logo

SCIENCE CHINA Earth Sciences, Volume 63, Issue 2: 172-187(2020) https://doi.org/10.1007/s11430-019-9507-5

Tibetan Plateau: An evolutionary junction for the history of modern biodiversity

More info
  • ReceivedMay 29, 2019
  • AcceptedSep 16, 2019
  • PublishedOct 31, 2019

Abstract

Holding particular biological resources, the Tibetan Plateau is a unique geologic-geographic-biotic interactively unite and hence play an important role in the global biodiversity domain. The Tibetan Plateau has undergone vigorous environmental changes since the Cenozoic, and played roles switching from “a paradise of tropical animals and plants” to “the cradle of Ice Age mammalian fauna”. Recent significant paleontological discoveries have refined a big picture of the evolutionary history of biodiversity on that plateau against the backdrop of major environmental changes, and paved the way for the assessment of its far-reaching impact upon the biota around the plateau and even in more remote regions. Here, based on the newly reported fossils from the Tibetan Plateau which include diverse animals and plants, we present a general review of the changing biodiversity on the Tibetan Plateau and its influence in a global scale. We define the Tibetan Plateau as a junction station of the history of modern biodiversity, whose performance can be categorized in the following three patterns: (1) Local origination of endemism; (2) Local origination and “Out of Tibet”; (3) Intercontinental dispersal via Tibet. The first pattern is exemplified by the snow carps, the major component of the freshwater fish fauna on the plateau, whose temporal distribution pattern of the fossil schizothoracines approximately mirrors the spatial distribution pattern of their living counterparts. Through ascent with modification, their history reflects the biological responses to the stepwise uplift of the Tibetan Plateau. The second pattern is represented by the dispersal history of some mammals since the Pliocene and some plants. The ancestors of some Ice Age mammals, e.g., the wholly rhino, Arctic fox, and argali sheep first originated and evolved in the uplifted and frozen Tibet during the Pliocene, and then migrated toward the Arctic regions or even the North American continent at beginning of the Ice Age; the ancestor of pantherines (big cats) first rose in Tibetan Plateau during the Pliocene, followed by the disperse of its descendants to other parts of Asia, Africa, North and South America to play as top predators of the local ecosystems. The early members of some plants, e.g., Elaeagnaceae appeared in Tibet during the Late Eocene and then dispersed and were widely distributed to other regions. The last pattern is typified by the history of the tree of heaven (Ailanthus) and climbing perch. Ailanthus originated in the Indian subcontinent, then colonized into Tibet after the Indian-Asian plate collision, and dispersed therefrom to East Asia, Europe and even North America. The climbing perches among freshwater fishes probably rose in Southeast Asia during the Middle Eocene, dispersed to Tibet and then migrated into Africa via the docked India. These cases highlight the role of Tibet, which was involved in the continental collision, in the intercontinental biotic interchanges. The three evolutionary patterns above reflect both the history of biodiversity on the plateau and the biological and environmental effects of tectonic uplift.


Funded by

the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant,Nos.,XDB26000000,XDA20070203,XDA20070301)

the Second Comprehensive Scientific Expedition on the Tibetan Plateau(Grant,No.,QZK0705,2019)

the National Natural Science Foundation of China(Grant,Nos.,41430102,41872006)

the Frontier Science Key Research Project(Grant,No.,QYZDY-SSW-DQC022)

the International Partnership Program(Grant,No.,GJHZ1885)

and the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant,No.,2017103)


Acknowledgment

Heartfelt thanks go to all co-workers of the Expedition Team of Paleontology on the Tibetan Plateau. The reviewers are kindly acknowledged for their comments on the manuscript. This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB26000000, XDA20070203, XDA20070301), the Second Comprehensive Scientific Expedition on the Tibetan Plateau (Grant No. QZK0705, 2019), the National Natural Science Foundation of China (Grant Nos. 41430102, 41872006), the Frontier Science Key Research Project (Grant No. QYZDY-SSW-DQC022), the International Partnership Program (Grant No. GJHZ1885), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2017103).


References

[1] An Z S, Kutzbach J E, Prell W L, Porter S C. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 2001, 411: 62-66 CrossRef PubMed Google Scholar

[2] Andersen N M. 1982. Phylogeny, Adaptations, Biogeography, and Classification. Entomonograph. Klampenborg: Scandinavian Science Press. 1–455. Google Scholar

[3] Andersen N M. 1990. Phylogeny and taxonomy of water striders, genus Aquarius Schellenberg (Insecta, Hemiptera, Gerridae), with a new species from Australia. Steenstrupia, 16: 37–81. Google Scholar

[4] Audet A M, Robbins C B, Larivière S. Alopex lagopus. Mamm Spec, 2002, 713: 1-10 CrossRef Google Scholar

[5] Bai B, Wang Y Q, Meng J. The divergence and dispersal of early perissodactyls as evidenced by early Eocene equids from Asia. Commun Biol, 2018, 1: 115 CrossRef PubMed Google Scholar

[6] Ballantyne A P, Greenwood D R, Sinninghe Damste J S, Csank A Z, Eberle J J, Rybczynski N. Significantly warmer Arctic surface temperatures during the Pliocene indicated by multiple independent proxies. Geology, 2010, 38: 603-606 CrossRef ADS Google Scholar

[7] Barnett R, Shapiro B, Barnes I, Ho S Y W, Burger J, Yamaguchi N, Higham T F G, Wheeler H T, Rosendahl W, Sher A V, Sotnikova M, Kuznetsova T, Baryshnikov G F, Martin L D, Harington C R, Burns J A, Cooper A. Phylogeography of lions (Panthera leo ssp.) reveals three distinct taxa and a late Pleistocene reduction in genetic diversity. Mol Ecol, 2009, 18: 1668-1677 CrossRef PubMed Google Scholar

[8] Becker H. 1960. The Tertiary Mormon Creek flora from the Upper Ruby River Basin in southwestern Montana. Palaeontographica B, 107: 83–126. Google Scholar

[9] Bell C D, Soltis D E, Soltis P S. The age and diversification of the angiosperms re-revisited. Am J Bot, 2010, 97: 1296-1303 CrossRef PubMed Google Scholar

[10] Berg L S. 1912. Fauna of Russia and Adjacent Countries. Volume 3. St. Petersburg: Imperial Academy of Sciences. 369–704. Google Scholar

[11] Berra T M. 2007. Freshwater Fish Distribution. Chicago: University of Chicago Press. 1–615. Google Scholar

[12] Bibi F, Vrba E, Fack F. A new African fossil caprin and a combined molecular and morphological bayesian phylogenetic analysis of caprini (Mammalia: Bovidae). J Evol Biol, 2012, 25: 1843-1854 CrossRef PubMed Google Scholar

[13] Bohlin B. 1937. Eine Tertiäre säugetier-fauna aus Tsaidam. Sino-Swedish Expedition Publication. Palaeont Sin Ser C, 14: 3–111. Google Scholar

[14] Borsuk-Bialynicka M. 1973. Studies on the Pleistocene rhinoceros Coelodonta antiquitatis (Blumenbach). Palaeont Pol, 29: 1–94. Google Scholar

[15] Bossuyt F, Milinkovitch M C. Amphibians as indicators of Early Tertiary “Out-of-India” dispersal of vertebrates. Science, 2001, 292: 93-95 CrossRef PubMed ADS Google Scholar

[16] Bowmaker A P, Jackson P B N, Jubb R A. 1978. Freshwater fishes. In: Werger M J A, ed. Biogeography and Ecology of Southern Africa. The Hague: Junk Publishers. 1207–1230. Google Scholar

[17] Brigham-Grette J, Melles M, Minyuk P, Andreev A, Tarasov P, DeConto R, Koenig S, Nowaczyk N, Wennrich V, Rosén P, Haltia E, Cook T, Gebhardt C, Meyer-Jacob C, Snyder J, Herzschuh U. Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia. Science, 2013, 340: 1421-1427 CrossRef PubMed ADS Google Scholar

[18] Cai C Y, Huang D Y, Wu F X, Zhao M, Wang N. Tertiary water striders (Hemiptera, Gerromorpha, Gerridae) from the central Tibetan Plateau and their palaeobiogeographic implications. J Asian Earth Sci, 2019, 175: 121-127 CrossRef ADS Google Scholar

[19] Cao W X, Chen Y Y, Wu Y F, Zhu S Q. 1981. Origin and evolution of schizothoracine fishes in relation to the upheaval of the Qinghai-Xizang Plateau. In: Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Chinese Academy of Sciences, ed. Studies on the Period, Amplitude and Type of Uplift of the Qinghai-Xizang Plateau (in Chinese). Beijing: Science Press. 118–130. Google Scholar

[20] Capobianco A, Friedman M. Vicariance and dispersal in southern hemisphere freshwater fish clades: A palaeontological perspective. Biol Rev, 2019, 94: 662-699 CrossRef PubMed Google Scholar

[21] Chang M M, Miao D S. 2016. Review of the Cenozoic fossil fishes from the Tibetan Plateau and their bearings on paleoenvironment (in Chinese). Chin Sci Bull, 61: 981–995. Google Scholar

[22] Chang M M, Miao D S, Wang N. 2010. Ascent with modification: Fossil fishes witnessed their own group’s adaptation to the uplift of the Tibetan Plateau during the late Cenozoic. In: Long M Y, Gu H Y, Zhou Z H, eds. Darwin’s Heritage Today: Proceedings of the Darwin 200 Beijing International Conference. Beijing: Higher Education Press. 60–75. Google Scholar

[23] Chang M M, Wang X M, Liu H Z, Miao D S, Zhao Q H, Wu G X, Liu J, Li Q, Sun Z C, Wang N. Extraordinarily thick-boned fish linked to the aridification of the Qaidam Basin (northern Tibetan Plateau). Proc Natl Acad Sci USA, 2008, 105: 13246-13251 CrossRef PubMed ADS Google Scholar

[24] Chatterjee S, Scotese C R, Bajpai S. 2017. The restless Indian Plate and its epic voyage from Gondwana to Asia: Its tectonic, paleoclimatic, and paleobiogeographic evolution. Geol Soc Am Spec Paper, 529: 1–147. Google Scholar

[25] Chen X Y, Yang J X. Triplophysa rosa sp. nov.: A new blind loach from China. J Fish Biol, 2005, 66: 599-608 CrossRef Google Scholar

[26] Chen Y F. 1998. Phylogenetic and distributional patterns of subfamily Schizothoracinae (Pisces: Cyprinidae) I, the phylogenetic patterns (in Chinese). Acta Zootaxon Sin, 23 (Suppl): 17–25. Google Scholar

[27] Chen Y F, Cao W X. 2000. Schizothoracinae. In: Yue P Q, ed. Fauna Sinica, Osteichthyes, Cypriniformes III (in Chinese). Beijing: Science Press. 273–390. Google Scholar

[28] Chen Y S, Meseguer A S, Godefroid M, Zhou Z, Zhang J W, Deng T, Kim J H, Nie Z L, Liu Y S C, Sun H. Out-of-India dispersal of Paliurus (Rhamnaceae) indicated by combined molecular phylogenetic and fossil evidence. Taxon, 2017, 66: 78-90 CrossRef Google Scholar

[29] Chen Y Y, Chen Y F, Liu H Z. 1996. Studies on the position of the Qinghai-Xizang Plateau region in zoogeographic divisions and its eastern demarcation line (in Chinese). Acta Hydrobiol Sin, 20: 97–103. Google Scholar

[30] Chow M C, Chow B S. 1965. Notes on Villafranchian mammals of Lingyi, Shansi (in Chinese). Vert PalAsiat, 9: 223–234. Google Scholar

[31] Clark H O, Newman D P, Murdoch J D, Tseng J, Wang Z H, Harris R B. 2008. Vulpes ferrilata. Mamm Spec, 821: 1–6. Google Scholar

[32] Clayton J W, Soltis P S, Soltis D E. Recent long-distance dispersal overshadows ancient biogeographical patterns in a pantropical angiosperm family (Simaroubaceae, Sapindales). Syst Biol, 2009, 58: 395-410 CrossRef PubMed Google Scholar

[33] Clyde W C, Khan I H, Gingerich P D. Stratigraphic response and mammalian dispersal during initial India-Asia collision: Evidence from the Ghazij Formation, Balochistan, Pakistan. Geology, 2003, 31: 1097-1100 CrossRef ADS Google Scholar

[34] Corbett S L, Manchester S R. Phytogeography and Fossil History of Ailanthus (Simaroubaceae). Int J Plant Sci, 2004, 165: 671-690 CrossRef Google Scholar

[35] Croitor R, Brugal J P. Ecological and evolutionary dynamics of the carnivore community in Europe during the last 3 million years. Quat Int, 2010, 212: 98-108 CrossRef ADS Google Scholar

[36] Csank A Z, Tripati A K, Patterson W P, Eagle R A, Rybczynski N, Ballantyne A P, Eiler J M. Estimates of Arctic land surface temperatures during the Early Pliocene from two novel proxies. Earth Planet Sci Lett, 2011, 304: 291-299 CrossRef ADS Google Scholar

[37] Cun Y Z, Wang X Q. Plant recolonization in the Himalaya from the southeastern Qinghai-Tibetan Plateau: Geographical isolation contributed to high population differentiation. Mol Phylogenets Evol, 2010, 56: 972-982 CrossRef PubMed Google Scholar

[38] Damgaard J. Genetic diversity, taxonomy, and phylogeography of the western Palaearctic water strider Aquarius najas (DeGeer) (Heteroptera: Gerridae). Insect Syst Evol, 2005, 36: 395-406 CrossRef Google Scholar

[39] Darlington P J. 1957. Zoogeography, the Geographic Distribution of Animals. New York: John Wiley & Sons. 1–675. Google Scholar

[40] Davis B W, Li G, Murphy W J. Supermatrix and species tree methods resolve phylogenetic relationships within the big cats, Panthera (Carnivora: Felidae). Mol Phylogenet Evol, 2010, 56: 64-76 CrossRef PubMed Google Scholar

[41] DeCelles P G, Kapp P, Ding L, Gehrels G E. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Geol Soc Am Bull, 2007, 119: 654-680 CrossRef ADS Google Scholar

[42] Deng T, Ding L. Paleoaltimetry reconstructions of the Tibetan Plateau: Progress and contradictions. Natl Sci Rev, 2015, 2: 417-437 CrossRef Google Scholar

[43] Deng T, Li Q, Tseng Z J, Takeuchi G T, Wang Y, Xie G P, Wang S Q, Hou S K, Wang X M. Locomotive implication of a Pliocene three-toed horse skeleton from Tibet and its paleo-altimetry significance. Proc Natl Acad Sci USA, 2012a, 109: 7374-7378 CrossRef PubMed ADS Google Scholar

[44] Deng T, Wang S Q, Xie G P, Li Q, Hou S K, Sun B Y. A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry. Chin Sci Bull, 2012b, 57: 261-269 CrossRef ADS Google Scholar

[45] Deng T, Wang X M, Fortelius M, Li Q, Wang Y, Tseng Z J, Takeuchi G T, Saylor J E, Säilä L K, Xie G P. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores. Science, 2011, 333: 1285-1288 CrossRef PubMed ADS Google Scholar

[46] Deng T, Wang X M, Li Q. 2012. Ancestral woolly rhino from the Zanda Basin in Tibet, China suggests origin of Ice Age megaherbivores in high plateau (in Chinese). China Basic Sci, 14: 17–21. Google Scholar

[47] Deng T, Wang X M, Wang S Q, Li Q, Hou S K. 2015. Evolution of the Chinese Neogene mammalian faunas and its relationship to uplift of the Tibetan Plateau (in Chinese). Adv Earth Sci, 30: 407–415. Google Scholar

[48] Deng T, Wang X M, Wu F X, Wang Y, Li Q, Wang S Q, Hou S K. Review: Implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau. Glob Planet Change, 2019, 174: 58-69 CrossRef ADS Google Scholar

[49] Ding L, Maksatbek S, Cai F L, Wang H Q, Song P P, Ji W Q, Xu Q, Zhang L Y, Muhammad Q, Upendra B. Processes of initial collision and suturing between India and Asia. Sci China Earth Sci, 2017, 60: 635-651 CrossRef Google Scholar

[50] Favre A, Michalak I, Chen C H, Wang J C, Pringle J S, Matuszak S, Sun H, Yuan Y M, Struwe L, Muellner-Riehl A N. Out-of-Tibet: The spatio-temporal evolution of Gentiana (Gentianaceae). J Biogeogr, 2016, 43: 1967-1978 CrossRef Google Scholar

[51] Favre A, Päckert M, Pauls S U, Jähnig S C, Uhl D, Michalak I, Muellner-Riehl A N. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol Rev, 2015, 90: 236-253 CrossRef PubMed Google Scholar

[52] Fernández M H, Vrba E S. A complete estimate of the phylogenetic relationships in Ruminantia: A dated species-level supertree of the extant ruminants. Biol Rev, 2005, 80: 269-302 CrossRef Google Scholar

[53] Fortelius M. 2018. New and Old Worlds Database of Fossil Mammals (NOW). Helsinki: University of Helsinki. http://www.helsinki.fi/science/now/. Google Scholar

[54] Friis E M, Crane P R, Pedersen K R. 2011. Early Flowers and Angiosperm Evolution. New York: Cambridge University Press. 1–596. Google Scholar

[55] Fuentes-González J A, Muñoz-Durán J. 2012. Filogenia de los cánidos actuales (Carnivora: Canidae) mediante análisis de congruencia de characteres bajo parsimonia. Actual Biol, 34: 85–102. Google Scholar

[56] Fuentes-Hurtado M, Hof A R, Jansson R. Paleodistribution modeling suggests glacial refugia in Scandinavia and out-of-Tibet range expansion of the Arctic fox. Ecol Evol, 2016, 6: 170-180 CrossRef PubMed Google Scholar

[57] Gao Q B, Li Y H, Gornall R J, Zhang Z X, Zhang F Q, Xing R, Fu P C, Wang J L, Liu H R, Tian Z Z, Chen S L. Phylogeny and speciation in Saxifraga sect. Ciliatae (Saxifragaceae): Evidence from psbA-trnH, trnL-F and ITS sequences. Taxon, 2015, 64: 703-713 CrossRef Google Scholar

[58] Gentry A W. 1968. The extinct bovid genus Qurliqnoria Bohlin. J Mammal, 49: 769. Google Scholar

[59] Gheerbrant E, Rage J C. Paleobiogeography of Africa: How distinct from Gondwana and Laurasia?. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 241: 224-246 CrossRef ADS Google Scholar

[60] He D K, Chen Y X, Chen Y F. 2006. Research on molecular phylogeny and biogeography of the Triplophysa species (in Chinese). Prog Nat Sci, 2006, 16: 1395–1404. Google Scholar

[61] Hoffmann R S. 1991. The Tibetan Plateau fauna, a high altitude desert associated with the Sahara-Gobi. In: McNeely J A, Neronov V, eds. Mammals of the Palaearctic Desert: Status and Trends in the Sahara-Gobi Region. Moscow: Russian Academy of Sciences. 285–297. Google Scholar

[62] Hollick A. 1936. The Tertiary floras of Alaska. US Geol Surv Prof Paper, 182: 1–185. Google Scholar

[63] Hora S L. 1953. Fish distribution and Central Asian orography. Curr Sci, 22: 93–97. Google Scholar

[64] Huang J H, Liu C R, Zhang J L, Lu X H, Ma K P. Diversity hotspots and conservation gaps for the Chinese endemic seed flora. Biol Conserv, 2016, 198: 104-112 CrossRef Google Scholar

[65] Jacques F M B, Guo S X, Su T, Xing Y W, Huang Y J, Liu Y S C, Ferguson D K, Zhou Z K. Quantitative reconstruction of the Late Miocene monsoon climates of southwest China: A case study of the Lincang flora from Yunnan Province. Palaeogeogr Palaeoclimatol Palaeoecol, 2011, 304: 318-327 CrossRef ADS Google Scholar

[66] Jiang H, Su T, Wong W O, Wu F, Huang J, Shi G. Oligocene Koelreuteria (Sapindaceae) from the Lunpola Basin in central Tibet and its implication for early diversification of the genus. J Asian Earth Sci, 2019, 175: 99-108 CrossRef ADS Google Scholar

[67] Jiang Z G, Li L L, Hu Y M, Hu H J, Li C W, Ping X G, Luo Z H. 2018. Diversity and endemism of ungulates on the Qinghai-Tibetan Plateau: Evolution and conservation (in Chinese). Biodivers Sci, 26: 158–170. Google Scholar

[68] Johnson W E, Eizirik E, Pecon-Slattery J, Murphy W J, Antunes A, Teeling E, O’Brien S J. The Late Miocene radiation of modern felidae: A genetic assessment. Science, 2006, 311: 73-77 CrossRef PubMed ADS Google Scholar

[69] Kahlke H D. 1969. Die Rhinocerotiden-Reste aus den Kiesen von Süssenborn bei Weimar. Paläont Abh A, 3: 567–709. Google Scholar

[70] Kahlke R D. 1999. The History of the Origin, Evolution and Dispersal of the Late Pleistocene Mammuthus-Coelodonta Faunal Complex in Eurasia (Large Mammals). Rapid City: Fenske Companies. 1–219. Google Scholar

[71] Kahlke R D, Lacombat F. The earliest immigration of woolly rhinoceros (Coelodonta tologoijensis, Rhinocerotidae, Mammalia) into Europe and its adaptive evolution in Palaearctic cold stage mammal faunas. Quat Sci Rev, 2008, 27: 1951-1961 CrossRef ADS Google Scholar

[72] Klaus S, Morley R J, Plath M, Zhang Y P, Li J T. Biotic interchange between the Indian subcontinent and mainland Asia through time. Nat Commun, 2016, 7: 12132 CrossRef PubMed ADS Google Scholar

[73] Kullander O S, Fang F, Bo D, Erik A. 1999. The fishes of the Kashmir Valley. In: Lennart N, ed. River Jhelum, Kashmir Valley: Impacts on the Aquatic Environment. Swedmar: The International Consultancy Group of the National Board of Fisheries. 99–168. Google Scholar

[74] Kurtén B. 1968. Pleistocene Mammals of Europe. Chicago: Aldine Publishing Company. 1–316. Google Scholar

[75] Li J T, Li Y, Klaus S, Rao D Q, Hillis D M, Zhang Y P. Diversification of rhacophorid frogs provides evidence for accelerated faunal exchange between India and Eurasia during the Oligocene. Proc Natl Acad Sci USA, 2013, 110: 3441-3446 CrossRef PubMed ADS Google Scholar

[76] Li J X, Wang Y, Jin H F, Li W J, Yan C C, Yan P F, Zhang X Y, He S P, Song Z B. Identification of Triplophysa species from the Qinghai-Tibetan Plateau (QTP) and its adjacent regions through DNA barcodes. Gene, 2017, 605: 12-19 CrossRef PubMed Google Scholar

[77] Li Q, Stidham T A, Ni X J, Li L Z. Two new Pliocene hamsters (Cricetidae, Rodentia) from southwestern Tibet (China), and their implications for rodent dispersal ‘into Tibet’. J Vert Paleontol, 2017, 37: e1403443 CrossRef Google Scholar

[78] Li Q, Xie G P, Takeuchi G T, Deng T, Tseng Z J, Grohé C, Wang X M. Vertebrate fossils on the Roof of the World: Biostratigraphy and geochronology of high-elevation Kunlun Pass Basin, northern Tibetan Plateau, and basin history as related to the Kunlun strike-slip fault. Palaeogeogr Palaeoclimatol Palaeoecol, 2014, 411: 46-55 CrossRef ADS Google Scholar

[79] Liem K F. 1963. The comparative osteology and phylogeny of the Anabantoidei (Teleostei, Pisces). Illinois Biol Monogr, 30: 1–149. Google Scholar

[80] Lin Q B. 1981. Two new species of Tertiary insect fossils from northern Xizang (in Chinese). In: Comprehensive Scientific Expedition to the Tibetan Plateau, Chinese Academy of Sciences, eds. Palaeontology of Xizang, Vol. 3. Beijing: Science Press. 345–348. Google Scholar

[81] Liu J, Su T, Spicer R A, Tang H, Deng W Y D, Wu F X, Srivastava G, Spicer T, Do T V, Deng T, Zhou Z K. Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene. Palaeogeogr Palaeoclimatol Palaeoecol, 2019, 524: 33-40 CrossRef ADS Google Scholar

[82] Lydekker R. On the skull of a chiru-like antelope from the ossiferous deposits of Hundes (Tibet). Q J Geol Soc, 1901, 57: 289-292 CrossRef Google Scholar

[83] Matuszak S, Muellner-Riehl A N, Sun H, Favre A. Dispersal routes between biodiversity hotspots in Asia: The case of the mountain genus Tripterospermum (Gentianinae, Gentianaceae) and its close relatives. J Biogeogr, 2016, 43: 580-590 CrossRef Google Scholar

[84] Murray A M, Thewissen J G M. Eocene actinopterygian fishes from Pakistan, with the description of a new genus and species of channid (Channiformes). J Vert Paleontol, 2008, 28: 41-52 CrossRef Google Scholar

[85] Myers N, Mittermeier R A, Mittermeier C G, da Fonseca G A B, Kent J. Biodiversity hotspots for conservation priorities. Nature, 2000, 403: 853-858 CrossRef PubMed Google Scholar

[86] Nalbant T T, Bianco P G. The loaches of Iran and adjacent regions with description of six new species (Cobitoidea). Ital J Zool, 1998, 65: 109-123 CrossRef Google Scholar

[87] Ni X J, Li Q, Stidham T A, Li L Z, Lu X Y, Meng J. A late Paleocene probable metatherian (?deltatheroidan) survivor of the Cretaceous mass extinction. Sci Rep, 2016, 6: 38547 CrossRef PubMed ADS Google Scholar

[88] Nooteboom H. 1960. Simaroubaceae. Flora Malesiana-Series 1, Spermatophyta, 6: 193–226. Google Scholar

[89] Norris S M. 1994. The osteology and phylogenetics of the Anabantidae (Osteichthyes, Perciformes). Dissertation for Doctoral Degree. Tempe: Arizona State University. Google Scholar

[90] Pocock R I. 1937. The foxes of British India. J Bombay Nat Hist Soc, 39: 36–57. Google Scholar

[91] Polhemus J T, Polhemus D A. 2008. Global diversity of true bugs (Heteroptera; Insecta) in freshwater. Hydrobiologia, 595: 379–391. Google Scholar

[92] Prestrud P. 1991. Adaptations by the arctic fox (Alopex lagopus) to the polar winter. Arctic, 44: 132–138. Google Scholar

[93] Qin H N, Michael G G. 2007. Flora of China (English version, Vol. 13). Beijing and Missouri: Science Press and Missouri Botanical Garden. Google Scholar

[94] Qiu Y X, Fu C X, Comes H P. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol Phylogenet Evol, 2011, 59: 225-244 CrossRef PubMed Google Scholar

[95] Qiu Z X, Deng T, Wang B Y. 2004. Early Pleistocene mammalian fauna from Longdan, Dongxiang, Gansu, China (in Chinese). Palaeont Sin New Ser C, 27: 1–198. Google Scholar

[96] Rezaei H R, Naderi S, Chintauan-Marquier I C, Jordan S, Taberlet P, Virk A T, Naghash H R, Rioux D, Kaboli M, Luikart G, Pompanon F. Evolution and taxonomy of the wild species of the genus Ovis (Mammalia, Artiodactyla, Bovidae). Mol Phylogenet Evol, 2010, 54: 315-326 CrossRef PubMed Google Scholar

[97] Rose K D, Holbrook L T, Rana R S, Kumar K, Jones K E, Ahrens H E, Missiaen P, Sahni A, Smith T. Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India. Nat Commun, 2014, 5: 5570 CrossRef PubMed ADS Google Scholar

[98] Rosen D E. Vicariant patterns and historical explanation in biogeography. Syst Zool, 1978, 27: 159-188 CrossRef Google Scholar

[99] Royden L H, Burchfiel B C, van der Hilst R D. The geological evolution of the Tibetan Plateau. Science, 2008, 321: 1054-1058 CrossRef PubMed ADS Google Scholar

[100] Rüber L, Britz R, Zardoya R, Linder P. Molecular phylogenetics and evolutionary diversification of labyrinth fishes (Perciformes: Anabantoidei). Syst Biol, 2006, 55: 374-397 CrossRef PubMed Google Scholar

[101] Sandel B, Arge L, Dalsgaard B, Davies R G, Gaston K J, Sutherland W J, Svenning J C. The influence of late Quaternary climate-change velocity on species endemism. Science, 2011, 334: 660-664 CrossRef PubMed ADS Google Scholar

[102] Saylor J E, Quade J, Dettman D L, DeCelles P G, Kapp P A, Ding L. The Late Miocene through present paleoelevation history of southwestern Tibet. Am J Sci, 2009, 309: 1-42 CrossRef ADS Google Scholar

[103] Saylor J, Decelles P, Gehrels G, Murphy M, Zhang R, Kapp P. Basin formation in the High Himalaya by arc-parallel extension and tectonic damming: Zhada Basin, southwestern Tibet. Tectonics, 2010a, 29: TC1004 CrossRef ADS Google Scholar

[104] Saylor J, DeCelles P, Quade J. Climate-driven environmental change in the Zhada basin, southwestern Tibetan Plateau. Geosphere, 2010b, 6: 74-92 CrossRef ADS Google Scholar

[105] Schaller G B. 1998. Wildlife of the Tibetan Steppe. Chicago: University of Chicago Press. 1–373. Google Scholar

[106] Shafroth P B, Auble G T, Scott M L. 1995. Germination and establishment of the native Plains Cottonwood (Populus deltoides Marshall subsp. monilifera) and the exotic Russian-Olive (Elaeagnus angustifolia L.). Conserv Biol, 9: 1169–1175. Google Scholar

[107] Shukla A, Mehrotra R C, Spicer R A, Spicer T E V. Aporosa Blume from the paleoequatorial rainforest of Bikaner, India: Its evolution and diversification in deep time. Rev Palaeobot Palynol, 2016, 232: 14-21 CrossRef Google Scholar

[108] Skelton P H. 1980. Systematics and biogeography of the redfin Barbus species (Pisces: Cyprinidae) from southern Africa. Dissertation for Doctoral Degree. Grahamstown: Rhodes University. 1–417. Google Scholar

[109] Slechtova V, Bohlen J, Tan H H. 2007. Families of Cobitoidea (Teleostei; Cypriniformes) as revealed from nuclear genetic data and the position of the mysterious genera Barbucca, Psilorhynchus, Serpenticobitis and Vaillantella. Mol Phylogenet Evol, 44: 1358–1365. Google Scholar

[110] Soltis D E, Smith S A, Cellinese N, Wurdack K J, Tank D C, Brockington S F, Refulio-Rodriguez N F, Walker J B, Moore M J, Carlsward B S, Bell C D, Latvis M, Crawley S, Black C, Diouf D, Xi Z, Rushworth C A, Gitzendanner M A, Sytsma K J, Qiu Y L, Hilu K W, Davis C C, Sanderson M J, Beaman R S, Olmstead R G, Judd W S, Donoghue M J, Soltis P S. Angiosperm phylogeny: 17 genes, 640 taxa. Am J Bot, 2011, 98: 704-730 CrossRef PubMed Google Scholar

[111] Song Z Q, Xu D X. The identity of Ailanthus guangxiensis (Simaroubaceae) and lectotypification of A. integrifolia Lamarck. Phytotaxa, 2014, 173: 177-180 CrossRef Google Scholar

[112] Song Z Q, Shi G L, Chen Y F, Wang Q. 2014. Winged fruits of Ailanthus (Simaroubaceae) from the Oligocene Ningming Formation of Guangxi, and there taxonomic and biogeographic implications (in Chinese). Acta Palaeont Sin, 53: 191–200. Google Scholar

[113] Spicer R A. Tibet, the Himalaya, Asian monsoons and biodiversity—In what ways are they related?. Plant Divers, 2017, 39: 233-244 CrossRef PubMed Google Scholar

[114] Stiassny M L J. 1991. Phylogenetic intrarelationships of the family Cichlidae: An overview. In: Keenleyside M H A, ed. Cichlid Fishes: Behaviour, Ecology and Evolution. London: Chapman & Hall. 1–35. Google Scholar

[115] Su T, Farnsworth A, Spicer R A, Huang J, Wu F X, Liu J, Li S F, Xing Y W, Huang Y J, Deng W Y D, Tang H, Xu C L, Zhao F, Srivastava G, Valdes P J, Deng T, Zhou Z K. No high Tibetan Plateau until the Neogene. Sci Adv, 2019a, 5: eaav2189 CrossRef PubMed ADS Google Scholar

[116] Su T, Jacques F M B, Spicer R A, Liu Y S, Huang Y J, Xing Y W, Zhou Z K. Post-Pliocene establishment of the present monsoonal climate in SW China: Evidence from the late Pliocene Longmen megaflora. Clim Past, 2013, 9: 1911-1920 CrossRef ADS Google Scholar

[117] Su T, Spicer R A, Li S H, Xu H, Huang J, Sherlock S, Huang Y J, Li S F, Wang L, Jia L B, Deng W Y D, Liu J, Deng C L, Zhang S T, Valdes P J, Zhou Z K. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet. Natl Sci Rev, 2019b, 6: 495-504 CrossRef Google Scholar

[118] Su T, Wilf P, Xu H, Zhou Z K. Miocene leaves of Elaeagnus (Elaeagnaceae) from the Qinghai-Tibet Plateau, its modern center of diversity and endemism. Am J Bot, 2014, 101: 1350-1361 CrossRef PubMed Google Scholar

[119] Sun J, Xu Q, Liu W, Zhang Z, Xue L, Zhao P. Palynological evidence for the latest Oligocene-Early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet. Palaeogeogr Palaeoclimatol Palaeoecol, 2014, 399: 21-30 CrossRef ADS Google Scholar

[120] Tang Q, Liu H, Mayden R, Xiong B X. Comparison of evolutionary rates in the mitochondrial DNA cytochrome b gene and control region and their implications for phylogeny of the Cobitoidea (Teleostei: Cypriniformes). Mol Phylogenet Evol, 2006, 39: 347-357 CrossRef PubMed Google Scholar

[121] Tedford R H, Wang X M, Taylor B E. Phylogenetic systematics of the North American fossil Caninae (Carnivora: Canidae). Bull Am Mus Nat Hist, 2009, 325: 1-218 CrossRef Google Scholar

[122] Teilhard de Chardin P, Piveteau J. 1930. Les mammifères fossiles de Nihowan (Chine). Ann Paléont, 19: 1–134. Google Scholar

[123] Tseng Z J, Li Q, Wang X. A new cursorial hyena from Tibet, and analysis of biostratigraphy, paleozoogeography, and dental morphology of Chasmaporthetes (Mammalia, Carnivora). J Vert Paleontol, 2013, 33: 1457-1471 CrossRef Google Scholar

[124] Tseng Z J, Wang X, Slater G J, Takeuchi G T, Li Q, Liu J, Xie G. Himalayan fossils of the oldest known pantherine establish ancient origin of big cats. Proc R Soc B, 2014, 281: 20132686 CrossRef PubMed Google Scholar

[125] Van Sam H, Nooteboom H P. Ailanthus Vietnamensis (Simaroubaceae): A new species from Vietnam. Blumea, 2007, 52: 555-558 CrossRef Google Scholar

[126] Van Valkenburgh B, Wang X M, Damuth J. Cope’s rule, hypercarnivory, and extinction in North American canids. Science, 2004, 306: 101-104 CrossRef PubMed ADS Google Scholar

[127] Vangengeim E A, Beljaeva E I, Garutt V Y, Dmitrieva E L, Zazhigin V S. 1966. Eopleistocene mammals of Western Transbaikalia. Trudy Geol Inst Akad Nauk SSSR, 152: 92–143. Google Scholar

[128] Vermeij G J. When biotas meet: Understanding biotic interchange. Science, 1991, 253: 1099-1104 CrossRef PubMed ADS Google Scholar

[129] Wang C S, Zhao X X, Liu Z F, Lippert P C, Graham S A, Coe R S, Yi H S, Zhu L D, Liu S, Li Y L. Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA, 2008, 105: 4987-4992 CrossRef PubMed ADS Google Scholar

[130] Wang N, Chang M. Pliocene cyprinids (Cypriniformes, Teleostei) from Kunlun Pass Basin, northeastern Tibetan Plateau and their bearings on development of water system and uplift of the area. Sci China Earth Sci, 2010, 53: 485-500 CrossRef Google Scholar

[131] Wang N, Chang M. Discovery of fossil Nemacheilids (Cypriniformes, Teleostei, Pisces) from the Tibetan Plateau, China. Sci China Earth Sci, 2012, 55: 714-727 CrossRef Google Scholar

[132] Wang N, Wu F. New Oligocene cyprinid in the central Tibetan Plateau documents the pre-uplift tropical lowlands. Ichthyol Res, 2015, 62: 274-285 CrossRef Google Scholar

[133] Wang S Q, Yang Q, Zhao Y, Li C X, Shi Q Q, Zong L Y, Ye J. New Olonbulukia material and its related assemblage reveal an early radiation of stem Caprini along the north of the Tibetan Plateau. J Paleontol, 2019, 93: 385-397 CrossRef Google Scholar

[134] Wang X M. 1988. Systematics and population ecology of Late Pleistocene bighorn sheep (Ovis canadensis) of Natural Trap Cave, Wyoming. Trans Nebraska Acad Sci, 16: 173–183. Google Scholar

[135] Wang X M. 1994. Phylogenetic systematics of the Hesperocyoninae (Carnivora: Canidae). Bull Am Mus Nat Hist, 221: 1–207. Google Scholar

[136] Wang X M, Li Q, Takeuchi G T. Out of Tibet: An early sheep from the Pliocene of Tibet, Protovis himalayensis , genus and species nov. (Bovidae, Caprini), and origin of Ice Age mountain sheep. J Vert Paleontol, 2016, 36: e1169190 CrossRef Google Scholar

[137] Wang X M, Li Q, Xie G P, Saylor J E, Tseng Z J, Takeuchi G T, Deng T, Wang Y, Hou S K, Liu J, Zhang C F, Wang N, Wu F X. Mio-Pleistocene Zanda Basin biostratigraphy and geochronology, pre-Ice Age fauna, and mammalian evolution in western Himalaya. Palaeogeogr Palaeoclimatol Palaeoecol, 2013, 374: 81-95 CrossRef ADS Google Scholar

[138] Wang X M, Li Q, Xie G P. Earliest record of Sinicuon in Zanda Basin, southern Tibet and implications for hypercarnivores in cold environments. Quat Int, 2015a, 355: 3-10 CrossRef ADS Google Scholar

[139] Wang X M, Qiu Z D, Li Q, Wang B Y, Qiu Z X, Downs W, Xie G P, Xie J Y, Deng T, Takeuchi G, Tseng Z J, Chang M M, Liu J, Wang Y, Biasatti D, Sun Z C, Fang X M, Meng Q Q. Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam Basin in northern Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 254: 363-385 CrossRef Google Scholar

[140] Wang X M, Tedford R H, Taylor B E. 1999. Phylogenetic systematics of the Borophaginae (Carnivora: Canidae). Bull Am Mus Nat Hist, 243: 1–391. Google Scholar

[141] Wang X M, Tseng Z J, Li Q, Takeuchi G T, Xie G P. From ‘third pole’ to north pole: A Himalayan origin for the arctic fox. Proc R Soc B, 2014, 281: 20140893 CrossRef PubMed Google Scholar

[142] Wang X M, Wang Y, Li Q, Tseng Z J, Takeuchi G T, Deng T, Xie G P, Chang M M, Wang N. Cenozoic vertebrate evolution and paleoenvironment in Tibetan Plateau: Progress and prospects. Gondwana Res, 2015b, 27: 1335-1354 CrossRef ADS Google Scholar

[143] Wang X M, Xie G P, Li Q, Qiu Z D, Tseng Z J, Takeuchi G T, Wang B Y, Fortelius M, Rosenström-Fortelius A, Wahlquist H, Downs W R, Zhang C F, Wang Y. 2011. Early explorations of Qaidam Basin (Tibetan Plateau) by Birger Bohlin: Reconciling classic vertebrate fossil localities with modern biostratigraphy. Vert PalAsiat, 49: 285–310. Google Scholar

[144] Wang Y, Shen Y J, Feng C G, Zhao K, Song Z B, Zhang Y P, Yang L D, He S P. Mitogenomic perspectives on the origin of Tibetan loaches and their adaptation to high altitude. Sci Rep, 2016, 6: 29690 CrossRef PubMed ADS Google Scholar

[145] Wang Y, Xu Y F, Khawaja S, Passey B H, Zhang C F, Wang X M, Li Q, Tseng Z J, Takeuchi G T, Deng T, Xie G P. Diet and environment of a mid-Pliocene fauna from southwestern Himalaya: Paleo-elevation implications. Earth Planet Sci Lett, 2013, 376: 43-53 CrossRef ADS Google Scholar

[146] Wei L, Wu X B, Zhu L X, Jiang Z G. Mitogenomic analysis of the genus Panthera. Sci China Life Sci, 2011, 54: 917-930 CrossRef PubMed Google Scholar

[147] Wen J, Zhang J Q, Nie Z L, Zhong Y, Sun H. Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Front Genet, 2014, 5: 4 CrossRef Google Scholar

[148] Werdelin L, Peigne S. 2010. Carnivora. In: Werdelin L, Sanders W J, eds. Cenozoic Mammals of Africa. Berkeley: University of California Press. 603–657. Google Scholar

[149] Werdelin L, Yamaguchi N, Johnson W E, O’Brien S J. 2010. Phylogeny and evolution of cats (Felidae). In: Macdonald D W, Loveridge A J, eds. Biology and Conservation of Wild Felids. Oxford: Oxford University Press. 59–82. Google Scholar

[150] Wheeler E A, Srivastava R, Manchester S R, Baas P, Wiemann M. Surprisingly modern latest Cretaceous-earliest Paleocene woods of India. IAWA J, 2017, 38: 456-542 CrossRef Google Scholar

[151] Wiens J J, Donoghue M J. Historical biogeography, ecology and species richness. Trends Ecol Evol, 2004, 19: 639-644 CrossRef PubMed Google Scholar

[152] Wu F X, He D K, Fang G Y, Deng T. Into Africa via docked India: A fossil climbing perch from the Oligocene of Tibet helps solve the anabantid biogeographical puzzle. Sci Bull, 2019, 64: 455-463 CrossRef Google Scholar

[153] Wu F X, Miao D S, Chang M M, Shi G L, Wang N. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the Late Oligocene. Sci Rep, 2017, 7: 878 CrossRef PubMed ADS Google Scholar

[154] Wu Y F. 1984. Systematic studies on the cyprinid fishes of the subfamily Schizothoracinae from China (in Chinese). Acta Biol Plateau Sin, 3: 119–140. Google Scholar

[155] Wu Y F, Chen Y Y. 1980. Fossil cyprinid fishes from the late Tertiary of North Xizang, China (in Chinese). Vert PalAsiat, 18: 15–20. Google Scholar

[156] Wu Y F, Wu C Z. 1992. The Fishes of the Qinghai-Xizang Plateau (in Chinese). Chengdu: Sichuan Publishing House of Science & Technology. 1–599. Google Scholar

[157] Wu Y F, Yu D P, Wu C Z, Jing C, Chen Y Q. 1994. A preliminary study on the resources of fishes and conservation in Hohxil (Kokoxili) region of Qinghai Province (in Chinese). Chin J Zool, 29: 9–17. Google Scholar

[158] Wu Y H. 2008. The Vascular Plants and Their Eco-geographical Distribution of the Qinghai-Tibetan Plateau (in Chinese). Beijing: Science Press. 1–1369. Google Scholar

[159] Wu Z Y. 1987. Origin of the Tibetan flora and its evolution (in Chinese). In: Comprehensive Scientific Expedition to the Tibetan Plateau, Chinese Academy of Sciences, ed. Flora of Tibet, Vol. 5. Beijing: Science Press. 874–902. Google Scholar

[160] Xing Y W, Utescher T, Jacques F M, Su T, Liu Y S C, Huang Y J, Zhou Z K. Paleoclimatic estimation reveals a weak winter monsoon in southwestern China during the Late Miocene: Evidence from plant macrofossils. Palaeogeogr Palaeoclimatol Palaeoecol, 2012, 358-360: 19-26 CrossRef ADS Google Scholar

[161] Yang L, Sado T, Vincent Hirt M, Pasco-Viel E, Arunachalam M, Li J B, Wang X, Freyhof J, Saitoh K, Simons A M, Miya M, He S, Mayden R L. Phylogeny and polyploidy: Resolving the classification of cyprinine fishes (Teleostei: Cypriniformes). Mol Phylogenet Evol, 2015, 85: 97-116 CrossRef PubMed Google Scholar

[162] Yang T, Zhang L, Li W J, Jia J W, Han L, Zhang Y X, Chen Y Q, Yan D F. New schizothoracine from Oligocene of Qaidam Basin, northern Tibetan Plateau, China, and its significance. J Vert Paleontol, 2018, 38: e1442840 CrossRef Google Scholar

[163] Yao T D, Chen F H, Cui P, Ma Y M, Xu B Q, Zhu L P, Zhang F, Wang W C, Ai L K, Yang X X. 2017. From Tibetan Plateau to Third Pole and Pan-Third Pole (in Chinese). Bull Chin Acad Sci, 32: 924–931. Google Scholar

[164] Youngman P. 1993. The Pleistocene small carnivores of eastern Beringia. Can Field Nat, 107: 139–163. Google Scholar

[165] Yu H, Zhang Y, Liu L, Chen Z, Qi W. Floristic characteristics and diversity patterns of seed plants endemic to the Tibetan Plateau (in Chinese). Biodiversity Sci, 2018, 26: 130-137 CrossRef Google Scholar

[166] Yu H B, Zhang Y L, Liu L S, Qi W, Li S C, Hu Z J. Combining the least cost path method with population genetic data and species distribution models to identify landscape connectivity during the late Quaternary in Himalayan hemlock. Ecol Evol, 2015, 5: 5781-5791 CrossRef PubMed Google Scholar

[167] Zeuner F E. 1963. A History of Domesticated Animals. London: Hutchinson. 1–560. Google Scholar

[168] Zhang C G, He D W. 1997. Fishes of Xizang (in Chinese). Bull Biol, 32: 9–10. Google Scholar

[169] Zhang D C, Ye J X, Sun H. Quantitative approaches to identify floristic units and centres of species endemism in the Qinghai-Tibetan Plateau, south-western China. J Biogeogr, 2016, 43: 2465-2476 CrossRef Google Scholar

[170] Zheng D, Yao T D. 2006. Uplifting of Tibetan Plateau with its environmental effects (in Chinese). Adv Earth Sci, 21: 451–458. Google Scholar

[171] Zheng S H, Wu W Y, Li Y, Wang G D. 1985. Late Cenozoic mammalian faunas of Guide and Gonghe basins, Qinghai Province (in Chinese). Vert PalAsiat, 23: 89–134. Google Scholar

[172] Zhu D C, Zhao Z D, Niu Y, Dilek Y, Hou Z Q, Mo X X. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res, 2013, 23: 1429-1454 CrossRef ADS Google Scholar

[173] Zhu S Q. 1986. A comparative study on the air-bladder and its bony capsule nemacheiline fishes (Cobitidae) in China (in Chinese). Acta Hydrobiol Sin, 10: 137–143. Google Scholar

[174] Zhu S Q. 1989. The Loaches of the Subfamily Nemacheilinae in China (in Chinese). Nanjing: Jiangsu Science and Technology Publishing House. 1–150. Google Scholar

  • Figure 1

    Local origination of endemism of fishes and mammals in the Tibetan Plateau. The morphological variations and spatial distribution (vertical plane) of living schizothoracine fishes (snow carps) in the Tibetan Plateau and the fossil records of cyprinids and bovines (horizontal plane), the altitudes on the right side represents the distribution range of Triplophysa (plateau loaches) in the plateau and its surrounding areas. Fossil sites and fossil taxa: 1. Oligocene cyprinid with 3 rows of pharyngeal teeth in Huatugou, Qaidam Basin; 2. Oligocene cyprinid with 3 rows of pharyngeal teeth in Wulan Husentu, Qaidam Basin; 3. Late Oligocene Tchunglinius tchangii with 3 rows of pharyngeal teeth in Nima Basin; 4. Early Miocene Plesioschizothorax macrocephalus with 3 rows of pharyngeal teeth in Lunpola Basin; 5. Pliocene Hsianwenia wui, with 3 rows of pharyngeal teeth in Qaidam Basin; 6. Late Miocene cyprinid with 3 rows of pharyngeal teeth in Huaitoutala, Qaidam Basin; 7. Pliocene highly specialized Gymnocypris with 2 rows of pharyngeal teeth in Kunlun Pass; 8. Pliocene highly specialized schizothoracine in Zanda Basin; 9. Late Miocene Qurliqnoria in Qaidam Basin; 10. Pliocene transitional Qurliqnoria in Kunlun Pass; 11. Pliocene transitional Qurliqnoria in Zanda Basin; 12. Pleistocene Pantholops hundesiensis in Zanda Basin (Neurocranium fossils).

  • Figure 2

    Local origination and “Out of Tibet” of mammals in the Tibetan Plateau.

  • Figure 3

    Intercontinental dispersals via Tibet, taking Ailanthus and climbing perches as examples.

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1