logo

SCIENCE CHINA Earth Sciences, https://doi.org/10.1007/s11430-020-9640-3

Phytolith evidence for human-plant subsistence in Yahuai Cave (Guangxi, South China) over the past 30000 years

More info
  • ReceivedJan 27, 2020
  • AcceptedJun 6, 2020
  • PublishedJul 29, 2020

Abstract

South China preserves a rich archaeological record elucidating the evolution of early modern humans during the Late Pleistocene. However, few studies on plant utilization were conducted in this region. We used phytolith analysis from Yahuai Cave, Guangxi, to infer human use of plant resources over the past 30000 years. AMS 14C dating was used to constrain the chronological framework. Results indicate that several economically essential species were present throughout the sequence including Urticineae (cf. Ulmus sp.), which appears in the lower layers of the sequence (Marine Isotope Stage 3 through Heinrich 1); bamboo and palm which appear throughout the sequence, and wild rice which appears in a clear archaeological context dating to 16000 years ago. This is the earliest record of wild rice in South China and a prerequisite for rice domestication. The unique stone tool assemblages, which resemble those in north China as opposed to South China, point to the possibility that humans, seeking refuge from the colder north, brought their tool kit with them and utilized familiar northern taxa. Warmer South China would have served as a refuge for human populations escaping the cold, harsh climate in the north with more ameliorate conditions in the south.


Funded by

the Strategic Priority Research Program of the Chinese Academy of Science(Grant,No.,XDB26000000)

National Natural Science Foundation of China(Grant,Nos.,41877427,&,41730319)

National Basic Research Program of China(Grant,No.,2015CB953803)

and the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant,No.,2018099)


Acknowledgment

We would like to thank Ofer Bar-Yosef, Tuo Yang, and Xinying Zhou for their assistance. This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB26000000), the National Natural Science Foundation of China (Grant Nos. 41877427 & 41730319), the National Basic Research Program of China (Grant No. 2015CB953803), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2018099).


References

[1] Albert R M, Bamford M K. Vegetation during UMBI and deposition of tuff IF at Olduvai Gorge, Tanzania (ca. 1.8 Ma) based on phytoliths and plant remains. J Human Evol, 2012, 63: 342-350 CrossRef PubMed Google Scholar

[2] Albert R M, Bamford M K, Cabanes D. Palaeoecological significance of palms at Olduvai Gorge, Tanzania, based on phytolith remains. Quat Int, 2009, 193: 41-48 CrossRef ADS Google Scholar

[3] Albert R M, Bamford M K, Esteban I. Reconstruction of ancient palm vegetation landscapes using a phytolith approach. Quat Int, 2015, 369: 51-66 CrossRef ADS Google Scholar

[4] Anderson D D. 1990. Lang Rongrien Rockshelter: A Pleistocene, Early Holocene Archaeological Site from Krabi, Southwestern Thailand. New York: Sterling Publishing Company. Google Scholar

[5] Anderson D D. Cave archaeology in southeast Asia. Geoarchaeology, 1997, 12: 607-638 CrossRef Google Scholar

[6] Anderson D D. The use of caves in peninsular Thailand in the Late Pleistocene and early and middle Holocene. Asian Perspectives, 2005, 44: 137-153 CrossRef Google Scholar

[7] Anderson P C, eds. 1999. Prehistory of Agriculture: New Experimental and Ethnographic Approaches. Los Angeles: The Institute of Archaeology, University of California. Google Scholar

[8] Ball T, Vrydaghs L, Van Den Hauwe I, Manwaring J, De Langhe E. Differentiating banana phytoliths: Wild and edible Musa acuminata and Musa balbisiana. J Archaeol Sci, 2006, 33: 1228-1236 CrossRef Google Scholar

[9] Bamford M K, Albert R M, Cabanes D. Plio-Pleistocene macroplant fossil remains and phytoliths from lowermost bed II in the eastern palaeolake margin of Olduvai Gorge, Tanzania. Quat Int, 2006, 148: 95-112 CrossRef ADS Google Scholar

[10] Belmaker M, Xie G, Yu M, Chen X. 2018. The first paleoecological analysis derived from small mammal remains from the Late Pleistocene of South China: Results from Yahuai Cave and implications for modern human dispersal into East Asia. Austin: Abstracts of the 2018 Paleoanthropology Society Meeting. Google Scholar

[11] Bremond L, Alexandre A, Wooller M J, Hély C, Williamson D, Schäfer P A, Majule A, Guiot J. Phytolith indices as proxies of grass subfamilies on East African tropical mountains. Glob Planet Change, 2008, 61: 209-224 CrossRef ADS Google Scholar

[12] Cal A J, Sanciangco M, Rebolledo M C, Luquet D, Torres R O, McNally K L, Henry A. Leaf morphology, rather than plant water status, underlies genetic variation of rice leaf rolling under drought. Plant Cell Environ, 2019, 42: 1532-1544 CrossRef PubMed Google Scholar

[13] Chi Z, Hung H C. The emergence of agriculture in southern China. Antiquity, 2010, 84: 11-25 CrossRef Google Scholar

[14] Choi J Y, Platts A E, Fuller D Q, Hsing Y I, Wing R A, Purugganan M D. The rice paradox: Multiple origins but single domestication in Asian rice. Mol Biol Evol, 2017, 34: 969-979 CrossRef PubMed Google Scholar

[15] Choi S Y, Lee S, Choi W H, Lee Y, Jo Y O, Ha T Y. Isolation and Anti-Inflammatory Activity of Bakuchiol from Ulmus davidiana var. japonica. J Medicinal Food, 2010, 13: 1019-1023 CrossRef PubMed Google Scholar

[16] Chongtham N, Bisht M S, Haorongbam S. Nutritional properties of bamboo shoots: Potential and prospects for utilization as a health food. Comprehensive Rev Food Sci Food Saf, 2011, 10: 153-168 CrossRef Google Scholar

[17] Fangwu Z, Weisan L. 1997. The dental caries of the Neolithic Population From Zengpiyan Cave of Guilin, China. Acta Anthropol Sin, 16: 271–273. Google Scholar

[18] Fenwick R S H, Lentfer C J, Weisler M I. Palm reading: A pilot study to discriminate phytoliths of four Arecaceae (Palmae) taxa. J Archaeol Sci, 2011, 38: 2190-2199 CrossRef Google Scholar

[19] Fredlund G G, Tieszen L T. Modern phytolith assemblages from the North American great plains. J Biogeography, 1994, 21: 321 CrossRef Google Scholar

[20] Fu X G, Li X W, Li Z, Zhang L, Chen C. 1998. Excavation at the Dingshishan site in Yongning County, Guangxi (in Chinese). Archaeology, 11: 11–33.. Google Scholar

[21] Fujiwara H, Kaner S. 1993. Research into the history of rice cultivation using plant opal analysis. MASCA Res Pap Sci Archaeol, 10: 147–158. Google Scholar

[22] Fuller D Q, Sato Y I, Castillo C, Qin L, Weisskopf A R, Kingwell-Banham E J, Song J, Ahn S M, van Etten J. Consilience of genetics and archaeobotany in the entangled history of rice. Archaeol Anthropol Sci, 2010, 2: 115-131 CrossRef Google Scholar

[23] Fuller D Q, Weisskopf A R, Castillo C C. Pathways of rice diversification across Asia. Archaeol Int, 2016, 19: 84-96 CrossRef Google Scholar

[24] Grimm E C. 1991. 1991: TILIA and TILIA. GRAPH. Springfield: Illinois State Museum. Google Scholar

[25] Gu Y, Liu H, Wang H, Li R, Yu J. Phytoliths as a method of identification for three genera of woody bamboos (Bambusoideae) in tropical southwest China. J Archaeol Sci, 2016, 68: 46-53 CrossRef Google Scholar

[26] Hammer Ø, Harper D A T, Ryan P D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electronica, 4: 1–9. Google Scholar

[27] Hardy K, Buckley S, Collins M J, Estalrrich A, Brothwell D, Copeland L, García-Tabernero A, García-Vargas S, de la Rasilla M, Lalueza-Fox C, Huguet R, Bastir M, Santamaría D, Madella M, Wilson J, Cortés A F, Rosas A. Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften, 2012, 99: 617-626 CrossRef PubMed ADS Google Scholar

[28] Henderson A. 2009. Palms of Southern Asia. Princeton: Princeton University Press. Google Scholar

[29] Hoang X C, Nguyen K S. 1998. Stone Age Archaeology in Vietnam. Vietnam Archaeol, 2: 53–64. Google Scholar

[30] Hodell D A, Nicholl J A, Bontognali T R R, Danino S, Dorador J, Dowdeswell J A, Einsle J, Kuhlmann H, Martrat B, Mleneck-Vautravers M J, Rodríguez-Tovar F J, Röhl U. Anatomy of Heinrich Layer 1 and its role in the last deglaciation. Paleoceanography, 2017, 32: 284-303 CrossRef ADS Google Scholar

[31] Hu X Y, Yan F L, Li C H. 2000. Determination 6 kinds of trace elements of fruits of elm and analysis its medicinal value. Stud Trace Elements Health, 17: 54. Google Scholar

[32] Huan X, Lu H, Wang C, Tang X, Zuo X, Ge Y, He K. Bulliform phytolith research in wild and domesticated rice paddy soil in South China. PLoS One, 2015, 10: e0141255 CrossRef PubMed ADS Google Scholar

[33] Huang X, Kurata N, Wei X, Wang Z X, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B. A map of rice genome variation reveals the origin of cultivated rice. Nature, 2012, 490: 497-501 CrossRef PubMed ADS Google Scholar

[34] Kealhofer L, Piperno D R. 1998. Opal Phytoliths in Southeast Asian flora. Washington D C: Smithonian Institution Press. Google Scholar

[35] Kim S P, Lee S J, Nam S H, Friedman M. Elm tree (Ulmus parvifolia) bark bioprocessed with mycelia of shiitake (Lentinus edodes) mushrooms in liquid culture: Composition and mechanism of protection against allergic asthma in mice. J Agric Food Chem, 2016, 64: 773-784 CrossRef PubMed Google Scholar

[36] Lee Y, Park H, Ryu H S, Chun M, Kang S, Kim H S. Effects of elm bark (Ulmus davidiana var. japonica) extracts on the modulation of immunocompetence in mice. J Medicinal Food, 2007, 10: 118-125 CrossRef PubMed Google Scholar

[37] Lu H Y, Wu N Q, Liu K B, Jiang H, Liu T S. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: Palaeoenvironmental reconstruction in the Loess Plateau. Quat Sci Rev, 2007, 26: 759-772 CrossRef ADS Google Scholar

[38] Lu H, Liu Z, Wu N, Berné S, Saito Y, Liu B, Wang L. Rice domestication and climatic change: Phytolith evidence from East China. Boreas, 2002, 31: 378-385 CrossRef Google Scholar

[39] Luo K, Xing F, Tian J. Guihaia lancifolia (Arecaceae), a new species from Guangxi, China. Phytotaxa, 2016, 286: 285-290 CrossRef Google Scholar

[40] Luo W, Gu C, Yang Y, Zhang D, Liang Z, Li J, Huang C, Zhang J. Phytoliths reveal the earliest interplay of rice and broomcorn millet at the site of Shuangdun (ca. 7.3–6.8 ka BP) in the middle Huai River valley, China. J Archaeol Sci, 2019, 102: 26-34 CrossRef Google Scholar

[41] Ma Y, Yang X, Huan X, Gao Y, Wang W, Li Z, Ma Z, Perry L, Sun G, Jiang L, Jin G, Lu H. Multiple indicators of rice remains and the process of rice domestication: A case study in the lower Yangtze River region, China. PLoS One, 2018, 13: e0208104 CrossRef PubMed ADS Google Scholar

[42] Madella M, Powers-Jones A H. 1998. Phytoliths from tagliente shelter: A discussion on deposition and taphonomy. In: Arias C, Bietti A, Castelletti L, Peretto C, eds. Proceedings of the XIII Congress of the International Union of Prehistoric and Protohistoric Sciences. ABACO. 501–508. Google Scholar

[43] Morris L R, Baker F A, Morris C, Ryel R J. Phytolith types and type-frequencies in native and introduced species of the sagebrush steppe and pinyon-juniper woodlands of the Great Basin, USA. Rev Palaeobot Palynol, 2009, 157: 339-357 CrossRef Google Scholar

[44] Mudar K, Anderson D D. New evidence for Southeast Asian Pleistocene foraging economies: Faunal remains from the early levels of Lang Rongrien rockshelter, Krabi, Thailand. Asian Perspec, 2007, 46: 298-334 CrossRef Google Scholar

[45] Mulholland S C. Phytolith shape frequencies in North Dakota grasses: A comparison to general patterns. J Archaeol Sci, 1989, 16: 489-511 CrossRef Google Scholar

[46] Neumann K, Strömberg C A E, Ball T, Albert R M, Vrydaghs L, Cummings L S. International code for phytolith nomenclature (ICPN) 2.0. Ann Bot, 2019, 124: 189-199 CrossRef PubMed Google Scholar

[47] Nguyen K. 2007. Stone Age archaeology in Vietnam. Vietnam Archaeol, 2: 53–64. Google Scholar

[48] Nguyen K S. 2008. Paleolithic archaeology in Vietnam, Laos, and Cambodia. Vietnam Archaeol, 3: 7–18. Google Scholar

[49] Nirmala C, Bisht M S, Laishram M. Bioactive compounds in bamboo shoots: Health benefits and prospects for developing functional foods. Int J Food Sci Technol, 2014, 49: 1425-1431 CrossRef Google Scholar

[50] Nirmala C, Bisht M S, Bajwa H K, Santosh O. Bamboo: A rich source of natural antioxidants and its applications in the food and pharmaceutical industry. Trends Food Sci Tech, 2018, 77: 91-99 CrossRef Google Scholar

[51] Okunaka R, Kawano T, Inoue J. Holocene history of intentional fires and grassland development on the Soni Plateau, Central Japan, reconstructed from phytolith and macroscopic charcoal records within cumulative soils, combined with paleoenvironmental data from mire sediments. Holocene, 2012, 22: 793-800 CrossRef ADS Google Scholar

[52] Piperno D R. A comparison and differentiation of phytoliths from maize and wild grasses: Use of morphological criteria. Am Antiq, 1984, 49: 361-383 CrossRef Google Scholar

[53] Piperno D R. 1989. Non-affluent foragers: Resource availability, seasonal shortages, and the emergence of agriculture in Panamanian tropical forests. In: Harris D R, Hillman G C, eds. Foraging and farming: The Evolution of Plant Exploitation. London: Unwin Hyman. 538–554. Google Scholar

[54] Piperno D R. 2006. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. Lanhan M D: AltaMira Press (Rowman & Littlefield). Google Scholar

[55] Piperno D R, Pearsall D M. 1998a. The Silica Bodies of Tropical American Grasses: Morphology, Taxonomy, and Implications for Grass Systematics and Fossil Phytolith Identification. Washington D C: Smithsonian Institution Press. 1–40. Google Scholar

[56] Piperno D R, Pearsall DM, eds. 1998b. The Origins of Agriculture in the Lowland Neotropics. San Diego: Academic Press. Google Scholar

[57] Premathilake R, Hunt C O. Late Pleistocene humans in Sri Lanka used plant resources: A phytolith record from Fahien rock shelter. Palaeogeogr Palaeoclimatol Palaeoecol, 2018, 505: 1-17 CrossRef ADS Google Scholar

[58] Qiu Z, Jiang L, Wang C, Hill D V, Wu Y. New evidence for rice cultivation from the Early Neolithic Hehuashan site. Archaeol Anthropol Sci, 2019, 11: 1259-1272 CrossRef Google Scholar

[59] Rashid I, Mir S H, Zurro D, Dar R A, Reshi Z A. Phytoliths as proxies of the past. Earth-Sci Rev, 2019, 194: 234-250 CrossRef ADS Google Scholar

[60] Reimer P J, Bard E, Bayliss A, Beck J W, Blackwell P G, Ramsey C B, Buck C E, Cheng H, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Haflidason H, Hajdas I, Hatté C, Heaton T J, Hoffmann D L, Hogg A G, Hughen K A, Kaiser K F, Kromer B, Manning S W, Niu M, Reimer R W, Richards D A, Scott E M, Southon J R, Staff R A, Turney C S M, van der Plicht J. Intcal13 and marine13 radiocarbon age calibration curves 0–50000 years cal BP. Radiocarbon, 2013, 55: 1869-1887 CrossRef PubMed Google Scholar

[61] Silva F, Stevens C J, Weisskopf A, Castillo C, Qin L, Bevan A, Fuller D Q. Modelling the geographical origin of rice cultivation in Asia using the rice archaeological database. PLoS One, 2015, 10: e0137024 CrossRef PubMed ADS Google Scholar

[62] Strömberg C A E, Werdelin L, Friis E M, Saraç G. The spread of grass-dominated habitats in Turkey and surrounding areas during the Cenozoic: Phytolith evidence. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 250: 18-49 CrossRef ADS Google Scholar

[63] Strömberg C A E. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of north America. Proc Natl Acad Sci USA, 2005, 102: 11980-11984 CrossRef PubMed ADS Google Scholar

[64] Twiss P C, Suess E, Smith R M. Morphological classification of grass Phytoliths. Soil Sci Soc Am J, 1969, 33: 109-115 CrossRef ADS Google Scholar

[65] Twiss P C. 1987. Grass-opal phytoliths as climatic indicators of the Great Plains Pleistocene. Quat Environ Kansas, 5: 179–188. Google Scholar

[66] Twiss P C. 1992. Predicted world distribution of C3 and C4 grass phytoliths. In: Rapp G, Mulholland S C, eds. Phytolith Systematic. Emerging Issues. Boston: Springer. 113–128. Google Scholar

[67] Van Cay Q. 1995. Archaeological discoveries and study in Than Sa Valley and the problem of Nguom industry. Khao Co Hoc, 1: 3–17. Google Scholar

[68] Van Tan H. 1985. The late Pleistocene climate in Southeast Asia: New data from Vietnam. Modern Quat Res Southeast Asia, 9: 81–86. Google Scholar

[69] Wang Q J, Ma F J, Dong J L, Yang Y, Jin P H, Sun B N. Coryphoid palms from the Oligocene of China and their biogeographical implications. Comptes Rendus Palevol, 2015, 14: 263-279 CrossRef Google Scholar

[70] Wang W M, Ding J L, Shu J W, Chen W. Exploration of early rice farming in China. Quat Int, 2010, 227: 22-28 CrossRef ADS Google Scholar

[71] Wang Y J, Lu H Y. 1993. Phytolith Study, and its Application. Beijing: China Ocean Press. 1–228. Google Scholar

[72] Wang Y P. 2016. Behavioral modernity and variability of late Late Pleistocene humans in South China: A case study of Diaotonghuan in Wannian, Jiangxi Province. Acta Anthropol Sin, 35: 397–406. Google Scholar

[73] Woo J K, Peng R C. 1959. Fossil human skull of early paleoanthropic stage found at Mapa, Shaoquan, Kwangtung province. Vertebrata Palasiatica, 3: 176–182. Google Scholar

[74] Wu Y, Jiang L, Zheng Y, Wang C, Zhao Z. Morphological trend analysis of rice phytolith during the early Neolithic in the Lower Yangtze. J Archaeol Sci, 2014, 49: 326-331 CrossRef Google Scholar

[75] Xie G, Lin Q, Wu Y, Hu Z. The Late Paleolithic industries of southern China (Lingnan region). Quat Int, 2020, 535: 21-28 CrossRef ADS Google Scholar

[76] Yang X, Barton H J, Wan Z, Li Q, Ma Z, Li M, Zhang D, Wei J. Sago-type palms were an important plant food prior to rice in southern subtropical China. PLoS One, 2013, 8: e63148 CrossRef PubMed ADS Google Scholar

[77] Yuan J R. 1996. Regional variation of the hunan palaeolithic cultures and its significance. In: Proceedings of Prehistoric Cultures of the Middle Reaches of the Yangtze River and 2nd Symposium on the Asian Civilizations. Changsha: Yuelushushe Press. 20–47. Google Scholar

[78] Yuan J R, Long X B, Hu J G. 1994. Test excavation of Yan’er Cave site in Shimen. Hunan Archaeol, 6: 1–7. Google Scholar

[79] Yuan J J, Wei X. 2015. New progress in paleoanthropology of Guangxi. J Guangxi Nor Univ-Philosop Soc Sci Ed, 3: 4–7. Google Scholar

[80] Yuming Y, Kanglin W, Shengji P, Jiming H. Bamboo diversity and traditional uses in Yunnan, China. Mountain Res Dev, 2004, 24: 157-165 CrossRef Google Scholar

[81] Zhang M L, Zhu X Y, Qin J G, Wu X, Cao J H. 2011a. Primary research on the formation and development of Zengpiyan Cave and the ancient cultural layer at the Zengpiyan Archaeological Site, Guilin, China. Earth Environ, 3: 5–8. Google Scholar

[82] Zhang S D, Soltis D E, Yang Y, Li D Z, Yi T S. Multi-gene analysis provides a well-supported phylogeny of Rosales. Mol Phylogenets Evol, 2011b, 60: 21-28 CrossRef PubMed Google Scholar

[83] Zhao Z. New data and new issues for the study of origin of rice agriculture in China. Archaeol Anthropol Sci, 2010, 2: 99-105 CrossRef Google Scholar

[84] Zhao Z, Piperno D R. Late Pleistocene/Holocene environments in the middle Yangtze River valley, China and rice (Oryza sativa L.) domestication: The phytolith evidence. Geoarchaeology, 2000, 15: 203-222 CrossRef Google Scholar

[85] Zong Y, Chen Z, Innes J B, Chen C, Wang Z, Wang H. Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China. Nature, 2007, 449: 459-462 CrossRef PubMed ADS Google Scholar

[86] Zuo X, Lu H, Jiang L, Zhang J, Yang X, Huan X, He K, Wang C, Wu N. Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene. Proc Natl Acad Sci USA, 2017, 114: 6486-6491 CrossRef PubMed Google Scholar

  • Figure 1

    Yahuai Cave site. (a) Location of the site. (b) Panoramic view of the site. (c)–(e) Stratigraphic profile of Area B denoting the location of AMS 14C and phytolith samples. M1 denotes the location where the skull was found.

  • Figure 2

    Human fossil and cultural remains from the Yahuai cave. (a) Area B section with human burial; (b) stone artifacts; (c) perforated stones; (d) human skull; (e) hearth; (f) faunal remains.

  • Figure 3

    Phytolith types extracted from Yahuai cave site: (a) bilobate; (b) acicular hair cell; (c) short saddle; (d) bilobate; (e) rondel; (f) long saddle; (g) spheroid echinate; (h) Bambusoideae-type bulliform; (i) Bambusoideae-type bulliform; (j) irregular elongate; (k) hair base; (l) Blocky; (m) rectangular; ((n) through (r)) Oryza-type bulliform ((n) through (q)) Oryza-type bulliform phytoliths with <9 fish-scale decorations, (r) Oryza-type bulliform phytoliths with >9 fish-scale decorations.

  • Figure 4

    Diagram showing phytolith counts of key types extracted from the layers 1–21, 14C dates and dendrogram based on cluster analysis. Red line denotes the cutoff defining a cluster (dissimilarity=0.20).

  • Table 1Table 1   Specimens of 12 plant species from modern Urticineae used in the comparative databaseTable 1Table 1">

    Family

    Genus

    Species

    English name

    Cannabaceae

    Cannabis

    C. sativa L.

    Medicinal marijuana

    Celtis

    C. bungeana Blume

    Bunge’s hackberry

    Celtis

    C. koraiensis Nakai

    Korean hackberry

    Humulus

    H. lupulus L.

    Common hop

    Humulus

    H. scandens (Lour.) Merr.

    Wild hop

    Pteroceltis

    P. tatarinowii Maxim.

    Blue Sandalwood

    Moraceae

    Morus

    M. alba L.

    White mulberry

    Ulmaceae

    Ulmus

    U. davidiana Planch.

    David elm

    Ulmus

    U. lamellosa C. Wang & S.L. Chang

    Hebei elm

    Ulmus

    U. macrocarpa Hance

    Large fruited elm

    Ulmus

    U. pumila L.

    Siberian elm

    Urticaceae

    Boehmeria

    B. nivea (L.) Gaudich.

    Ramie

  • Table 2Table 2   AMS 14C dates and information on the measured materials from selected layersTable 2Table 2">

    Sample code

    Laboratory number

    Dated material

    Conventional radiocarbon age(yr B.P.)

    2 Sigma calibrated age(cal yr B.P.)

    BT0910-3

    BA160131

    charred material

    1205±40

    1262–1052

    BT1206-5

    BA160128

    charred material

    13340±50

    16238–15850

    BT1206-7

    Beta-444301

    charred material

    13500±50

    16355–16130

    BT1206-8

    BA170399

    charred material

    13445±50

    16366–15976

    BT1106-9

    BA170401

    charred material

    20310±70

    24618–24120

    BT0907-16

    Beta-444303

    charred material

    20470±70

    24880–24410

    BT0908-17

    BA170404

    charred material

    21100±100

    25693–25189

    BT1006-21

    Beta-495504

    charred material

    32050±190

    36359–35510

  • Table 3Table 3   Phytolith morphotypes percentages across Yahuai archeological layerTable 3Table 3">

    No.

    Grasses

    Spheroidechinate

    Hair base

    Bambusoideae-typebulliform

    Oryza-typebulliform

    Saddle

    Bilobate

    Rondel

    1

    90.42

    0.00

    0.00

    6.20

    0.00

    2.25

    1.13

    0.00

    2

    72.37

    18.74

    0.00

    6.56

    0.00

    1.17

    1.17

    0.00

    3

    70.39

    23.03

    0.00

    3.07

    0.00

    1.54

    1.97

    0.00

    4

    66.09

    11.53

    0.00

    7.84

    11.53

    1.73

    1.27

    0.00

    5

    68.37

    5.85

    0.00

    9.39

    10.44

    1.67

    2.19

    2.09

    6

    73.96

    6.58

    0.00

    5.78

    7.32

    4.10

    1.10

    1.17

    7

    85.15

    7.37

    0.00

    0.59

    0.00

    3.93

    1.18

    1.77

    8

    25.75

    47.31

    0.00

    17.37

    0.00

    3.59

    5.99

    0.00

    9

    48.06

    20.93

    0.78

    17.83

    0.00

    5.43

    6.98

    0.00

    10

    89.77

    2.08

    0.00

    3.41

    0.00

    2.84

    1.89

    0.00

    11

    89.08

    3.07

    0.00

    3.75

    0.00

    4.10

    0.00

    0.00

    12

    69.03

    3.54

    0.00

    18.58

    0.00

    8.85

    0.00

    0.00

    13

    74.77

    6.54

    0.00

    7.01

    0.00

    6.07

    5.61

    0.00

    14

    78.50

    5.61

    0.93

    4.67

    0.00

    10.28

    0.00

    0.00

    15

    51.09

    14.13

    0.00

    11.96

    0.00

    13.04

    9.78

    0.00

    16

    88.64

    8.06

    0.00

    0.37

    0.00

    0.73

    2.20

    0.00

    17

    93.05

    2.14

    0.00

    2.41

    0.00

    0.27

    2.14

    0.00

    18

    92.86

    0.00

    0.00

    5.26

    0.00

    0.38

    1.50

    0.00

    19

    86.97

    1.15

    0.00

    3.07

    0.00

    5.75

    3.07

    0.00

    20

    91.95

    0.00

    0.00

    8.05

    0.00

    0.00

    0.00

    0.00

    21

    59.04

    0.00

    3.01

    18.07

    0.00

    11.14

    4.22

    4.52

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号