logo

SCIENCE CHINA Earth Sciences, Volume 62 , Issue 11 : 1702-1715(2019) https://doi.org/10.1007/s11430-019-9520-6

Tracing the formation and differentiation of the Earth by non-traditional stable isotopes

More info
  • ReceivedJun 13, 2019
  • AcceptedSep 26, 2019
  • PublishedOct 17, 2019

Abstract

The Earth has grown from chaotically mixed small dusts and gases to its present highly differentiated layered structure over the past 4.567 billion years. This differentiation has led to the formation of the atmosphere, hydrosphere, biosphere, crust, mantle, and core. The timing and mechanism for the formation and evolution of these different layers are still subjects of intense debate. This review brings together recent advances in using non-traditional stable isotopes to constrain major events and processes leading to the formation and differentiation of the Earth, including the Moon-forming giant impact, crust-mantle interactions, evolution of life, the rise of atmospheric oxygen, extreme paleoclimate changes, and cooling rate of magmas.


Funded by

We thank Prof. Yongfei Zheng for the invitation to write this manuscript. Fruitful discussion with Prof. James Farquhar and comments from Drs. Xinyang Chen

Yongsheng He

Yan Hu and Hengci Tian have significantly improved the manuscript. Three anonymous reviewers are acknowledged for their insightful reviews. This study was financially supported by the National Natural Science Foundation of China(Grant,No.,41729001)

National Science Foundation(Grant,No.,EAR-1747706)

European Research Council under the H2020 framework program/ERC grant agreement(Grant,No.,#637503-Pristine)

the UnivEarthS Labex program at Sorbonne Paris Cité(Grant,Nos.,#ANR-10-LABX-0023,#ANR-11-IDEX-0005-02)

and the ANR through a chaire d’excellence Sorbonne Paris Cité.


Acknowledgment

We thank Prof. Yongfei Zheng for the invitation to write this manuscript. Fruitful discussion with Prof. James Farquhar and comments from Drs. Xinyang Chen, Yongsheng He, Yan Hu and Hengci Tian have significantly improved the manuscript. Three anonymous reviewers are acknowledged for their insightful reviews. This study was financially supported by the National Natural Science Foundation of China (Grant No. 41729001), the National Science Foundation (Grant No. EAR-1747706), the European Research Council under the H2020 framework program/ERC grant agreement (Grant No. #637503-Pristine), the UnivEarthS Labex program at Sorbonne Paris Cité (Grant Nos. #ANR-10-LABX-0023 and #ANR-11-IDEX-0005-02), and the ANR through a chaire d’excellence Sorbonne Paris Cité.


References

[1] Albarède F, Télouk P, Balter V. Medical applications of isotope metallomics. Rev Mineral Geochem, 2017, 82: 851-885 CrossRef ADS Google Scholar

[2] Armytage R M G, Georg R B, Williams H M, Halliday A N. Silicon isotopes in lunar rocks: Implications for the Moon’s formation and the early history of the Earth. Geochim Cosmochim Acta, 2012, 77: 504-514 CrossRef ADS Google Scholar

[3] Anbar A D, Duan Y, Lyons T W, Arnold G L, Kendall B, Creaser R A, Kaufman A J, Gordon G W, Scott C, Garvin J, Buick R. A whiff of oxygen before the great oxidation event?. Science, 2007, 317: 1903-1906 CrossRef PubMed ADS Google Scholar

[4] Andersen M B, Elliott T, Freymuth H, Sims K W W, Niu Y, Kelley K A. The terrestrial uranium isotope cycle. Nature, 2015, 517: 356-359 CrossRef PubMed ADS Google Scholar

[5] André L, Abraham K, Hofmann A, Monin L, Kleinhanns I C, Foley S. Early continental crust generated by reworking of basalts variably silicified by seawater. Nat Geosci, 2019, 12: 769-773 CrossRef ADS Google Scholar

[6] Barnes J D, Sharp Z D. Chlorine isotope geochemistry. Rev Mineral Geochem, 2017, 82: 345-378 CrossRef ADS Google Scholar

[7] Barnes J D, Sharp Z D, Fischer T P. Chlorine isotope variations across the Izu-Bonin-Mariana arc. Geology, 2008, 36: 883-886 CrossRef ADS Google Scholar

[8] Bigeleisen J, Mayer M G. Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys, 1947, 15: 261-267 CrossRef ADS Google Scholar

[9] Blanchard M, Balan E, Schauble E A. Equilibrium fractionation of non-traditional isotopes: A molecular modeling perspective. Rev Mineral Geochem, 2017, 82: 27-63 CrossRef ADS Google Scholar

[10] Blum J D, Johnson M W. Recent developments in mercury stable isotope analysis. Rev Mineral Geochem, 2017, 82: 733-757 CrossRef ADS Google Scholar

[11] Boyce J W, Treiman A H, Guan Y, Ma C, Eiler J M, Gross J, Greenwood J P, Stolper E M. The chlorine isotope fingerprint of the lunar magma ocean. Sci Adv, 2015, 1: e1500380 CrossRef PubMed ADS Google Scholar

[12] Burgess S D, Bowring S, Shen S. High-precision timeline for Earth’s most severe extinction. Proc Natl Acad Sci USA, 2014, 111: 3316-3321 CrossRef PubMed ADS Google Scholar

[13] Cameron V, Vance D, Archer C, House C H. A biomarker based on the stable isotopes of nickel. Proc Natl Acad Sci USA, 2009, 106: 10944-10948 CrossRef PubMed ADS Google Scholar

[14] Canup R M. Forming a Moon with an Earth-like Composition via a Giant Impact. Science, 2012, 338: 1052-1055 CrossRef PubMed ADS Google Scholar

[15] Cheng Z, Zhang Z, Xie Q, Hou T, Ke S. Subducted slab-plume interaction traced by magnesium isotopes in the northern margin of the Tarim Large Igneous Province. Earth Planet Sci Lett, 2018, 489: 100-110 CrossRef ADS Google Scholar

[16] Chi Fru E, Rodríguez N P, Partin C A, Lalonde S V, Andersson P, Weiss D J, El Albani A, Rodushkin I, Konhauser K O. Cu isotopes in marine black shales record the Great Oxidation Event. Proc Natl Acad Sci USA, 2016, 113: 4941-4946 CrossRef PubMed ADS Google Scholar

[17] Chen Y X, Schertl H P, Zheng Y F, Huang F, Zhou K, Gong Y Z. Mg–O isotopes trace the origin of Mg-rich fluids in the deeply subducted continental crust of Western Alps. Earth Planet Sci Lett, 2016, 456: 157-167 CrossRef ADS Google Scholar

[18] Conway T M, John S G. The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean. Glob Biogeochem Cycle, 2014, 28: 1111-1128 CrossRef ADS Google Scholar

[19] Crowe S A, Døssing L N, Beukes N J, Bau M, Kruger S J, Frei R, Canfield D E. Atmospheric oxygenation three billion years ago. Nature, 2013, 501: 535-538 CrossRef PubMed ADS Google Scholar

[20] Ćuk M, Stewart S T. Making the Moon from a fast-spinning Earth: A giant impact followed by resonant despinning. Science, 2012, 338: 1047-1052 CrossRef PubMed ADS Google Scholar

[21] Dauphas N, Craddock P R, Asimow P D, Bennett V C, Nutman A P, Ohnenstetter D. Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth Planet Sci Lett, 2009, 288: 255-267 CrossRef ADS Google Scholar

[22] Dauphas N, Roskosz M, Alp E E, Neuville D R, Hu M Y, Sio C K, Tissot F L H, Zhao J, Tissandier L, Médard E, Cordier C. Magma redox and structural controls on iron isotope variations in Earth’s mantle and crust. Earth Planet Sci Lett, 2014, 398: 127-140 CrossRef ADS Google Scholar

[23] Davis A M, Richter F M. 2004. Condensation and evaporation of solar system materials. In: Holland H D, Turekian K K, Davis A M, eds. Treatise on Geochemistry (Vol 1): Meteorites, Comets, and Planets. Oxford: Elsevier-Pergamon. 407−430. Google Scholar

[24] Deng Z, Chaussidon M, Guitreau M, Puchtel I S, Dauphas N, Moynier F. An oceanic subduction origin for Archaean granitoids revealed by silicon isotopes. Nat Geosci, 2019, 12: 774-778 CrossRef ADS Google Scholar

[25] Eickmann B, Hofmann A, Wille M, Bui T H, Wing B A, Schoenberg R. Isotopic evidence for oxygenated Mesoarchaean shallow oceans. Nat Geosci, 2018, 11: 133-138 CrossRef ADS Google Scholar

[26] Frei R, Gaucher C, Poulton S W, Canfield D E. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature, 2009, 461: 250-253 CrossRef PubMed ADS Google Scholar

[27] Griffin W L, O’Reilly S Y. Cratonic lithospheric mantle: Is anything subducted?. Episodes, 2007, 30: 43-53 CrossRef Google Scholar

[28] Gussone N, Schmitt A D, Heuser A, Wombacher F, Dietzel M, Tipper E, Schiller M. 2016. Calcium Stable Isotope Geochemistry. Heidelberg: Springer, Berlin. 260. Google Scholar

[29] Halliday A N, Lee D C, Christensen J N, Walder A J, Freedman P A, Jones C E, Hall C M, Yi W, Teagle D. Recent developments in inductively coupled plasma magnetic sector multiple collector mass spectrometry. Int J Mass Spectrometry Ion Processes, 1995, 146-147: 21-33 CrossRef ADS Google Scholar

[30] Hazen R M, Jones A P, Baross J A. 2013. Carbon in Earth. Rev Mineral Geochem, 75: 1−698. Google Scholar

[31] He Y, Meng X, Ke S, Wu H, Zhu C, Teng F Z, Hoefs J, Huang J, Yang W, Xu L, Hou Z, Ren Z Y, Li S. A nephelinitic component with unusual δ56Fe in Cenozoic basalts from eastern China and its implications for deep oxygen cycle. Earth Planet Sci Lett, 2019, 512: 175-183 CrossRef ADS Google Scholar

[32] Hoefs J. 2018. Stable Isotope Geochemistry. Berlin: Springer-Verlag. 435. Google Scholar

[33] Hofmann A W. Mantle geochemistry: The message from oceanic volcanism. Nature, 1997, 385: 219-229 CrossRef ADS Google Scholar

[34] Hu Y, Teng F Z, Plank T. 2018. Potassium isotopic inputs to subduction zones. 28th Annual V. M. Goldschmidt Conference. Google Scholar

[35] Hu Y, Teng F Z, Plank T, Huang K J. Magnesium isotopic composition of subducting marine sediments. Chem Geol, 2017, 466: 15-31 CrossRef ADS Google Scholar

[36] Huang F, Tian S Y. 2018. Several metal stable isotope systems: Analytical methods, principles of tracing and important applications (in Chinese). Bull Mineral Petrol Geochem, 37: 793−811. Google Scholar

[37] Huang J, Li S G, Xiao Y, Ke S, Li W Y, Tian Y. Origin of low δ26Mg Cenozoic basalts from South China Block and their geodynamic implications. Geochim Cosmochim Acta, 2015, 164: 298-317 CrossRef ADS Google Scholar

[38] Huang K J, Teng F Z, Shen B, Xiao S, Lang X, Ma H R, Fu Y, Peng Y. Episode of intense chemical weathering during the termination of the 635 Ma Marinoan glaciation. Proc Natl Acad Sci USA, 2016, 113: 14904-14909 CrossRef PubMed ADS Google Scholar

[39] Huang K J, Teng F Z, Plank T, Staudigel H, Hu Y, Bao Z Y. Magnesium isotopic composition of altered oceanic crust and the global Mg cycle. Geochim Cosmochim Acta, 2018, 238: 357-373 CrossRef ADS Google Scholar

[40] Huang S, Farkaš J, Jacobsen S B. Stable calcium isotopic compositions of Hawaiian shield lavas: Evidence for recycling of ancient marine carbonates into the mantle. Geochim Cosmochim Acta, 2011, 75: 4987-4997 CrossRef ADS Google Scholar

[41] Huh Y, Chan L H, Edmond J M. Lithium isotopes as a probe of weathering processes: Orinoco River. Earth Planet Sci Lett, 2001, 194: 189-199 CrossRef ADS Google Scholar

[42] Jacob D E. Nature and origin of eclogite xenoliths from kimberlites. Lithos, 2004, 77: 295-316 CrossRef ADS Google Scholar

[43] John S G, Conway T M. A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes. Earth Planet Sci Lett, 2014, 394: 159-167 CrossRef ADS Google Scholar

[44] John S G, Kunzmann M, Townsend E J, Rosenberg A D. Zinc and cadmium stable isotopes in the geological record: A case study from the post-snowball Earth Nuccaleena cap dolostone. Palaeogeogr Palaeoclimatol Palaeoecol, 2017, 466: 202-208 CrossRef ADS Google Scholar

[45] Johnson C M, Beard B L, Albarede F. 2004. Geochemistry of Non-Traditional Stable Isotopes. Rev Mineral Geochem, 55: 1−454. Google Scholar

[46] Kasting J. Methane and climate during the Precambrian era. Precambrian Res, 2005, 137: 119-129 CrossRef ADS Google Scholar

[47] Kato C, Moynier F, Valdes M C, Dhaliwal J K, Day J M D. Extensive volatile loss during formation and differentiation of the Moon. Nat Commun, 2015, 6: 7617 CrossRef PubMed ADS Google Scholar

[48] Kato C, Moynier F. Gallium isotopic evidence for extensive volatile loss from the Moon during its formation. Sci Adv, 2017, 3: e1700571 CrossRef PubMed ADS arXiv Google Scholar

[49] Ke S, Liu S A, Li W Y, Yang W, Teng F Z. 2011. Advances and application in magnesium isotope geochemistry (in Chinese). Acta Petrol Sin, 27: 383−397. Google Scholar

[50] Kipp M A, Stüeken E E, Bekker A, Buick R. Selenium isotopes record extensive marine suboxia during the Great Oxidation Event. Proc Natl Acad Sci USA, 2017, 114: 875-880 CrossRef PubMed ADS Google Scholar

[51] Konhauser K O, Pecoits E, Lalonde S V, Papineau D, Nisbet E G, Barley M E, Arndt N T, Zahnle K, Kamber B S. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature, 2009, 458: 750-753 CrossRef PubMed ADS Google Scholar

[52] Kunzmann M, Halverson G P, Sossi P A, Raub T D, Payne J L, Kirby J. Zn isotope evidence for immediate resumption of primary productivity after snowball Earth. Geology, 2013, 41: 27-30 CrossRef ADS Google Scholar

[53] Lee C T A, Luffi P, Chin E J. Building and destroying continental mantle. Annu Rev Earth Planet Sci, 2011, 39: 59-90 CrossRef ADS Google Scholar

[54] Li S G, Yang W, Ke S, Meng X, Tian H, Xu L, He Y, Huang J, Wang X C, Xia Q, Sun W, Yang X, Ren Z Y, Wei H, Liu Y, Meng F, Yan J. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. Natl Sci Rev, 2017, 4: 111-120 CrossRef Google Scholar

[55] Li W Y, Teng F Z, Wing B A, Xiao Y. Limited magnesium isotope fractionation during metamorphic dehydration in metapelites from the Onawa contact aureole, Maine. Geochem Geophys Geosyst, 2014, 15: 408-415 CrossRef ADS Google Scholar

[56] Little S H, Sherman D M, Vance D, Hein J R. Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts. Earth Planet Sci Lett, 2014, 396: 213-222 CrossRef ADS Google Scholar

[57] Liu S A, Li S G. Tracing the deep carbon cycle using metal stable isotopes: Opportunities and challenges. Engineering, 2019, 5: 448-457 CrossRef Google Scholar

[58] Liu S A, Wang Z Z, Li S G, Huang J, Yang W. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China. Earth Planet Sci Lett, 2016, 444: 169-178 CrossRef ADS Google Scholar

[59] Liu S A, Wu H, Shen S, Jiang G, Zhang S, Lv Y, Zhang H, Li S. Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction. Geology, 2017, 45: 343-346 CrossRef ADS Google Scholar

[60] Liu X M, Rudnick R L. Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes. Proc Natl Acad Sci USA, 2011, 108: 20873-20880 CrossRef PubMed ADS Google Scholar

[61] Lock S J, Stewart S T, Petaev M I, Leinhardt Z, Mace M T, Jacobsen S B, Cuk M. The origin of the Moon within a terrestrial synestia. J Geophys Res Planets, 2018, 123: 910-951 CrossRef ADS arXiv Google Scholar

[62] Lodders K. Solar system abundances and condensation temperatures of the elements. Astrophys J, 2003, 591: 1220-1247 CrossRef ADS Google Scholar

[63] Lv Y, Liu S A, Wu H, Hohl S V, Chen S, Li S. Zn-Sr isotope records of the Ediacaran Doushantuo Formation in South China: diagenesis assessment and implications. Geochim Cosmochim Acta, 2018, 239: 330-345 CrossRef ADS Google Scholar

[64] Lyons T W, Reinhard C T, Planavsky N J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 2014, 506: 307-315 CrossRef PubMed ADS Google Scholar

[65] Magna T, Wiechert U, Halliday A N. New constraints on the lithium isotope compositions of the Moon and terrestrial planets. Earth Planet Sci Lett, 2006, 243: 336-353 CrossRef ADS Google Scholar

[66] MacPherson G J. 2008. Oxygen in the Solar System. Rev Mineral Geochem, 68: 1−598. Google Scholar

[67] Maréchal C N, Nicolas E, Douchet C, Albarède F. Abundance of zinc isotopes as a marine biogeochemical tracer. Geochem Geophys Geosyst, 2000, 1: 1015 CrossRef ADS Google Scholar

[68] Maréchal C N, Télouk P, Albarède F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol, 1999, 156: 251-273 CrossRef ADS Google Scholar

[69] Mougel B, Moynier F, Göpel C. Chromium isotopic homogeneity between the Moon, the Earth, and enstatite chondrites. Earth Planet Sci Lett, 2018, 481: 1-8 CrossRef ADS arXiv Google Scholar

[70] Moynier F, Vance D, Fujii T, Savage P. The isotope geochemistry of zinc and copper. Rev Mineral Geochem, 2017a, 82: 543-600 CrossRef ADS Google Scholar

[71] Moynier F, Foriel J, Shaw A S, Le Borgne M. Distribution of Zn isotopes during Alzheimer’s disease. Geochem Persp Let, 2017b, 3: 142-150 CrossRef Google Scholar

[72] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 1982, 299: 715-717 CrossRef ADS Google Scholar

[73] Nielsen S G, Wasylenki L E, Rehkämper M, Peacock C L, Xue Z, Moon E M. Towards an understanding of thallium isotope fractionation during adsorption to manganese oxides. Geochim Cosmochim Acta, 2013, 117: 252-265 CrossRef ADS Google Scholar

[74] Nier A O. A mass spectrometer for routine isotope abundance measurements. Rev Sci Instruments, 1940, 11: 212-216 CrossRef ADS Google Scholar

[75] Niu Y, Gong H, Wang X, Xiao Y, Guo P, Shao F, Sun P, Shen S, Duan M, Kong J, Wang G, Xue Q, Gao Y, Hong D. 2017. Some key problems on the petrogenesis of seafloor basalts, abyssal peridotites and geodynamics¾A non-traditional isotope approach (in Chinese). Adv Earth Sci, 32: 111–127. Google Scholar

[76] Ostrander C M, Nielsen S G, Owens J D, Kendall B, Gordon G W, Romaniello S J, Anbar A D. Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nat Geosci, 2019, 12: 186-191 CrossRef PubMed ADS Google Scholar

[77] Paniello R C, Day J M D, Moynier F. Zinc isotopic evidence for the origin of the Moon. Nature, 2012, 490: 376-379 CrossRef PubMed ADS Google Scholar

[78] Pearson D G, Canil D, Shirey S B. 2014. Mantle samples included in volcanic rocks: Xenoliths and diamonds. In: Holland H D, Turekian K K, Davis A M, eds. Treatise on Geochemistry (Vol 3): The Mantle and Core. Oxford: Elsevier. 169−253. Google Scholar

[79] Penniston-Dorland S, Liu X M, Rudnick R L. Lithium isotope geochemistry. Rev Mineral Geochem, 2017, 82: 165-217 CrossRef ADS Google Scholar

[80] Planavsky N J, Asael D, Hofmann A, Reinhard C T, Lalonde S V, Knudsen A, Wang X, Ossa Ossa F, Pecoits E, Smith A J B, Beukes N J, Bekker A, Johnson T M, Konhauser K O, Lyons T W, Rouxel O J. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat Geosci, 2014, 7: 283-286 CrossRef ADS Google Scholar

[81] Pringle E A, Moynier F. Rubidium isotopic composition of the Earth, meteorites, and the Moon: Evidence for the origin of volatile loss during planetary accretion. Earth Planet Sci Lett, 2017, 473: 62-70 CrossRef ADS Google Scholar

[82] Qin L, Wang X. Chromium isotope geochemistry. Rev Mineral Geochem, 2017, 82: 379-414 CrossRef ADS Google Scholar

[83] Richter F M, Dauphas N, Teng F Z. Non-traditional fractionation of non-traditional isotopes: Evaporation, chemical diffusion and Soret diffusion. Chem Geol, 2009, 258: 92-103 CrossRef ADS Google Scholar

[84] Samanta M, Ellwood M J, Sinoir M, Hassler C S. Dissolved zinc isotope cycling in the Tasman Sea, SW Pacific Ocean. Mar Chem, 2017, 192: 1-12 CrossRef Google Scholar

[85] Sedaghatpour F, Teng F Z, Liu Y, Sears D W G, Taylor L A. Magnesium isotopic composition of the Moon. Geochim Cosmochim Acta, 2013, 120: 1-16 CrossRef ADS Google Scholar

[86] Shahar A, Elardo S M, Macris C A. Equilibrium fractionation of non-traditional stable isotopes: An experimental perspective. Rev Mineral Geochem, 2017, 82: 65-83 CrossRef ADS Google Scholar

[87] Sharp Z D, Shearer C K, McKeegan K D, Barnes J D, Wang Y Q. The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science, 2010, 329: 1050-1053 CrossRef PubMed ADS Google Scholar

[88] Sheldon N D. Abrupt chemical weathering increase across the Permian-Triassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 231: 315-321 CrossRef ADS Google Scholar

[89] Sio C K I, Dauphas N, Teng F Z, Chaussidon M, Helz R T, Roskosz M. Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg-Fe isotopic analyses. Geochim Cosmochim Acta, 2013, 123: 302-321 CrossRef ADS Google Scholar

[90] Sossi P A, Moynier F, van Zuilen K. Volatile loss following cooling and accretion of the Moon revealed by chromium isotopes. Proc Natl Acad Sci USA, 2018, 115: 10920-10925 CrossRef PubMed ADS arXiv Google Scholar

[91] Sossi P A, Moynier F. Chemical and isotopic kinship of iron in the Earth and Moon deduced from the lunar Mg-Suite. Earth Planet Sci Lett, 2017, 471: 125-135 CrossRef ADS Google Scholar

[92] Stracke A, Bizimis M, Salters V J M. 2003. Recycling oceanic crust: Quantitative constraints. Geochemistry Geophysics Geosystems, 4: 8003. Google Scholar

[93] Stüeken E E, Buick R, Anbar A D. Selenium isotopes support free O2 in the latest Archean. Geology, 2015, 43: 259-262 CrossRef ADS Google Scholar

[94] Su B X, Hu Y, Teng F Z, Xiao Y, Zhou X H, Sun Y, Zhou M F, Chang S C. Magnesium isotope constraints on subduction contribution to Mesozoic and Cenozoic East Asian continental basalts. Chem Geol, 2017, 466: 116-122 CrossRef ADS Google Scholar

[95] Sun H, Xiao Y, Gao Y, Zhang G, Casey J F, Shen Y. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian–Triassic boundary. Proc Natl Acad Sci USA, 2018, 115: 3782-3787 CrossRef PubMed ADS Google Scholar

[96] Sun W, Wei G J, Zhang Z F, Ding X, Ling M X. 2012. Research status and advance in isotope geochemistry (in Chinese). Bull Mineral Petrol Geochem, 31: 560−564. Google Scholar

[97] Sun Y, Teng F Z, Hu Y, Chen X Y, Pang K N. Tracing subducted oceanic slabs in the mantle by using potassium isotopes. Geochim Cosmochim Acta, 2019, CrossRef Google Scholar

[98] Sun Y, Teng F Z, Ying J F, Su B X, Hu Y, Fan Q C, Zhou X H. Magnesium isotopic evidence for ancient subducted oceanic crust in LOMU-like potassium-rich volcanic rocks. J Geophys Res Solid Earth, 2017, 122: 7562-7572 CrossRef ADS Google Scholar

[99] Taylor S R. The Moon re-examined. Geochim Cosmochim Acta, 2014, 141: 670-676 CrossRef ADS Google Scholar

[100] Teng F Z, Dauphas N, Helz R T, Gao S, Huang S. Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine. Earth Planet Sci Lett, 2011, 308: 317-324 CrossRef ADS Google Scholar

[101] Teng F Z, Hu Y, Chauvel C. Magnesium isotope geochemistry in arc volcanism. Proc Natl Acad Sci USA, 2016, 113: 7082-7087 CrossRef PubMed ADS Google Scholar

[102] Teng F Z, Li W Y, Ke S, Marty B, Dauphas N, Huang S, Wu F Y, Pourmand A. Magnesium isotopic composition of the Earth and chondrites. Geochim Cosmochim Acta, 2010, 74: 4150-4166 CrossRef ADS Google Scholar

[103] Teng F Z, Watkins J M, Dauphas N. 2017. Non-traditional stable isotopes. Rev Mineral Geochem, 82: 1–885. Google Scholar

[104] Teng F Z. Magnesium isotope geochemistry. Rev Mineral Geochem, 2017, 82: 219-287 CrossRef ADS Google Scholar

[105] Tian H C, Yang W, Li S G, Ke S, Chu Z Y. Origin of low δ26Mg basalts with EM-I component: Evidence for interaction between enriched lithosphere and carbonated asthenosphere. Geochim Cosmochim Acta, 2016, 188: 93-105 CrossRef ADS Google Scholar

[106] Tian H C, Yang W, Li S G, Ke S, Duan X Z. Low δ26Mg volcanic rocks of Tengchong in Southwestern China: A deep carbon cycle induced by supercritical liquids. Geochim Cosmochim Acta, 2018, 240: 191-219 CrossRef ADS Google Scholar

[107] Tomascak P B, Magna T, Dohmen R. 2016. Advances in Lithium Isotope Geochemistry. New York: Springer. 195. Google Scholar

[108] Touboul M, Kleine T, Bourdon B, Palme H, Wieler R. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature, 2007, 450: 1206-1209 CrossRef PubMed ADS Google Scholar

[109] Urey H C. The thermodynamic properties of isotopic substances. J Chem Soc, 1947, : 562 CrossRef Google Scholar

[110] Valley J W, Cole D R. 2001. Stable isotope geochemistry. Rev Mineral Geochem, 43: 1−663. Google Scholar

[111] Valley J W, Taylor H P, O’Neil J R. 1986. Stable isotopes in high-temperature geological processes. Rev Mineral, 16: 1−570. Google Scholar

[112] Wang K, Jacobsen S B. Potassium isotopic evidence for a high-energy giant impact origin of the Moon. Nature, 2016, 538: 487-490 CrossRef PubMed ADS Google Scholar

[113] Wang S J, Teng F Z, Williams H M, Li S G. Magnesium isotopic variations in cratonic eclogites: Origins and implications. Earth Planet Sci Lett, 2012, 359-360: 219-226 CrossRef ADS Google Scholar

[114] Wang S J, Teng F Z, Li S G. Tracing carbonate-silicate interaction during subduction using magnesium and oxygen isotopes. Nat Commun, 2014a, 5: 5328 CrossRef PubMed ADS Google Scholar

[115] Wang S J, Teng F Z, Li S G, Hong J A. Magnesium isotopic systematics of mafic rocks during continental subduction. Geochim Cosmochim Acta, 2014b, 143: 34-48 CrossRef ADS Google Scholar

[116] Wang S J, Teng F Z, Rudnick R L, Li S G. The behavior of magnesium isotopes in low-grade metamorphosed mudrocks. Geochim Cosmochim Acta, 2015a, 165: 435-448 CrossRef ADS Google Scholar

[117] Wang S J, Teng F Z, Rudnick R L, Li S G. 2015b. Magnesium isotope evidence for a recycled origin of cratonic eclogites. Geology, 43: 1071–1074. Google Scholar

[118] Wang S J, Teng F Z, Scott J M. Tracing the origin of continental HIMU-like intraplate volcanism using magnesium isotope systematics. Geochim Cosmochim Acta, 2016, 185: 78-87 CrossRef ADS Google Scholar

[119] Wang S J, Teng F Z, Li S G, Zhang L F, Du J X, He Y S, Niu Y. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes. Lithos, 2017, 290-291: 94-103 CrossRef ADS Google Scholar

[120] Wang S J, Rudnick R L, Gaschnig R M, Wang H, Wasylenki L E. Methanogenesis sustained by sulfide weathering during the Great Oxidation Event. Nat Geosci, 2019, 12: 296-300 CrossRef ADS Google Scholar

[121] Wang X, Liu S A, Wang Z, Chen D, Zhang L. Zinc and strontium isotope evidence for climate cooling and constraints on the Frasnian-Famennian (~372 Ma) mass extinction. Palaeogeogr Palaeoclimatol PalaeoEcol, 2018a, 498: 68-82 CrossRef ADS Google Scholar

[122] Wang Z Z, Liu S A, Chen L H, Li S G, Zeng G. Compositional transition in natural alkaline lavas through silica-undersaturated melt-lithosphere interaction. Geology, 2018b, 46: 771-774 CrossRef ADS Google Scholar

[123] Watkins J M, DePaolo D J, Watson E B. Kinetic fractionation of non-traditional stable isotopes by diffusion and crystal growth reactions. Rev Mineral Geochem, 2017, 82: 85-125 CrossRef ADS Google Scholar

[124] Weyer S, Ionov D A. Partial melting and melt percolation in the mantle: The message from Fe isotopes. Earth Planet Sci Lett, 2007, 259: 119-133 CrossRef ADS Google Scholar

[125] Wu H, He Y, Teng F Z, Ke S, Hou Z, Li S. Diffusion-driven magnesium and iron isotope fractionation at a gabbro-granite boundary. Geochim Cosmochim Acta, 2018, 222: 671-684 CrossRef ADS Google Scholar

[126] Yan B, Zhu X, He X, Tang S. Zn isotopic evolution in early Ediacaran ocean: A global signature. Precambrian Res, 2019, 320: 472-483 CrossRef ADS Google Scholar

[127] Yang W, Teng F Z, Zhang H F, Li S G. Magnesium isotopic systematics of continental basalts from the North China craton: Implications for tracing subducted carbonate in the mantle. Chem Geol, 2012, 328: 185-194 CrossRef ADS Google Scholar

[128] Zahnle K, Claire M, Catling D. The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology, 2006, 4: 271-283 CrossRef Google Scholar

[129] Zhang H F, Tang Y J, Zhao X M, Yang Y H. 2007. Significance and prospective of non-traditional isotopic systems in mantle geochemistry (in Chinese). Earth-Sci Front, 14: 37−57. Google Scholar

[130] Zhang J, Dauphas N, Davis A M, Leya I, Fedkin A. The proto-Earth as a significant source of lunar material. Nat Geosci, 2012, 5: 251-255 CrossRef ADS Google Scholar

[131] Zhao Y, Vance D, Abouchami W, de Baar H J W. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochim Cosmochim Acta, 2014, 125: 653-672 CrossRef ADS Google Scholar

[132] Zhu X K, Guo Y, Williams R J P, O'Nions R K, Matthews A, Belshaw N S, Canters G W, de Waal E C, Weser U, Burgess B K, Salvato B. Mass fractionation processes of transition metal isotopes. Earth Planet Sci Lett, 2002, 200: 47-62 CrossRef ADS Google Scholar

[133] Zhu X K, Wang Y, Yan B, Li J, Dong A, Li Z H, Sun J. 2013. Developments of Non-Traditional Stable Isotope Geochemistry (in Chinese). Bull Mineral Petrol Geochem, 32: 651−688. Google Scholar

  • Figure 1

    Isotope difference between the Earth and the Moon vs. condensation temperature of elements (Touboul et al. (2007) for W; Zhang et al. (2012) for Ti; Sedaghatpour et al. (2013) for Mg; Armytage et al. (2012) for Si; Sossi et al. (2018) and Sossi and Moynier (2017) for Cr; Magna et al. (2006) for Li; Wang and Jacobsen (2016) for K; Kato and Moynier (2017) for Ga; Sharp et al. (2010) and Boyce et al. (2015) for Cl; Pringle and Moynier (2017) for Rb; Paniello et al. (2012) for Zn). Cl isotopic composition of the Moon is 3 to 16‰ heavier than the Earth and is beyond the scale of the figure. Condensation temperatures are from Lodders (2003). The δ notation is used for reporting isotopic compositions. For a given element E with two isotopes: high mass i and low mass j, the δiE (‰) is defined as: δiE (‰) = [(iE/jE)sample /(iE/jE)standard –1]1000.

  • Figure 2

    Applications of non-traditional stable isotopes in understanding crust-mantle cycling. Subducting slab (sediments, altered basalts and altered peridotites) has heterogeneous isotopic compositions. Heterogeneity of most non-traditional stable isotopes in the slab can survive dehydration during subduction and eventually form distinct mantle end members, as reflected directly by xenolithic eclogite, wehrlite and pyroxenite, as well as indirectly by ocean-island basalts (OIBs) and continental basalts. Arc lavas, depending on the nature and location of crustal addition, have different isotopic composition, reflecting inputs from different parts of the subducting slab.

  • Figure 3

    Mg and Fe isotope fractionation in zoned Hawaiian olivines. (a) Displays the linear correlation between Mg and Fe isotope fractionations in olivine fragments from Hawaiian lavas (Teng et al., 2011); (b) reports the coupled Mg and Fe isotope fractionations measured by micro-drilling a zoned olivine profile (Sio et al., 2013).

  • Figure 4

    A compilation of selected geochemical proxies across the Permian-Triassic boundary in the Meishan section, south China. The Zn concentration, Zn and C isotopic data are from Liu et al. (2017); Li concentration and isotopic composition are from Sun et al. (2018).

  • Figure 5

    Stratigraphic synthesis of the Huronian and Transvaal supergroups, displaying trends in total sulfur and Ni isotope compositions of composite diamictites. Modified from Wang et al. (2019).

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号