logo

SCIENCE CHINA Earth Sciences, Volume 63, Issue 2: 202-211(2020) https://doi.org/10.1007/s11430-019-9479-1

Paleogene mammalian fauna exchanges and the paleogeographic pattern in Asia

More info
  • ReceivedMay 30, 2019
  • AcceptedSep 2, 2019
  • PublishedNov 7, 2019

Abstract

Mammals are the most important elements in Cenozoic terrestrial ecosystem. The composition and the character of a mammalian fauna are controlled by evolution time and evolutionary rate. Here we took 50 Asian Paleogene mammalian faunas as representatives and applied Bayesian Tip-dating method to infer the relationships and divergence times among these faunas. Based on the results of Bayesian Tip-dating analyses, we discussed the correlation between the paleogeographic changes and the mammalian fauna turn-overs. Compared with the traditional fauna correlation and sorting, Bayesian Tip-dating analyses revealed more detailed similarities reflected via the divergence times among the 50 faunas. We discovered that the early Eocene mammalian fauna, which firstly appeared in India subcontinent, is similar to the faunas of the same age in other parts of Asia. It is likely that a passage for the mammalian dispersal was formed before early Eocene. Bayesian inferring suggests that the first appearance of the dispersal passage is during 64.8–61.3 Ma. This time window is close to the time estimation for the initial time of India-Asia collision. During 57.1–47.2 Ma, India subcontinent probably had a habitat different from the main part of Asia, as it was reflected from the composition of the mammalian faunas. It is probably correlated with the uplifted Gangdese Mountain and shallow seas and lowlands on both sides of the collision region. The very remote divergence time (64.8 Ma) estimated by Bayesian inferring reflects the mammalian fauna turnover during the Eocene-Oligocene transition, obviously affected by the global cooling. Till the end of Oligocene, the Arabic Peninsula and Asian mainland remained separated and the mammalian faunas did not show clear connection.


Funded by

the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant,Nos.,XDA20070203,XDA19050100,&,CAS,XDB26030300)

the National Natural Science Foundation of China(Grant,Nos.,41472025,&,41625005)


Acknowledgment

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA20070203, XDA19050100 & XDB26030300) and the National Natural Science Foundation of China (Grant Nos. 41472025 & 41625005).


References

[1] Aguilar J P, Legendre S, Michaux J. 1997. Actes du Congrès Biochrom’97. vol 21. Montpellier: Institut de Montpellier. 817. Google Scholar

[2] Bapst D W, Wright A M, Matzke N J, Lloyd G T. Topology, divergence dates, and macroevolutionary inferences vary between different tip-dating approaches applied to fossil theropods (Dinosauria). Biol Lett, 2016, 12: 20160237 CrossRef PubMed Google Scholar

[3] Beard K C. The oldest North American primate and mammalian biogeography during the Paleocene-Eocene Thermal Maximum. Proc Natl Acad Sci USA, 2008, 105: 3815-3818 CrossRef PubMed ADS Google Scholar

[4] Beard K C, Dawson M R. Early Wasatchian mammals of the Red Hot local fauna, uppermost Tuscahoma Formation, Lauderdale County, Mississippi. Ann Carnegie Museum, 2009, 78: 193-243 CrossRef Google Scholar

[5] Ding L, Kapp P, Wan X. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 2005, 24: TC3001 CrossRef ADS Google Scholar

[6] Ding L, Qasim M, Jadoon I A K, Khan M A, Xu Q, Cai F, Wang H, Baral U, Yue Y. The India-Asia collision in north Pakistan: Insight from the U-Pb detrital zircon provenance of Cenozoic foreland basin. Earth Planet Sci Lett, 2016, 455: 49-61 CrossRef ADS Google Scholar

[7] Ding L, Maksatbek S, Cai F L, Wang H Q, Song P P, Ji W Q, Xu Q, Zhang L Y, Muhammad Q, Upendra B. Processes of initial collision and suturing between India and Asia. Sci China Earth Sci, 2017a, 60: 635-651 CrossRef Google Scholar

[8] Ding L, Spicer R A, Yang J, Xu Q, Cai F, Li S, Lai Q, Wang H, Spicer T E V, Yue Y, Shukla A, Srivastava G, Khan M A, Bera S, Mehrotra R. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 2017b, 45: 215-218 CrossRef ADS Google Scholar

[9] Ding L, Xu Q, Yue Y, Wang H, Cai F, Li S. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin. Earth Planet Sci Lett, 2014, 392: 250-264 CrossRef ADS Google Scholar

[10] Drummond A J, Ho S Y W, Phillips M J, Rambaut A, Penny D. Relaxed phylogenetics and dating with confidence. PLoS Biol, 2006, 4: e88 CrossRef PubMed Google Scholar

[11] Fischer A G. Latitudinal variations in organic diversity. Evolution, 1960, 14: 64-81 CrossRef Google Scholar

[12] Gavryushkina A, Heath T A, Ksepka D T, Stadler T, Welch D, Drummond A J. 2017. Bayesian total-evidence dating reveals the recent crown radiation of penguins. Systemat Biol, 66: 57–73. Google Scholar

[13] Gunnell G F, Murphey P C, Stucky R K, Townsend K E B, Robinson P, Zonneveld J P, Bartels W S. 2009. Biostratigraphy and biochronology of the latest Wasatchian, Bridgerian, and Uintain North American Land Mammal “Ages”. In: Albright III L B, ed. Papers and Geology, Vertebrate Paleontology, and Biostratigraph in Honor of Michael O. Woodburne. Flagstaff: Museum of Northern Arizona. 279–330. Google Scholar

[14] Hastings W K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 1970, 57: 97-109 CrossRef ADS Google Scholar

[15] Hu X, Garzanti E, Wang J, Huang W, An W, Webb A. The timing of India-Asia collision onset—Facts, theories, controversies. Earth-Sci Rev, 2016, 160: 264-299 CrossRef Google Scholar

[16] Hu X M, Wang J G, An W, Garzanti E, Li J. Constraining the timing of the India-Asia continental collision by the sedimentary record. Sci China Earth Sci, 2017, 60: 603-625 CrossRef Google Scholar

[17] Huelsenbeck J P, Larget B, Swofford D. 2000. A compound poisson process for relaxing the molecular clock. Genetics, 154: 1879. Google Scholar

[18] Hutchinson G E. Homage to santa rosalia or why are there so many kinds of animals?. Am Natist, 1959, 93: 145-159 CrossRef Google Scholar

[19] King B, Qiao T, Lee M S Y, Zhu M, Long J A. Bayesian morphological clock methods resurrect placoderm monophyly and reveal rapid early evolution in jawed vertebrates. Syst Biol, 2016, 159: syw107 CrossRef PubMed Google Scholar

[20] Kishino H, Thorne J L, Bruno W J. Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol Biol Evol, 2001, 18: 352-361 CrossRef PubMed Google Scholar

[21] Kraatz B P, Geisler J H. Eocene-Oligocene transition in Central Asia and its effects on mammalian evolution. Geology, 2010, 38: 111-114 CrossRef ADS Google Scholar

[22] Lee M S Y. Multiple morphological clocks and total-evidence tip-dating in mammals. Biol Lett, 2016, 12: 20160033 CrossRef PubMed Google Scholar

[23] Lee M S Y, Cau A, Naish D, Dyke G J. Morphological clocks in paleontology, and a mid-Cretaceous origin of crown aves. Syst Biol, 2014, 63: 442-449 CrossRef PubMed Google Scholar

[24] Lepage T, Bryant D, Philippe H, Lartillot N. A general comparison of relaxed molecular clock models. Mol Biol Evol, 2007, 24: 2669-2680 CrossRef PubMed Google Scholar

[25] Lewis P O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. System Biol, 50: 913–925. Google Scholar

[26] Li Q, Ni X. An early Oligocene fossil demonstrates treeshrews are slowly evolving “living fossils”. Sci Rep, 2016, 6: 18627 CrossRef PubMed ADS Google Scholar

[27] MacArthur R H. 1972. Geographical Ecology: Patterns in the Distribution of Species. New York: Harper & Row. 269. Google Scholar

[28] MacLeod K G, Quinton P C, Sepúlveda J, Negra M H. Postimpact earliest Paleogene warming shown by fish debris oxygen isotopes (El Kef, Tunisia). Science, 2018, 360: 1467-1469 CrossRef PubMed ADS Google Scholar

[29] Matzke N J, Wright A. Inferring node dates from tip dates in fossil Canidae: The importance of tree priors. Biol Lett, 2016, 12: 20160328 CrossRef PubMed Google Scholar

[30] Meng J, McKenna M C. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature, 1998, 394: 364-367 CrossRef ADS Google Scholar

[31] Meng J, Ni X, Li C, Beard K C, Gebo D L, Wang Y, Wang H. New material of Alagomyidae (Mammalia, Glires) from the late Paleocene Subeng locality, Inner Mongolia. Am Museum Novitates, 2007, 3597: 1-29 CrossRef Google Scholar

[32] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, Teller E. Equation of state calculations by fast computing machines. J Chem Phys, 1953, 21: 1087-1092 CrossRef ADS Google Scholar

[33] Missiaen P, Gingerich P D. New Early Eocene tapiromorph perissodactyls from the Ghazij Formation of Pakistan, with implications for mammalian biochronology in Asia. Acta Palaeontol Pol, 2012, 57: 21-34 CrossRef Google Scholar

[34] Missiaen P, Gingerich P D. 2014. New basal perissodactyla (Mammalia) from the lower Eocene Ghazij Formation of Pakistan. Contributions from the Museum of Paleontology University of Michigan, 32: 139–160. Google Scholar

[35] Missiaen P, Gunnell G F, Gingerich P D. New Brontotheriidae (Mammalia, Perissodactyla) from the Early and Middle Eocene of Pakistan with implications for mammalian paleobiogeography. J Paleontol, 2011, 85: 665-677 CrossRef Google Scholar

[36] Ni X, Gebo D L, Dagosto M, Meng J, Tafforeau P, Flynn J J, Beard K C. The oldest known primate skeleton and early haplorhine evolution. Nature, 2013, 498: 60-64 CrossRef PubMed ADS Google Scholar

[37] Ni X, Hu Y, Wang Y, Li C. A clue to the Asian origin of euprimates. Anthropol Sci, 2005, 113: 3-9 CrossRef Google Scholar

[38] Ni X, Li Q, Li L, Beard K C. Oligocene primates from China reveal divergence between African and Asian primate evolution. Science, 2016a, 352: 673-677 CrossRef PubMed ADS Google Scholar

[39] Ni X, Li Q, Stidham T A, Li L, Lu X, Meng J. A late Paleocene probable metatherian (?deltatheroidan) survivor of the Cretaceous mass extinction. Sci Rep, 2016b, 6: 38547 CrossRef PubMed ADS Google Scholar

[40] Ni X, Qiu Z. The micromammalian fauna from the Leilao, Yuanmou hominoid locality: Implications for biochronology and paleoecology. J Human Evol, 2002, 42: 535-546 CrossRef PubMed Google Scholar

[41] O’Leary M A, Bloch J I, Flynn J J, Gaudin T J, Giallombardo A, Giannini N P, Goldberg S L, Kraatz B P, Luo Z X, Meng J, Ni X, Novacek M J, Perini F A, Randall Z S, Rougier G W, Sargis E J, Silcox M T, Simmons N B, Spaulding M, Velazco P M, Weksler M, Wible J R, Cirranello A L. The placental mammal ancestor and the Post-K-Pg radiation of placentals. Science, 2013, 339: 662-667 CrossRef PubMed ADS Google Scholar

[42] O’Reilly J E, Dos Reis M, Donoghue P C J. Dating tips for divergence-time estimation. Trends Genets, 2015, 31: 637-650 CrossRef PubMed Google Scholar

[43] Oliveira B F, Machac A, Costa G C, Brooks T M, Davidson A D, Rondinini C, Graham C H. Species and functional diversity accumulate differently in mammals. Glob Ecol Biogeogr, 2016, 25: 1119-1130 CrossRef Google Scholar

[44] Qiu Z, Qiu Z, Deng T, Li C, Zhang Z, Wang B, Wang X. 2013. Neogene land mammal stages/ages of China. In: Wang X, Flynn L J, Fortelius M, eds. Fossil Mammals of Asia. Neogene Biostratigraphy and Chronology. New York: Columbia University Press. 29–90. Google Scholar

[45] Rabosky D L. Ecological limits and diversification rate: Alternative paradigms to explain the variation in species richness among clades and regions. Ecol Lett, 2009, 12: 735-743 CrossRef PubMed Google Scholar

[46] Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray D L, Rasnitsyn A P. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst Biol, 2012a, 61: 973-999 CrossRef PubMed Google Scholar

[47] Ronquist F, Lartillot N, Phillips M J. Closing the gap between rocks and clocks using total-evidence dating. Phil Trans R Soc B, 2016, 371: 20150136 CrossRef PubMed Google Scholar

[48] Ronquist F, Teslenko M, van der Mark P, Ayres D L, Darling A, Höhna S, Larget B, Liu L, Suchard M A, Huelsenbeck J P. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol, 2012b, 61: 539-542 CrossRef PubMed Google Scholar

[49] Rose K D. 2006. The Beginning of the Age of Mammals. Baltimore: The Johns Hopkins University Press. 428. Google Scholar

[50] Rose K D, Rana R S, Sahni A, Kumar K, Missiaen P, Singh L, Smith T. Early Eocene Primates from Gujarat, India. J Human Evol, 2009, 56: 366-404 CrossRef PubMed Google Scholar

[51] Spicer R, Yang J, Herman A, Kodrul T, Aleksandrova G, Maslova N, Spicer T, Ding L, Xu Q, Shukla A, Srivastava G, Mehrotra R, Liu X Y, Jin J H. Paleogene monsoons across India and South China: Drivers of biotic change. Gondwana Res, 2017, 49: 350-363 CrossRef ADS Google Scholar

[52] Sun J, Ni X, Bi S, Wu W, Ye J, Meng J, Windley B F. Synchronous turnover of flora, fauna and climate at the Eocene-Oligocene Boundary in Asia. Sci Rep, 2015, 4: 7463 CrossRef PubMed ADS Google Scholar

[53] Thorne J L, Kishino H, Neilsen R. Divergence time and evolutionary rate estimation with multilocus data. Syst Biol, 2002, 51: 689-702 CrossRef PubMed Google Scholar

[54] Ting S, Tong Y, Clyde W C, Koch P L, Meng J, Wang Y, Bowen G J, Li Q, Snell K E. 2011. Asian early Paleogene chronology and mammalian faunal turnover events. Vert PalAsiat, 49: 1–28. Google Scholar

[55] Vandenberghe N, Hilgen F J, Speijer R P, Ogg J G, Gradstein F M, Hammer O, Hollis C J, Hooker J J. 2012. Chapter 28-The Paleogene Period. In: Gradstein F M, Ogg J G, Schmitz M, eds. The Geologic Time Scale. Boston: Elsevier. 855–921. Google Scholar

[56] Wiens J J, Pyron R A, Moen D S. Phylogenetic origins of local-scale diversity patterns and the causes of Amazonian megadiversity. Ecol Lett, 2011, 14: 643-652 CrossRef PubMed Google Scholar

[57] Woodburne M O. 2004. Late Cretaceous and Cenozoic Mammals of North America. Biostratigraphy and Geochronology. New York: Columbia University Press. 391. Google Scholar

[58] Wu F Y, Ji W Q, Wang J G, Liu C Z, Chung S L, Clift P D. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision. Am J Sci, 2014, 314: 548-579 CrossRef ADS Google Scholar

[59] Yang Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods. J Mol Evol, 1994, 39: 306-314 CrossRef PubMed ADS Google Scholar

[60] Yao T, Wu F, Ding L, Sun J, Zhu L, Piao S, Deng T, Ni X, Zheng H, Ouyang H. Multispherical interactions and their effects on the Tibetan Plateau’s earth system: A review of the recent researches. Natl Sci Rev, 2015, 2: 468-488 CrossRef Google Scholar

[61] Zhang C, Stadler T, Klopfstein S, Heath T A, Ronquist F. Total-evidence dating under the fossilized birth-death process. Syst Biol, 2016, 65: 228-249 CrossRef PubMed Google Scholar

[62] Zuckerkandl E, Pauling L. 1965. Evolutionary divergence and convergence in proteins. Evolv Genes Prot, 97: 97–166. Google Scholar

  • Figure 1

    Divergence times of Asian Paleogene mammalian faunas. Black bars indicate the age of the mammalian faunas; red dots and the numbers following the fauna names are the mammalian ages estimated by Bayesian inferring; blue lines indicate the cluster relationships among faunas; numbers at the internal nodes are the divergence times estimated by Bayesian inferring; red and blue transverse lines indicate the Paleocene-Eocene boundary and Eocene-Oligocene boundary respectively. Paled purple shadow indicates the time period when the dispersal passage was formed between India subcontinent and Asia mainland for the first time. Paled reddish shadow indicates the theoretical time period when special habitat probably was formed south to the Gangdese Mountain.

  • Table 1   Asian Paleogene mammalian faunas used for Bayesian Tip-dating analyses

    Asian land mammal age

    Mammalian fauna

    Region/country

    Age (Ma)

    Genusnumber

    Familynumber

    Ordernumber

    Tabenbulakian

    Anatolia V

    Turkey

    23.03–28.1

    11

    8

    4

    Bugti-Chitarwata Upper

    Pakistan

    23.03–28.1

    38

    15

    5

    Hsanda Gol Upper

    Mongolia

    23.03–28.1

    31

    15

    6

    Tabenbuluk-Yindirte

    Gansu

    23.03–28.1

    15

    10

    6

    Tieersihabahe

    Xinjiang

    23.03–28.1

    12

    11

    4

    Xianshuihe Upper

    Gansu

    23.03–28.1

    14

    8

    4

    Hsandagolian-Tabenbulakian

    Harrat Al Ujayfa

    Saudi Arabia

    23.03–33.9

    7

    4

    4

    Hsandagolian

    Anatolia IV

    Turkey

    28.1–33.9

    26

    10

    2

    Bugti-Chitarwata Lower

    Pakistan

    28.1–33.9

    30

    17

    4

    Hsanda Gol Lower

    Mongolia

    28.1–33.9

    60

    25

    8

    Keziletuogayi

    Xinjiang

    28.1–33.9

    14

    11

    4

    Qingshuiying-Ulantatal-Kekeamu-Wulanbulage

    Ningxia-Inner Mongolia

    28.1–33.9

    59

    25

    8

    Tabenbuluk-Dingdanggou

    Gansu

    28.1–33.9

    10

    9

    4

    Taqah-Thaytiniti

    Oman

    28.1–33.9

    20

    13

    6

    Xianshuihe Lower-Xiagu

    Gansu

    28.1–33.9

    17

    13

    5

    Ulangochuian-Ergilian

    Caijiachong-Xiaotun-Shinao

    Yunnan-Guizhou

    33.9–38

    13

    7

    3

    Ergilin

    Mongolia

    33.9–38

    37

    22

    10

    Gongkang-Yongning

    Guangxi

    33.9–38

    12

    9

    4

    Krabi

    Thailand

    33.9–38

    22

    11

    6

    Ulan Gocho-Houldjin-Erden Obo

    Inner Mongolia

    33.9–38

    40

    22

    8

    Sharamurunian

    Heti Zhaili-Chugouyu

    Henan

    38–41

    20

    16

    6

    Nadu-Dongjun

    Guangxi

    38–41

    25

    15

    5

    Pondaung

    Myanmar

    38–41

    35

    19

    6

    Shara Murum

    Inner Mongolia

    38–41

    43

    20

    10

    Irdinmanhan-Sharamurunian

    Lumeiyi

    Yunnan

    38–47.8

    20

    11

    4

    Subathu Upper

    Pakistan-India

    38–47.8

    20

    11

    4

    Ulan Shireh

    Mongolia

    38–47.8

    27

    14

    8

    Irdinmanhan

    Chorlakki-Ganda Kas

    Pakistan

    41–47.8

    38

    16

    5

    Heti Rencun-Lushi-Hetaoyuan-Minggang

    Henan

    41–47.8

    89

    40

    13

    Shanghuang

    Jiangsu

    41–47.8

    18

    14

    6

    Sindkhatuti

    India

    41–47.8

    7

    3

    3

    Irdin Manha

    Inner Mongolia

    41 – 47.8

    36

    16

    9

    Arshantan

    Arshanto

    Inner Mongolia

    47.8–55

    21

    10

    6

    Chorlakki-Ganda Kas Lower

    Pakistan

    47.8–55

    5

    4

    3

    Subathu Lower

    Pakistan-India

    47.8–55

    6

    3

    2

    Bumbanian-Arshantan

    Yuhuangding

    Henan

    47.8–56

    13

    7

    4

    Cambay Shale

    India

    53–56

    25

    16

    7

    Bumbanian

    Bumban

    Mongolia

    55–56

    35

    16

    8

    Ghazij

    Pakistan

    55–56

    14

    6

    3

    Lingcha-Songzi

    Hunan-Hubei

    55–56

    18

    11

    6

    Nomogen Upper

    Inner-Mongolia

    55–56

    11

    7

    6

    Wutu

    Shandong

    55–56

    41

    32

    13

    Gashatan

    Nomogen Lower

    Inner Mongolia

    56–57

    26

    15

    8

    Gashato

    Inner Mongolia

    56–59.2

    11

    7

    3

    Tujinshan-Shuangtasi

    Anhui

    56–59.2

    10

    5

    3

    Naran Bulak

    Mongolia

    56–59.2

    23

    16

    11

    Nongshanian

    Chijiang-Nongshan

    Jiangxi-Guangdong

    59.2–61.6

    17

    10

    4

    Doumu-Qianshan-Xuancheng

    Anhui

    59.2–61.6

    13

    9

    5

    Shanghuan

    Shanghu

    Guangdong

    61.6–66

    15

    8

    5

    Wanghudun-Qianshan

    Anhui

    61.6–66

    25

    9

    5

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1