donoghue M J, Smith S A. 2004. Patterns in the assembly of temperate forest around the Northern Hemisphere. Phil Trans R Soc Lond B, 359: 1633–1644. Google Scholar

[21] Ellis B, Daly D C, Hickey L J, Johnson K R, Mitchell J D, Wilf P, Wing S L. 2009. Manual of Leaf Architecture. Ithaca: Cornell University Press. Google Scholar

[22] Flora of North America Editorial Committee, eds. 1993+. Flora of North America North of Mexico. 19+ vols. New York: Oxford University Press. Google Scholar

[23] Givulescu R. 1996. Flora Oligocena Superioara din Bazinul Petrosani. Casa Cartii de Stiinta, Cluj-Napoca, 1–177. Google Scholar

[24] Guo S X. 2011. The late Miocene Bangmai flora from Lincang county of Yunnan, southwestern China (in Chinese with English Abstract). Acta Palaeontol Sin, 50: 353–408. Google Scholar

[25] Guo Z T, Sun B, Zhang Z S, Peng S Z, Xiao G Q, Ge J Y, Hao Q Z, Qiao Y S, Liang M Y, Liu J F, Yin Q Z, Wei J J. A major reorganization of Asian climate by the early Miocene. Clim Past, 2008, 4: 153-174 CrossRef Google Scholar

[26] Hauenschild F, Favre A, Michalak I, Muellner-Riehl A N. The influence of the Gondwanan breakup on the biogeographic history of the ziziphoids (Rhamnaceae). J Biogeogr, 2018, 45: 2669-2677 CrossRef Google Scholar

[27] Hantke R. 1954. Die fossile Flora der obermiozänen Oehninger-Fundstelle Schrotzburg (Schienerberg, Süd-Baden). Doctoral Dissertation. Zürich: ETH Zürich. Google Scholar

[28] Heer O. 1855–1859. Flora Tertiaria Helveticae. Die Tertiäre flora der Schweiz. Winterthur: J. Wurster and Compagnie. Google Scholar

[29] Huang J. 2017. The middle Miocene Wenshan flora, Yunnan, southwestern China and its palaeoenvironment reconstruction. Doctoral Dissertation (in Chinese). Xishuangbanna: Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences. Google Scholar

[30] Ishida S. 1970. The Noroshi Flora of Noto Peninsula, Central Japan. Memoirs of the Faculty of Science Kyoto University, Series of Geology and Mineralogy, 37: 1–112. Google Scholar

[31] Iturralde-Vinent M A, MacPhee R D E. 1999. Paleogeography of the Caribbean region: Implications for Cenozoic biogeography. Bull Am Mus Nat Hist, 238: 1–95. Google Scholar

[32] Jia L B, Manchester S R, Su T, Xing Y W, Chen W Y, Huang Y J, Zhou Z K. First occurrence of Cedrelospermum (Ulmaceae) in Asia and its biogeographic implications. J Plant Res, 2015, 128: 747-761 CrossRef PubMed Google Scholar

[33] Jia L B, Su T, Huang Y J, Wu F X, Deng T, Zhou Z K. First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai-Tibetan Plateau: Implications for morphological evolution and biogeography. Jnl Sytemat Evol, 2019, 57: 94-104 CrossRef Google Scholar

[34] Jiang H, Su T, Wong W O, Wu F, Huang J, Shi G. Oligocene Koelreuteria (Sapindaceae) from the Lunpola Basin in central Tibet and its implication for early diversification of the genus. J Asian Earth Sci, 2019, 175: 99-108 CrossRef ADS Google Scholar

[35] Jones J H, Dilcher D L. Investigations of angiosperms from the Eocene of North America: Rhamnus marginatus (Rhamnaceae) reexamined. Am J Bot, 1980, 67: 959-967 CrossRef Google Scholar

[36] Jung W. 1968. Pflanzenreste aus dem Jungtertiär Nieder-und Oberbayerns und deren lokalstratigraphische Bedeutung. Ber Naturwiss Ver Langshut, 25: 43–71. Google Scholar

[37] Köecke V, Uhl D. 2015. The leaf assemblage from the Early-Middle Miocene locality Sulzigtobel near Werthenstein (Canton Lucerne, Switzerland). Phytol Balcan, 21: 99–109. Google Scholar

[38] Kovar-Eder J. Early Oligocene plant diversity along the Upper Rhine Graben: The fossil flora of Rauenberg, Germany. Acta Palaeobot, 2016, 56: 329-440 CrossRef Google Scholar

[39] Kubitzki K. 2004. The Families and Genera of Vascular Plants. Vol. 6. Flowering Plants—Dicotyledons: Celastrales, Oxalidales, Rosales, Cornales, Ericales. Berlin: Springer. Google Scholar

[40] Lazarević Z, Milivojević J, Bogićević K, Nenadić D. Early Miocene flora from the Valjevo-Mionica Basin (Western Serbia). N J Geol Pal A, 2013, 267: 297-307 CrossRef Google Scholar

[41] Lebreton-Anberrée J, Li S, Li S F, Spicer R A, Zhang S T, Su T, Deng C, Zhou Z K. Lake geochemistry reveals marked environmental change in Southwest China during the Mid Miocene Climatic Optimum. Chin Sci Bull, 2016, 61: 897-910 CrossRef Google Scholar

[42] de León P V, Cevallos-Ferriz S R, Silva-Pineda A. Leaves of Karwinskia axamilpense sp. nov. (Rhamnaceae) from Oligocene sediments, near Tepexi de Rodríguez, Puebla, Mexico. Can J Bot, 1998, 76: 410-419 CrossRef Google Scholar

[43] Li S F, Mao L M, Spicer R A, Lebreton-Anberrée J, Su T, Sun M, Zhou Z K. Late Miocene vegetation dynamics under monsoonal climate in southwestern China. Palaeogeogr Palaeoclimatol Palaeoecol, 2015, 425: 14-40 CrossRef ADS Google Scholar

[44] Li S H, Deng C L, Dong W, Sun L, Liu S Z, Qin H F, Yin J Y, Ji X P, Zhu R X. Magnetostratigraphy of the Xiaolongtan Formation bearing Lufengpithecus keiyuanensis in Yunnan, southwestern China: Constraint on the initiation time of the southern segment of the Xianshuihe-Xiaojiang fault. Tectonophysics, 2015, 655: 213-226 CrossRef ADS Google Scholar

[45] Liu J, Su T, Spicer R A, Tang H, Deng W Y D, Wu F X, Srivastava G, Spicer T, Van Do T, Deng T, Zhou Z K. Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene. Palaeogeogr Palaeoclimatol Palaeoecol, 2019, 524: 33-40 CrossRef ADS Google Scholar

[46] Macaluso L, Martinetto E, Vigna B, Bertini A, Cilia A, Teodoridis V, Kvaček Z. Palaeofloral and stratigraphic context of a new fossil forest from the Pliocene of NW Italy. Rev Palaeobot Palynol, 2018, 248: 15-33 CrossRef Google Scholar

[47] MacPhee R D E, Iturralde-Vinent M A. 1995. Origin of the Great Antillean land mammals, 1: New Tertiary fossils from Cuba and Puerto Rico. Am Mus Novitates, 3141: 1–31. Google Scholar

[48] Manchester S R. 2000. Late Eocene fossil plants of the John Day Formation, Wheeler County, Oregon. Oregon Geol, 62: 51–63. Google Scholar

[49] Myers J A, Kester P R, Retallack G J. 2002. Paleobotanical record of Eocene-Oligocene climate and vegetational change near Eugene, Oregon. Oregon Dep Geol Min Ind Spec Pap, 36: 145–154. Google Scholar

[50] Myers N, Mittermeier R A, Mittermeier C G, da Fonseca G A B, Kent J. Biodiversity hotspots for conservation priorities. Nature, 2000, 403: 853-858 CrossRef PubMed Google Scholar

[51] Ozaki K. 1980. Late Miocene Tatsumitoge flora of Tottori Prefecture, Southwest Honshu, Japan (III). Sci Rep Yokohama Natl Univ, 27: 19–45. Google Scholar

[52] Ozaki K. 1991. Late Miocene and Pliocene Floras in Central Honshu, Japan. Bulletin of Kanagawa Prefectural Museum Natural Science Special Issue. Yokohama: Kanagawa Prefectural Museum. 1–244. Google Scholar

[53] Palgrave K C. 2015. Palgrave’s Trees of Southern Africa. 3rd ed. Cape Town: Struik Publishers. Google Scholar

[54] Prasad M, Dwivedi H D. 2007. Systematic study of the leaf impressions from the Churia Formation of Koilabas area, Nepal and their significance. Palaeobotanist, 56: 139–154. Google Scholar

[55] Retallack G J. Middle Miocene fossil plants from Fort Ternan (Kenya) and evolution of African grasslands. Paleobiology, 1992, 18: 383-400 CrossRef Google Scholar

[56] Richardson J E, Fay M F, Cronk Q C B, Chase M W. a revision of the tribal classification of rhamnaceae. Kew Bull, 2000, 55: 311-340 CrossRef Google Scholar

[57] Sakala J. 2000. Flora and vegetation of the roof of the main lignite seam in the Bilina Mine (Most Basin, Lower Miocene). Acta Mus Nat Pragae Ser B Hist Nat, 56: 49–84. Google Scholar

[58] Singh S K, Prasad M. 2007. Late Tertiary leaf flora of mahuadanr valley, Jharkhand. J Palaeontol Soc India, 52: 175–194. Google Scholar

[59] Smiley C J, Gray J, Huggins L M. 1975. Preservation of Miocene fossils in unoxidized lake deposits, Clarkia, Idaho. J Paleontol, 49: 833–844. Google Scholar

[60] Spicer R A. Tibet, the Himalaya, Asian monsoons and biodiversity—In what ways are they related?. Plant Divers, 2017, 39: 233-244 CrossRef PubMed Google Scholar

[61] Spitzelberger V G. 1989. Die Miozänfundstelle Goldern bei Landshut (Niederbayern). Geol Bavarica, 94: 371–407. Google Scholar

[62] Su T, Wilf P, Xu H, Zhou Z K. Miocene leaves of Elaeagnus (Elaeagnaceae) from the Qinghai-Tibet Plateau, its modern center of diversity and endemism. Am J Bot, 2014, 101: 1350-1361 CrossRef PubMed Google Scholar

[63] Su T, Li S F, Tang H, Huang Y J, Li S H, Deng C L, Zhou Z K. Hemitrapa Miki (Lythraceae) from the earliest Oligocene of southeastern Qinghai-Tibetan Plateau and its phytogeographic implications. Rev Palaeobot Palynol, 2018, 257: 57-63 CrossRef Google Scholar

[64] Su T, Farnsworth A, Spicer R A, Huang J, Wu F X, Liu J, Li S F, Xing Y W, Huang Y J, Deng W Y D, Tang H, Xu C L, Zhao F, Srivastava G, Valdes P J, Deng T, Zhou Z K. No high Tibetan Plateau until the Neogene. Sci Adv, 2019a, 5: eaav2189 CrossRef PubMed ADS Google Scholar

[65] Su T, Spicer R A, Li S H, Xu H, Huang J, Sherlock S, Huang Y J, Li S F, Wang L, Jia L B, Deng W Y D, Liu J, Deng C L, Zhang S T, Valdes P J, Zhou Z K. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet. Natl Sci Rev, 2019b, 6: 495-504 CrossRef Google Scholar

[66] Suessenguth K. 1953. Rhamnaceae. In: Engler A, Prantl K, eds. Die natiirlichen Pflanzenfamilien. 2nd ed. Berlin: Dunker et Humboldt. Google Scholar

[67] Sun X J, Wang P X. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 222: 181-222 CrossRef ADS Google Scholar

[68] Tang H, Liu J, Wu F X, Spicer T, Spicer R A, Deng W Y D, Xu C L, Zhao F, Huang J, Li S F, Su T, Zhou Z K. Extinct genus Lagokarpos reveals a biogeographic connection between Tibet and other regions in the Northern Hemisphere during the Paleogene. J Syt Evol, 2019, 18: jse.12505 CrossRef Google Scholar

[69] Tao J R, Chen M H. 1983. Cenozoic flora of southern Hengduan Mountain-Lincang, Yunnan. In: The CAS Scientific Expedition to the Tibetan Plateau, eds. Hengduan Mountain Investigation Collection (I) (in Chinese). Kunming: Yunnan People’s Publishing House. 74–89. Google Scholar

[70] Taylor T N, Taylor E L, Krings M. 2008. Paleobotany: The Biology and Evolution of Fossil Plants. 2nd ed. New York: Academic Press. 1230. Google Scholar

[71] Teodoridis V. 2007. Revision of Potamogeton fossils from the Most Basin and their palaeoecological significance (Early Miocene, Czech Republic). Bull Geosci, 82: 409–418. Google Scholar

[72] Tiffney B H, Manchester S R. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern hemisphere tertiary. Int J Plant Sci, 2001, 162: S3-S17 CrossRef Google Scholar

[73] Wang W M. 1996. A palynological survey of Neogene strata in Xiaolongtan Basin, Yunnan Province of south China (in Chinese with English Abstract). Bull Bot, 38: 743–748. Google Scholar

[74] Writing Group of Cenozoic Plants of China (WGCPC). 1978. Cenozoic plants from China, Fossil Plants of China (in Chinese). Vol. 3. Beijing: Science Press. Google Scholar

[75] Wu F X, Miao D S, Chang M M, Shi G L, Wang N. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the late Oligocene. Sci Rep, 2017, 7: 878 CrossRef PubMed ADS Google Scholar

[76] Wu J Y. 2009. The Pliocene Tuantian flora of Tengchong, Yunnan Province and its paleoenvironmental analysis (in Chinese). Doctoral Dissertation. Lanzhou: Lanzhou University. Google Scholar

[77] Wu Z Y, Zhou Z K, Sun H, Li D Z, Peng H. 2006. The Areal-Types of Seed Plants and Their Origin and Differentiation (in Chinese). Kunming: Yunnan Science and Technology Press. 566. Google Scholar

[78] Xu C L, Su T, Huang J, Huang Y J, Li S F, Zhao Y S, Zhou Z K. Occurrence of Christella (Thelypteridaceae) in Southwest China and its indications of the paleoenvironment of the Qinghai-Tibetan Plateau and adjacent areas. J Syt Evol, 2019, 57: 169-179 CrossRef Google Scholar

[79] Xu H, Su T, Zhang S T, Deng M, Zhou Z K. The first fossil record of ring-cupped oak (Quercus L. subgenus Cyclobalanopsis (Oersted) Schneider) in Tibet and its paleoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol, 2016, 442: 61-71 CrossRef ADS Google Scholar

[80] Xu H, Su T, Zhou Z K. Leaf and infructescence fossils of Alnus (Betulaceae) from the late Eocene of the southeastern Qinghai-Tibetan Plateau. J Syt Evol, 2019, 57: 105-113 CrossRef Google Scholar

[81] Yabe A. 2008. Early Miocene terrestrial climate inferred from plant megafossil assemblages of the Joban and Soma areas, Northeast Honshu, Japan. Bull Geol Surv Jpn, 59: 397–413. Google Scholar

[82] Zhou Z K. 1985. The Miocene Xiaolongtan fossil flora in Kaiyuan, Yunnan, China (in Chinese). Master Dissertation. Nanjing: Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences. Google Scholar

[83] Zhou Z K, Yang X F, Yang Q S. Land bridge and long-distance dispersal—Old views, new evidence. Chin Sci Bull, 2006, 51: 1030-1038 CrossRef ADS Google Scholar

  • Figure 1

    Historical and modern distribution of Berchemia and resembling taxa.

  • Figure 2

    Fossil locality in Yunnan and Tibet, China.

  • Figure 3

    Berhamniphyllum fossils reported in this study and cleared leaf of extant species Berchemia longipes. (a)–(c) Berhamniphyllum junrongiae Z. K. Zhou, T. X. Wang et J. Huang sp. nov., (a) MK3-1491, scale bar=1 cm; (b) Details of MK3-1491, S, secondary veins; IS, inter secondary veins; PT, percurrent tertiary veins; DT, dichotomous tertiary veins, scale bar=0.5 cm; (c) MK3-2155, scale bar=0.5 cm. (d)–(f) Berhamniphyllum miofloribundum (Hu et Chaney) J. Huang, T. Su et Z. K. Zhou comb. nov., (d) DMS-1713, scale bar=0.5 cm; (e) DMS-3872, scale bar=0.5 cm; (f) PB12519, scale bar=0.5 cm. (g) Line drawing of MK3-1491, scale bar=0.5 cm; (h) Cleared leaf of Berchemia longipes, scale bar=1 cm.

  • Figure 4

    Specimens of Berchemia, Karwinsia and Rhamnidium. (a) Berchemia longipes, photograghed from Xishuangbanna Tropical Botanical Garden, CAS, leaves alternate; (b) Karwinskia calderonii, scale bar=5 cm, extracted from JSTOR, leaves opposite; (c) Rhamnidium caloneurum, scale bar=5 cm, extracted from JSTOR, leaves opposite.

  • Figure 5

    Hypothesized migration route modified from Jia et al. (2015).

  • Table 1   Fossil record of

    Species

    Organ

    Age

    Locality

    Reference

    Berchemia mellerae

    Endocarp

    Middle Eocene

    Messel, Germany

    Collinson et al., 2012

    B. sp

    Leaf

    Late Eocene

    Wheeler County, Oregon, USA

    Manchester, 2000

    B. altorhenana

    Leaf

    Early Oligocene

    Rauenberg, Germany

    Kovar-Eder, 2016

    B. multinervis

    Leaf

    Late Oligocene

    Ebnat-Kappel, Switzerland

    Büchler, 1990

    B. multinervis

    Leaf

    Late Oligocene

    Vulche Pole Molasse Formation, SE Bulgaria

    Bozukov et al., 2008

    B. multinervis

    Leaf

    Late Oligocene

    Petrosani Basin, Romania

    Givulescu, 1996

    B. huanoides

    Leaf

    Late Oligocene

    Beaverhead County, Montana, USA

    Becker, 1969

    B. multinervis

    Leaf

    Miocene

    Western Rhodopes, Bulgaria

    Bozukov, 2000

    B. priscaformis

    Leaf

    Miocene

    South Caroline, USA

    Berry, 1916b

    B. sp

    Leaf

    Miocene

    Clarkia, Idaho, USA

    Smiley et al., 1975

    B. pseudodiscolor

    Seed

    Early Miocene

    Rusinga Island, Kenya

    Collinson et al., 2009

    B. acutangula

    Leaf

    Early Miocene

    Goldern, Bavaria

    Spitzelberger, 1989

    B. miofloribunda

    Leaf

    Early Miocene

    Honshu, Japan

    Yabe, 2008

    B. multinervis

    Leaf

    Early Miocene

    Valjevo-Mionica Basin, Serbia

    Lazarević et al., 2013

    B. multinervis

    Leaf

    Early Miocene

    Most Basin, Czech

    Sakala, 2000; Teodoridis, 2007

    B. multinervis

    Leaf

    Early-middle Miocene

    Canton Lucerne, Switzerland

    Köecke and Uhl, 2015

    B. pseudodiscolor

    exocarp

    Middle Miocene

    Fort Ternan, Kenya

    Retallack, 1992

    B. miofloribunda

    Leaf

    Middle Miocene

    Noto Peninsula, Japan

    Ishida, 1970

    B. nepalensis

    Leaf

    Middle Miocene

    Koilabas, Nepal

    Prasad and Dwivedi, 2007

    B. multinervis

    Leaf

    Late Miocene

    Lerch, Bavaria

    Jung, 1968

    B. multinervis

    Leaf

    Late Miocene

    Oehingen, Switzerland

    Hantke, 1954; Heer, 1855–1859

    B. miofloribunda

    Leaf

    Late Miocene

    Honshu, Japan

    Ozaki, 1980

    B. miofloribunda

    Leaf

    Late Miocene

    Honshu, Japan

    Ozaki, 1991

    B. calymmatophyllua

    Leaf

    Late Miocene

    Lincang, Yunnan Province, China

    Guo, 2011

    B. miofloribunda

    Leaf

    Pliocene

    Tuantian, Yunnan Province, China

    Wu, 2009

    B. cf. yunnanensis

    Leaf

    Pliocene

    Tuantian, Yunnan Province, China

    Wu, 2009

    B. multinervis

    Leaf

    Pliocene

    Fossano, Italy

    Macaluso et al., 2018

    B. floribunda

    Leaf

    LateTertiary

    Jharkhand, India

    Singh and Prasad, 2007

  • Table 2   Fossil records of affinities

    Species

    Age

    Locality

    Reference

    Berhamniphyllum sp.

    Late Cretaceous

    Paz de Río, Boyacá, Columbia

    Correa et al., 2010

    Berhamniphyllum claibornense

    Early Eocene

    Puryear County and Henry County, Tennessee;Graves County, Kentucky

    Berry, 1916a; Jones and Dilcher, 1980

    Berhamniphyllum claibornense

    Middle Eocene

    Powers Pit, Western Tennessee

    Dilcher and Lott, 2005

    Berhamniphyllum sp.

    Middle Eocene

    Powers Pit, Western Tennessee

    Dilcher and Lott, 2005

    Berhamniphyllum sp.

    Late Eocene

    The Willamette flora, Oregon

    Myers et al., 2002

    Berhamniphyllum junrongiae

    Late Eocene

    Markam, Tibet, China

    This study

    Karwinskia axamilpense

    Oligocene

    Puebla, Mexico

    de León et al., 1998

    Berhamniphyllum miofloribundum

    Miocene

    Shanwang, Shandong Province, China; Wenshanand Xiaolongtan, Yunnan Province, China

    WGCPC, 1978; Zhou, 1985;Huang, 2017; this study

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1