References
[1]
Getoor L, Diehl C P. Link mining: a survey. ACM SIGKDD Explor Newslett, 2005, 7: 3-12.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Getoor L, Diehl C P. Link mining: a survey. ACM SIGKDD Explor Newslett, 2005, 7: 3-12&
[2]
Aiello L M, Barrat A, Schifanella R, et al. Friendship prediction and homophily in social media. ACM Trans Web, 2012, 6: 9.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Aiello L M, Barrat A, Schifanella R, et al. Friendship prediction and homophily in social media. ACM Trans Web, 2012, 6: 9&
[3]
Mori J, Kajikawa Y, Kashima H, et al. Machine learning approach for finding business partners and building reciprocal relationships. Expert Syst Appl, 2012, 39: 10402-10407.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mori J, Kajikawa Y, Kashima H, et al. Machine learning approach for finding business partners and building reciprocal relationships. Expert Syst Appl, 2012, 39: 10402-10407&
[4]
Wu S, Sun J, Tang J. Patent partner recommendation in enterprise social networks. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining (WSDM'13), Rome, 2013. 43-52.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wu S, Sun J, Tang J. Patent partner recommendation in enterprise social networks. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining (WSDM'13), Rome, 2013. 43-52&
[5]
Akcora C G, Carminati B, Ferrari E. Network and profile based measures for user similarities on social networks. In: Proceedings of the 12th IEEE International Conference on Information Reuse and Integration, Las Vegas, 2011. 292-298.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Akcora C G, Carminati B, Ferrari E. Network and profile based measures for user similarities on social networks. In: Proceedings of the 12th IEEE International Conference on Information Reuse and Integration, Las Vegas, 2011. 292-298&
[6]
Tang J, Wu S, Sun J M, et al. Cross-domain collaboration recommendation. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'12), Beijing, 2012. 1285-1293.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tang J, Wu S, Sun J M, et al. Cross-domain collaboration recommendation. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'12), Beijing, 2012. 1285-1293&
[7]
Pavlov M, Ichise R. Finding experts by link prediction in co-authorship networks. In: Proceedings of the 2nd International ISWC+ASWC Workshop on Finding Experts on the Web with Semantics (FEWS), Busan, 2007. 42-55.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pavlov M, Ichise R. Finding experts by link prediction in co-authorship networks. In: Proceedings of the 2nd International ISWC+ASWC Workshop on Finding Experts on the Web with Semantics (FEWS), Busan, 2007. 42-55&
[8]
Wohlfarth T, Ichise R. Semantic and event-based approach for link prediction. In: Proceedings of the 7th International Conference on Practical Aspects of Knowledge Management (PAKM'08), Yokohama, 2008. 50-61.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wohlfarth T, Ichise R. Semantic and event-based approach for link prediction. In: Proceedings of the 7th International Conference on Practical Aspects of Knowledge Management (PAKM'08), Yokohama, 2008. 50-61&
[9]
Raeder T, Lizardo O, Hachen D, et al. Predictors of short-term decay of cell phone contacts in a large scale communication network. Soc Netw, 2011, 33: 245-257.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Raeder T, Lizardo O, Hachen D, et al. Predictors of short-term decay of cell phone contacts in a large scale communication network. Soc Netw, 2011, 33: 245-257&
[10]
Marchette D J, Priebe C E. Predicting unobserved links in incompletely observed networks. Comput Stat Data Anal, 2008, 52: 1373-1386.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Marchette D J, Priebe C E. Predicting unobserved links in incompletely observed networks. Comput Stat Data Anal, 2008, 52: 1373-1386&
[11]
Kim M, Leskovec J. The network completion problem: inferring missing nodes and edges in networks. In: Proceedings of the 11th SIAM International Conference on Data Mining (SDM'11), Mesa, 2011. 47-58.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kim M, Leskovec J. The network completion problem: inferring missing nodes and edges in networks. In: Proceedings of the 11th SIAM International Conference on Data Mining (SDM'11), Mesa, 2011. 47-58&
[12]
Barabási A L, Jeong H, Néda Z, et al. Evolution of the social network of scientific collaborations. Physica A, 2002, 311: 590-614.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Barabási A L, Jeong H, Néda Z, et al. Evolution of the social network of scientific collaborations. Physica A, 2002, 311: 590-614&
[13]
Juszczyszyn K, Musial K, Budka M. Link prediction based on subgraph evolution in dynamic social networks. In: Proceedings of the 2011 IEEE International Conference on Social Computing, Boston, 2011. 27-34.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Juszczyszyn K, Musial K, Budka M. Link prediction based on subgraph evolution in dynamic social networks. In: Proceedings of the 2011 IEEE International Conference on Social Computing, Boston, 2011. 27-34&
[14]
Bringmann B, Berlingerio M, Bonchi F, et al. Learning and predicting the evolution of social networks. IEEE Intell Syst, 2010, 25: 26-35.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bringmann B, Berlingerio M, Bonchi F, et al. Learning and predicting the evolution of social networks. IEEE Intell Syst, 2010, 25: 26-35&
[15]
Raymond R, Kashima H. Fast and scalable algorithms for semi-supervised link prediction on static and dynamic graphs. In: Proceedings of ECML/PKDD'10, Barcelona, 2010. 131-147.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Raymond R, Kashima H. Fast and scalable algorithms for semi-supervised link prediction on static and dynamic graphs. In: Proceedings of ECML/PKDD'10, Barcelona, 2010. 131-147&
[16]
Zhu J, Hong J, Hughes J G. Using Markov models for web site link prediction. In: Proceedings of the 13th ACM Conference on Hypertext and Hypermedia (HYPERTEXT'02), Maryland, 2002. 169-170.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhu J, Hong J, Hughes J G. Using Markov models for web site link prediction. In: Proceedings of the 13th ACM Conference on Hypertext and Hypermedia (HYPERTEXT'02), Maryland, 2002. 169-170&
[17]
Almansoori W, Gao S, Jarada T N, et al. Link prediction and classification in social networks and its application in healthcare and systems biology. Netw Model Anal Health Inform Bioinform, 2012, 1: 27-36.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Almansoori W, Gao S, Jarada T N, et al. Link prediction and classification in social networks and its application in healthcare and systems biology. Netw Model Anal Health Inform Bioinform, 2012, 1: 27-36&
[18]
Huang Z, Lin D K J. The time-series link prediction problem with applications in communication surveillance. INFORMS J Comput, 2009, 21: 286-303.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huang Z, Lin D K J. The time-series link prediction problem with applications in communication surveillance. INFORMS J Comput, 2009, 21: 286-303&
[19]
Liben-Nowell D, Kleinberg J M. The link-prediction problem for social networks. J Am Soc Inf Sci Technol, 2007, 58: 1019-1031.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liben-Nowell D, Kleinberg J M. The link-prediction problem for social networks. J Am Soc Inf Sci Technol, 2007, 58: 1019-1031&
[20]
Hasan M A, Zaki M. A survey of link prediction in social networks. In: Aggarwal C C, ed. Social Network Data Analytics. Springer: New York, 2011. 243-275.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hasan M A, Zaki M. A survey of link prediction in social networks. In: Aggarwal C C, ed. Social Network Data Analytics. Springer: New York, 2011. 243-275&
[21]
Lü L, Zhou T. Link prediction in complex networks: a survey. Physica A, 2011, 390: 1150-1170.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lü L, Zhou T. Link prediction in complex networks: a survey. Physica A, 2011, 390: 1150-1170&
[22]
Hasan M A, Chaoji V, Salem S, et al. Link prediction using supervised learning. In: Proceedings of SDM'06Workshop on Link Analysis, Counter terrorism and Security, Bethesda, 2006.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hasan M A, Chaoji V, Salem S, et al. Link prediction using supervised learning. In: Proceedings of SDM'06Workshop on Link Analysis, Counter terrorism and Security, Bethesda, 2006&
[23]
Hanely J A, McNeil B J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 1982, 143: 29-36.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hanely J A, McNeil B J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 1982, 143: 29-36&
[24]
Lichtnwalter R, Chawla N V. Link prediction: fair and effective evaluation. In: Proceeding of the 2012 IEEE/ACM International Conference on Advanced in Social Networks Analysis and Mining (ASONAM'12), Istanbul, 2012. 376-383.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lichtnwalter R, Chawla N V. Link prediction: fair and effective evaluation. In: Proceeding of the 2012 IEEE/ACM International Conference on Advanced in Social Networks Analysis and Mining (ASONAM'12), Istanbul, 2012. 376-383&
[25]
Hall P A V, Dowling G R. Approximate string matching. ACM Comput Surv, 1980, 12: 381-402.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hall P A V, Dowling G R. Approximate string matching. ACM Comput Surv, 1980, 12: 381-402&
[26]
Navarro G. A guided tour to approximate string matching. ACM Comput Surv, 2001, 33: 31-88.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Navarro G. A guided tour to approximate string matching. ACM Comput Surv, 2001, 33: 31-88&
[27]
Bhattacharyya P, Garg A, Wu F S. Analysis of user keyword similarity in online social networks. Soc Netw Anal Min, 2011, 1: 143-158.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bhattacharyya P, Garg A, Wu F S. Analysis of user keyword similarity in online social networks. Soc Netw Anal Min, 2011, 1: 143-158&
[28]
Akcora C G, Carminati B, Ferrari E. User similarities on social networks. Soc Netw Anal Min, 2013, 3: 475-495.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Akcora C G, Carminati B, Ferrari E. User similarities on social networks. Soc Netw Anal Min, 2013, 3: 475-495&
[29]
Anderson A, Huttenlocher D, Kleinberg J, et al. Effects of user similarity in social media. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining (WSDM'12), Seattle, 2012. 703-712.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Anderson A, Huttenlocher D, Kleinberg J, et al. Effects of user similarity in social media. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining (WSDM'12), Seattle, 2012. 703-712&
[30]
Newman M E J. Clustering and preferential attachment in growing networks. Phys Rev E, 2001, 64: 025102.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Newman M E J. Clustering and preferential attachment in growing networks. Phys Rev E, 2001, 64: 025102&
[31]
Ravasz E, Somera A L, Mongru D A, et al. Hierarchical organization of modularity in metabolic networks. Science, 2002, 297: 1551-1555.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ravasz E, Somera A L, Mongru D A, et al. Hierarchical organization of modularity in metabolic networks. Science, 2002, 297: 1551-1555&
[32]
Zhou T, Lü L, Zhang Y C. Predicting missing links via local information. Eur Phys J B, 2009, 71: 623-630.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhou T, Lü L, Zhang Y C. Predicting missing links via local information. Eur Phys J B, 2009, 71: 623-630&
[33]
Leicht E A, Holme P, Newman M E J. Vertex similarity in networks. Phys Rev E, 2006, 73: 026120.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Leicht E A, Holme P, Newman M E J. Vertex similarity in networks. Phys Rev E, 2006, 73: 026120&
[34]
Zhu Y X, Lü L, Zhang Q M, et al. Uncovering missing links with cold ends. Physica A, 2012, 391: 5769-5778.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhu Y X, Lü L, Zhang Q M, et al. Uncovering missing links with cold ends. Physica A, 2012, 391: 5769-5778&
[35]
Adamic L A, Adar E. Friend and neighbors on the web. Soc Networks, 2003, 25: 211-230.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adamic L A, Adar E. Friend and neighbors on the web. Soc Networks, 2003, 25: 211-230&
[36]
Sarkar P, Chakrabarti D, Moore A W. Theoretical justification of popular link prediction heuristics. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, 2011. 2722-2727.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sarkar P, Chakrabarti D, Moore A W. Theoretical justification of popular link prediction heuristics. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, 2011. 2722-2727&
[37]
Lü L, Jin C H, Zhou T. Similarity index based on local paths for link prediction of complex networks. Phys Rev E, 2009, 80: 046122.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lü L, Jin C H, Zhou T. Similarity index based on local paths for link prediction of complex networks. Phys Rev E, 2009, 80: 046122&
[38]
Katz L. A new status index derived from sociometric analysis. Psychometrika, 1953, 18: 39-43.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Katz L. A new status index derived from sociometric analysis. Psychometrika, 1953, 18: 39-43&
[39]
Chen H H, Gou L, Zhang X L, et al. Discovering missing links in networks using vertex similarity measures. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Applied Computing (SAC'12), Trento, 2012. 138-143.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen H H, Gou L, Zhang X L, et al. Discovering missing links in networks using vertex similarity measures. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Applied Computing (SAC'12), Trento, 2012. 138-143&
[40]
Papadimitriou A, Symeonidis P, Manolopoulos Y. Fast and accurate link prediction in social networking systems. J Syst Softw, 2012, 85: 2119-2132.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Papadimitriou A, Symeonidis P, Manolopoulos Y. Fast and accurate link prediction in social networking systems. J Syst Softw, 2012, 85: 2119-2132&
[41]
Lichtenwalter R N, Chawla N V. Vertex collocation profiles: subgraph counting for link analysis and prediction. In: Proceedings of the 21st World Wide Web Conference(WWW'12), Lyon, 2012. 1019-1028.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lichtenwalter R N, Chawla N V. Vertex collocation profiles: subgraph counting for link analysis and prediction. In: Proceedings of the 21st World Wide Web Conference(WWW'12), Lyon, 2012. 1019-1028&
[42]
Lichtenwalter R N, Chawla N V. Vertex collocation profiles: theory, computation, and results. SpringerPlus, 2014, 3: 116.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lichtenwalter R N, Chawla N V. Vertex collocation profiles: theory, computation, and results. SpringerPlus, 2014, 3: 116&
[43]
Meng B, Ke H, Yi T. Link prediction based on a semi-local similarity index. Chin Phys B, 2011, 20: 128902.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Meng B, Ke H, Yi T. Link prediction based on a semi-local similarity index. Chin Phys B, 2011, 20: 128902&
[44]
Feng X, Zhao J C, Xu K. Link prediction in complex networks: a clustering perspective. Eur Phys J B, 2012, 85: 1-9.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Feng X, Zhao J C, Xu K. Link prediction in complex networks: a clustering perspective. Eur Phys J B, 2012, 85: 1-9&
[45]
Fouss F, Pirotte A, Renders J M, et al. Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans Knowl Data Eng, 2007, 19: 355-369.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fouss F, Pirotte A, Renders J M, et al. Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans Knowl Data Eng, 2007, 19: 355-369&
[46]
Jeh G, Widom J. SimRank: a measure of structural-context similarity. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'02), Edmonton, 2002. 538-543.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jeh G, Widom J. SimRank: a measure of structural-context similarity. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'02), Edmonton, 2002. 538-543&
[47]
Lichtenwalter R N, Lussier J T, Chawla N V. New perspectives and methods in link prediction. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2010. 243-252.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lichtenwalter R N, Lussier J T, Chawla N V. New perspectives and methods in link prediction. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2010. 243-252&
[48]
Symeonidis P, Iakovidou N, Mantas N, et al. From biological to social networks: link prediction based on multi-way spectral clustering. Data Knowl Eng, 2013, 87: 226-242.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Symeonidis P, Iakovidou N, Mantas N, et al. From biological to social networks: link prediction based on multi-way spectral clustering. Data Knowl Eng, 2013, 87: 226-242&
[49]
Symeonidis P, Mantas N. Spectral clustering for link prediction in social networks with positive and negative links. Soc Netw Anal Min, 2013, 3: 1433-1447.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Symeonidis P, Mantas N. Spectral clustering for link prediction in social networks with positive and negative links. Soc Netw Anal Min, 2013, 3: 1433-1447&
[50]
Valverde-Rebaza J, Lopes A A. Exploiting behaviors of communities of twitter users for link prediction. Soc Netw Anal Min, 2013, 3: 1063-1074.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Valverde-Rebaza J, Lopes A A. Exploiting behaviors of communities of twitter users for link prediction. Soc Netw Anal Min, 2013, 3: 1063-1074&
[51]
Liu H, Hu Z, Haddadi H, et al. Hidden link prediction based on node centrality and weak ties. Europhys Lett, 2013, 101: 18004.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu H, Hu Z, Haddadi H, et al. Hidden link prediction based on node centrality and weak ties. Europhys Lett, 2013, 101: 18004&
[52]
Li R H, Yu J X, Liu J. Link prediction: the power of maximal entropy random walk. In: Proceedings of the 20th ACM international Conference on Information and Knowledge Management, Glasgow, 2011. 1147-1156.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li R H, Yu J X, Liu J. Link prediction: the power of maximal entropy random walk. In: Proceedings of the 20th ACM international Conference on Information and Knowledge Management, Glasgow, 2011. 1147-1156&
[53]
Qiu B, Ivanova K, Yen J, et al. Behavior evolution and event-driven growth dynamics in social networks. In: Proceedings of IEEE Second International Conference on Social Computing (SocialCom), Boston, 2010. 217-224.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Qiu B, Ivanova K, Yen J, et al. Behavior evolution and event-driven growth dynamics in social networks. In: Proceedings of IEEE Second International Conference on Social Computing (SocialCom), Boston, 2010. 217-224&
[54]
Qiu B, He Q, Yen J. Evolution of node behavior in link prediction. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence, San Francisco, 2011. 1810-1811.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Qiu B, He Q, Yen J. Evolution of node behavior in link prediction. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence, San Francisco, 2011. 1810-1811&
[55]
Yang S H, Long B, Smola A, et al. Like like alike: joint friendship and interest propagation in social networks. In: Proceedings of the 20th International Conference on World Wide Web (WWW'11), Hyderabad. 2011. 537-546.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yang S H, Long B, Smola A, et al. Like like alike: joint friendship and interest propagation in social networks. In: Proceedings of the 20th International Conference on World Wide Web (WWW'11), Hyderabad. 2011. 537-546&
[56]
Dong Y, Tang J, Wu S, et al. Link prediction and recommendation across heterogeneous social networks. In: Proceedings of IEEE 12th International Conference on Data Mining, Brussels, 2012. 181-190.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dong Y, Tang J, Wu S, et al. Link prediction and recommendation across heterogeneous social networks. In: Proceedings of IEEE 12th International Conference on Data Mining, Brussels, 2012. 181-190&
[57]
Li X, Chen H. Recommendation as link prediction in bipartite graphs: a graph kernel-based machine learning approach. Decis Support Syst, 2013, 54: 880-890.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li X, Chen H. Recommendation as link prediction in bipartite graphs: a graph kernel-based machine learning approach. Decis Support Syst, 2013, 54: 880-890&
[58]
Scellato S, Noulas A, Mascolo C. Exploiting place features in link prediction on location-based social networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, 2011. 1046-1054.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Scellato S, Noulas A, Mascolo C. Exploiting place features in link prediction on location-based social networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, 2011. 1046-1054&
[59]
Scripps J, Tan P N, Chen F, et al. A matrix alignment approach for link prediction. In: Proceedings of the 19th International Conference on Pattern Recognition (ICPR'08), Tampa, 2008. 1-4.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Scripps J, Tan P N, Chen F, et al. A matrix alignment approach for link prediction. In: Proceedings of the 19th International Conference on Pattern Recognition (ICPR'08), Tampa, 2008. 1-4&
[60]
de Sá H R, Prudêncio R B C. Supervised link prediction in weighted networks. In: Proceedings of the 2011 International Joint Conference on Neural Networks (IJCNN), San Jose, 2011. 2281-2288.
Google Scholar
http://scholar.google.com/scholar_lookup?title=de Sá H R, Prudêncio R B C. Supervised link prediction in weighted networks. In: Proceedings of the 2011 International Joint Conference on Neural Networks (IJCNN), San Jose, 2011. 2281-2288&
[61]
Lü L, Zhou T. Role of weak ties in link prediction of complex networks. In: Proceedings of the First ACM International Workshop on Complex Networks Meet Information & Knowledge Management, New York, 2009. 55-58.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lü L, Zhou T. Role of weak ties in link prediction of complex networks. In: Proceedings of the First ACM International Workshop on Complex Networks Meet Information & Knowledge Management, New York, 2009. 55-58&
[62]
Kunegis J, Lommatzsch A. Learning spectral graph transformations for link prediction. In: Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, 2009. 561-568.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kunegis J, Lommatzsch A. Learning spectral graph transformations for link prediction. In: Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, 2009. 561-568&
[63]
Pujari M, Kanawati R. Link prediction in complex networks by supervised rank aggregation. In: Proceedings of IEEE 24th International Conference on Tools with Artificial Intelligence, Athens, 2012. 782-789.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pujari M, Kanawati R. Link prediction in complex networks by supervised rank aggregation. In: Proceedings of IEEE 24th International Conference on Tools with Artificial Intelligence, Athens, 2012. 782-789&
[64]
Chiang K Y, Natarajan N, Tewari A, et al. Exploiting longer cycles for link prediction in signed networks. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, Glasgow, 2011. 1157-1162.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chiang K Y, Natarajan N, Tewari A, et al. Exploiting longer cycles for link prediction in signed networks. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, Glasgow, 2011. 1157-1162&
[65]
Leskovec J, Huttenlocher D, Kleinberg J. Predicting positive and negative links in online social networks. In: Proceedings of the 19th International Conference on World Wide Web (WWW'10), Raleigh, 2010. 641-650.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Leskovec J, Huttenlocher D, Kleinberg J. Predicting positive and negative links in online social networks. In: Proceedings of the 19th International Conference on World Wide Web (WWW'10), Raleigh, 2010. 641-650&
[66]
Cao B, Liu N N, Yang Q. Transfer learning for collective link prediction in multiple heterogeneous domains. In: Proceedings of the 27th International Conference on Machine Learning, Haifa, 2010. 159-166.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cao B, Liu N N, Yang Q. Transfer learning for collective link prediction in multiple heterogeneous domains. In: Proceedings of the 27th International Conference on Machine Learning, Haifa, 2010. 159-166&
[67]
Lu Z D, Savas B, Tang W, et al. Supervised link prediction using multiple sources. In: Proceedings of the 10th IEEE International Conference on Data Mining, Sydney, 2010. 923-928.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lu Z D, Savas B, Tang W, et al. Supervised link prediction using multiple sources. In: Proceedings of the 10th IEEE International Conference on Data Mining, Sydney, 2010. 923-928&
[68]
Brouard C, Szafranski M. Semi-supervised penalized output kernel regression for link prediction. In: Proceedings of the 28th International Conference on Machine Learning (ICML'11), Bellevue, 2011. 593-600.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Brouard C, Szafranski M. Semi-supervised penalized output kernel regression for link prediction. In: Proceedings of the 28th International Conference on Machine Learning (ICML'11), Bellevue, 2011. 593-600&
[69]
Kashima H, Kato T, Yamanishi Y, et al. Link propagation: a fast semi-supervised learning algorithm for link prediction. In: Proceedings of the 9th SIAM International Conference on Data Mining (SDM'09), Sparks, 2009. 1099-1110.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kashima H, Kato T, Yamanishi Y, et al. Link propagation: a fast semi-supervised learning algorithm for link prediction. In: Proceedings of the 9th SIAM International Conference on Data Mining (SDM'09), Sparks, 2009. 1099-1110&
[70]
Clauset A, Moore C, Newman M E J. Hierarchical structure and the prediction of missing links in networks. Nature, 2008, 453: 98-101.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Clauset A, Moore C, Newman M E J. Hierarchical structure and the prediction of missing links in networks. Nature, 2008, 453: 98-101&
[71]
Guimeràa R, Sales-Pardo M. Missing and spurious interactions and the reconstruction of complex networks. Proc Nat Acad Sci, 2009, 106: 22073-22078.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Guimeràa R, Sales-Pardo M. Missing and spurious interactions and the reconstruction of complex networks. Proc Nat Acad Sci, 2009, 106: 22073-22078&
[72]
Chen Z, Zhang W. A marginalized denoising method for link prediction in relational data. In: Proceedings of the 2014 SIAM International Conference on Data Mining, Philadelphia, 2014. 298-306.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen Z, Zhang W. A marginalized denoising method for link prediction in relational data. In: Proceedings of the 2014 SIAM International Conference on Data Mining, Philadelphia, 2014. 298-306&
[73]
Wang C, Satuluri V, Parthasarathy S. Local probabilistic models for link prediction. In: Proceeding of the 7th IEEE International Conference on Data Mining (ICDM'07), Omaha, 2007. 322-331.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang C, Satuluri V, Parthasarathy S. Local probabilistic models for link prediction. In: Proceeding of the 7th IEEE International Conference on Data Mining (ICDM'07), Omaha, 2007. 322-331&
[74]
Kashima H, Abe N. A parameterized probabilistic model of network evolution for supervised link prediction. In: Proceedings of the 6th International Conference on Data Mining (ICDM'06), Hong Kong, 2006. 340-349.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kashima H, Abe N. A parameterized probabilistic model of network evolution for supervised link prediction. In: Proceedings of the 6th International Conference on Data Mining (ICDM'06), Hong Kong, 2006. 340-349&
[75]
Backstrom L, Leskovec J. Supervised random walks: predicting and recommending links in social networks. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining (WSDM'11), Hong Kong, 2011. 635-644.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Backstrom L, Leskovec J. Supervised random walks: predicting and recommending links in social networks. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining (WSDM'11), Hong Kong, 2011. 635-644&
[76]
Yin D, Hong L, Davison B D. Structural link analysis and prediction in microblogs. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM'11), Glasgow, 2011. 1163-1168.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yin D, Hong L, Davison B D. Structural link analysis and prediction in microblogs. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM'11), Glasgow, 2011. 1163-1168&
[77]
Leroy V, Cambazoglu B B, Bonchi F. Cold start link prediction. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, 2010. 393-402.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Leroy V, Cambazoglu B B, Bonchi F. Cold start link prediction. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, 2010. 393-402&
[78]
Kuo T, Yan R, Huang Y, et al. Unsupervised link prediction using aggregative statistics on heterogeneous social networks. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, Chicago, 2013. 775-783.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kuo T, Yan R, Huang Y, et al. Unsupervised link prediction using aggregative statistics on heterogeneous social networks. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, Chicago, 2013. 775-783&
[79]
Menon A K, Elkan C. Link prediction via matrix factorization. In: Proceedings of the 2011 European Conference on Machine Learning and Knowledge Discovery in Databases, Athens, 2011. 437-452.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Menon A K, Elkan C. Link prediction via matrix factorization. In: Proceedings of the 2011 European Conference on Machine Learning and Knowledge Discovery in Databases, Athens, 2011. 437-452&
[80]
Lichtenwalter R N, Chawla N V. LPmade: link prediction made easy. J Mach Learn Res, 2011, 12: 2489-2492.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lichtenwalter R N, Chawla N V. LPmade: link prediction made easy. J Mach Learn Res, 2011, 12: 2489-2492&
[81]
Dunlavy D M, Kolda T G, Acar E. Temporal link prediction using matrix and tensor factorizations. ACM Trans Knowl Discov D, 2011, 5: 1-27.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dunlavy D M, Kolda T G, Acar E. Temporal link prediction using matrix and tensor factorizations. ACM Trans Knowl Discov D, 2011, 5: 1-27&
[82]
O'Madadhain J, Hutchins J, Smyth P. Prediction and ranking algorithms for event-based network data. ACM SIGKDD Explor, 2005, 7: 23-30.
Google Scholar
http://scholar.google.com/scholar_lookup?title=O'Madadhain J, Hutchins J, Smyth P. Prediction and ranking algorithms for event-based network data. ACM SIGKDD Explor, 2005, 7: 23-30&
[83]
Gao S, Denoyer L, Gallinari P. Temporal link prediction by integrating content and structure information. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM'11), Glasgow, 2011. 1169-1174.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gao S, Denoyer L, Gallinari P. Temporal link prediction by integrating content and structure information. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM'11), Glasgow, 2011. 1169-1174&
[84]
Tylenda T, Angelova R, Bedathur S. Towards time-aware link prediction in evolving social networks. In: Proceedings of the Third Workshop on Social Network Mining and Analysis, Paris, 2009. 9-18.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tylenda T, Angelova R, Bedathur S. Towards time-aware link prediction in evolving social networks. In: Proceedings of the Third Workshop on Social Network Mining and Analysis, Paris, 2009. 9-18&
[85]
da Silva Soares P R, Bastos Cavalcante Prudêncio R. Time series based link prediction. In: Proceedings of 2012 International Joint Conference on Neural Networks (IJCNN'12), Brisbane, 2012. 1-7.
Google Scholar
http://scholar.google.com/scholar_lookup?title=da Silva Soares P R, Bastos Cavalcante Prudêncio R. Time series based link prediction. In: Proceedings of 2012 International Joint Conference on Neural Networks (IJCNN'12), Brisbane, 2012. 1-7&
[86]
Oyama S, Hayashi K, Kashima H. Cross-temporal link prediction. In: Proceedings of the 11th IEEE International Conference on Data Mining (ICDM'11), Vancouver, 2011. 1188-1193.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Oyama S, Hayashi K, Kashima H. Cross-temporal link prediction. In: Proceedings of the 11th IEEE International Conference on Data Mining (ICDM'11), Vancouver, 2011. 1188-1193&
[87]
Munasinghe L, Ichise R. Time score: a new feature for link prediction in social networks. IEICE Trans Inform Syst, 2012, E95-D: 821-828.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Munasinghe L, Ichise R. Time score: a new feature for link prediction in social networks. IEICE Trans Inform Syst, 2012, E95-D: 821-828&
[88]
Soares P R S, Prudêncio R B C. Proximity measures for link prediction based on temporal events. Expert Syst Appl, 2013, 40: 6652-6660.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Soares P R S, Prudêncio R B C. Proximity measures for link prediction based on temporal events. Expert Syst Appl, 2013, 40: 6652-6660&
[89]
Richard E, Baskiotis N, Evgeniou T, et al. Link discovery using graph feature tracking. In: Proceedings of the 24th Annual Conference on Neural Information Processing Systems, Vancouver, 2010. 1966-1974.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Richard E, Baskiotis N, Evgeniou T, et al. Link discovery using graph feature tracking. In: Proceedings of the 24th Annual Conference on Neural Information Processing Systems, Vancouver, 2010. 1966-1974&
[90]
Jahanbakhsh K, King V, Shoja G C. Predicting missing contacts in mobile social networks. Pervasive Mob Comput, 2012, 8: 698-716.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jahanbakhsh K, King V, Shoja G C. Predicting missing contacts in mobile social networks. Pervasive Mob Comput, 2012, 8: 698-716&
[91]
Gao S, Denoyer L, Gallinari P, et al. Probabilistic latent tensor factorization model for link pattern prediction in multi-relational networks. J China Univ Post Telecommun, 2012, 19: 172-181.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gao S, Denoyer L, Gallinari P, et al. Probabilistic latent tensor factorization model for link pattern prediction in multi-relational networks. J China Univ Post Telecommun, 2012, 19: 172-181&
[92]
Gao S, Denoyer L, Gallinari P. Link pattern prediction with tensor decomposition in multi-relational networks. In: Proceedings of 2011 IEEE Symposium on Computational Intelligence and Data Mining, Paris, 2011. 333-340.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gao S, Denoyer L, Gallinari P. Link pattern prediction with tensor decomposition in multi-relational networks. In: Proceedings of 2011 IEEE Symposium on Computational Intelligence and Data Mining, Paris, 2011. 333-340&
[93]
Sun Y, Barber R, Gupta M, et al. Co-author relationship prediction in heterogeneous bibliographic networks. In: Proceeding of the 2011 IEEE/ACM International Conference on Advanced in Social Networks Analysis and Mining (ASONAM'11), Kaohsiung, 2011. 121-128.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sun Y, Barber R, Gupta M, et al. Co-author relationship prediction in heterogeneous bibliographic networks. In: Proceeding of the 2011 IEEE/ACM International Conference on Advanced in Social Networks Analysis and Mining (ASONAM'11), Kaohsiung, 2011. 121-128&
[94]
Sun Y, Han J, Aggarwal C C, et al. When will it happen? relationship prediction in heterogeneous information networks. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining (WSDM'12), Seattle, 2012. 663-672.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sun Y, Han J, Aggarwal C C, et al. When will it happen? relationship prediction in heterogeneous information networks. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining (WSDM'12), Seattle, 2012. 663-672&
[95]
Yang Y, Chawla N, Sun Y, et al. Predicting links in multi-relational and heterogeneous networks. In: Proceedings of The 12th IEEE International Conference on Data Mining, Brussels, 2012. 755-764.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yang Y, Chawla N, Sun Y, et al. Predicting links in multi-relational and heterogeneous networks. In: Proceedings of The 12th IEEE International Conference on Data Mining, Brussels, 2012. 755-764&
[96]
Davis D, Lichtenwalter R, Chawla N V. Supervised methods for multi-relational link prediction. Soc Netw Anal Min, 2013, 3: 127-141.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Davis D, Lichtenwalter R, Chawla N V. Supervised methods for multi-relational link prediction. Soc Netw Anal Min, 2013, 3: 127-141&
[97]
Ströele V, Zimbrão G, Souza J M. Group and link analysis of multi-relational scientific social networks. J Syst Softw, 2013, 86: 1819-1830.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ströele V, Zimbrão G, Souza J M. Group and link analysis of multi-relational scientific social networks. J Syst Softw, 2013, 86: 1819-1830&
[98]
Rossetti G, Berlingerio M, Giannotti F. Scalable link prediction on multidimensional networks. In: Proceedings of 11th IEEE International Conference on Data Mining Workshops, Vancouver, 2011. 979-986.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rossetti G, Berlingerio M, Giannotti F. Scalable link prediction on multidimensional networks. In: Proceedings of 11th IEEE International Conference on Data Mining Workshops, Vancouver, 2011. 979-986&
[99]
Wang D, Pedreschi D, Song C, et al. Human mobility, social ties, and link prediction. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, 2011. 1100-1108.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang D, Pedreschi D, Song C, et al. Human mobility, social ties, and link prediction. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, 2011. 1100-1108&
[100]
Munasinghe L, Ichise R. Link prediction in social networks using information flow via active links. IEICE Trans Inf Syst, 2012, E96-D: 1495-1502.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Munasinghe L, Ichise R. Link prediction in social networks using information flow via active links. IEICE Trans Inf Syst, 2012, E96-D: 1495-1502&
[101]
Chen H H, Gou L, Zhang X L, et al. Predicting recent links in FOAF networks. In: Proceedings of the 5th international conference on Social Computing, Behavioral-Cultural Modeling and Prediction, College Park, 2012. 156-163.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen H H, Gou L, Zhang X L, et al. Predicting recent links in FOAF networks. In: Proceedings of the 5th international conference on Social Computing, Behavioral-Cultural Modeling and Prediction, College Park, 2012. 156-163&
[102]
Chen H H, Miller D J, Giles C L. The predictive value of young and old links in a social network. In: Proceedings of the ACM SIGMOD Workshop on Databases and Social Networks, New York, 2013. 43-48.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen H H, Miller D J, Giles C L. The predictive value of young and old links in a social network. In: Proceedings of the ACM SIGMOD Workshop on Databases and Social Networks, New York, 2013. 43-48&
[103]
Kunegis J, De Luca E W, Albayrak S. The link prediction problem in bipartite networks. In: Proceedings of the 13th International Conference on Information Processing and Management of Uncertainty, Dortmund, 2010. 380-389.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kunegis J, De Luca E W, Albayrak S. The link prediction problem in bipartite networks. In: Proceedings of the 13th International Conference on Information Processing and Management of Uncertainty, Dortmund, 2010. 380-389&
[104]
Xia S, Dai B T, Lim E P, et al. Link prediction for bipartite social networks: the Role of Structural Holes. In: Proceedings of 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Istanbul, 2012. 153-157.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xia S, Dai B T, Lim E P, et al. Link prediction for bipartite social networks: the Role of Structural Holes. In: Proceedings of 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Istanbul, 2012. 153-157&
[105]
Chang Y J, Kao H Y. Link prediction in a bipartite network using Wikipedia revision information. In: Proceedings of 2012 Conference on Technologies and Applications of Artificial Intelligence, Tainan, 2012. 50-55.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chang Y J, Kao H Y. Link prediction in a bipartite network using Wikipedia revision information. In: Proceedings of 2012 Conference on Technologies and Applications of Artificial Intelligence, Tainan, 2012. 50-55&
[106]
Allali O, Magnien C, Latapy M. Link prediction in bipartite graphs using internal links and weighted projection. In: INFOCOM Workshop on Network Science for Computer Communications, Shanghai, 2011. 936-941.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Allali O, Magnien C, Latapy M. Link prediction in bipartite graphs using internal links and weighted projection. In: INFOCOM Workshop on Network Science for Computer Communications, Shanghai, 2011. 936-941&
[107]
Liu J, Deng G. Link prediction in a user-object network based on time-weighted resource allocation. Physica A, 2009, 388: 3643-3650.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu J, Deng G. Link prediction in a user-object network based on time-weighted resource allocation. Physica A, 2009, 388: 3643-3650&
[108]
Kwak H, Chun H, Moon S. Fragile online relationship: a first look at unfollow dynamics in twitter. In: Proceedings of the International Conference on Human Factors in Computing Systems (CHI'11), Vancouver, 2011. 435-463.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kwak H, Chun H, Moon S. Fragile online relationship: a first look at unfollow dynamics in twitter. In: Proceedings of the International Conference on Human Factors in Computing Systems (CHI'11), Vancouver, 2011. 435-463&
[109]
Kwak H, Moon S, Lee W. More of a receiver than a giver: why do people unfollow in Twitter? In: Proceedings of the 6th International Conference on Weblogs and Social Media, Dublin, 2012. 499-504.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kwak H, Moon S, Lee W. More of a receiver than a giver: why do people unfollow in Twitter? In: Proceedings of the 6th International Conference on Weblogs and Social Media, Dublin, 2012. 499-504&
[110]
Xu B, Huang Y, Kwak H, et al. Structures of broken ties: exploring unfollow behavior on Twitter. In: Proceedings of the 16th ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW'13), San Antonio, 2013. 871-876.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xu B, Huang Y, Kwak H, et al. Structures of broken ties: exploring unfollow behavior on Twitter. In: Proceedings of the 16th ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW'13), San Antonio, 2013. 871-876&
[111]
Kivran-Swaine F, Govindan P, Naaman M. The impact of network structure on breaking ties in online social networks: unfollowing on twitter. In: Proceedings of the International Conference on Human Factors in Computing Systems (CHI'11), Vancouver, 2011. 1101-1104.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kivran-Swaine F, Govindan P, Naaman M. The impact of network structure on breaking ties in online social networks: unfollowing on twitter. In: Proceedings of the International Conference on Human Factors in Computing Systems (CHI'11), Vancouver, 2011. 1101-1104&
[112]
Quercia D, Bodaghi M, Crowcroft J. Loosing “friends”on Facebook. In: Proceedings of Web Science, Evanston, 2012. 251-254.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quercia D, Bodaghi M, Crowcroft J. Loosing “friends”on Facebook. In: Proceedings of Web Science, Evanston, 2012. 251-254&
[113]
Sarkar P, Chakrabarti D, Jordan M. Nonparametric link prediction in dynamic networks. In: Proceedings of the 29th International Conference on Machine Learning (ICML'12), Edinburgh, 2012.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sarkar P, Chakrabarti D, Jordan M. Nonparametric link prediction in dynamic networks. In: Proceedings of the 29th International Conference on Machine Learning (ICML'12), Edinburgh, 2012&
[114]
Song H H, Cho T W, Dave V, et al. Scalable proximity estimation and link prediction in online social networks. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement, Chicago, 2009. 322-335.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Song H H, Cho T W, Dave V, et al. Scalable proximity estimation and link prediction in online social networks. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement, Chicago, 2009. 322-335&
[115]
Li X, Du N, Li H, et al. A deep learning approach to link prediction in dynamic networks. In: Proceedings of the 2014 SIAM International Conference on Data Mining, Philadelphia, 2014. 289-297.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li X, Du N, Li H, et al. A deep learning approach to link prediction in dynamic networks. In: Proceedings of the 2014 SIAM International Conference on Data Mining, Philadelphia, 2014. 289-297&
[116]
Armentano M G, Godoy D, Amandi A A. Followee recommendation based on text analysis of micro-blogging activity. Inform Syst, 2013, 38: 1116-1127.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Armentano M G, Godoy D, Amandi A A. Followee recommendation based on text analysis of micro-blogging activity. Inform Syst, 2013, 38: 1116-1127&
[117]
Sadilek A, Kautz H, Bigham J P. Finding your friends and following them to where you are. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining, Seattle, 2012. 723-732.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sadilek A, Kautz H, Bigham J P. Finding your friends and following them to where you are. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining, Seattle, 2012. 723-732&
[118]
Huang Z, Li X, Chen H. Link prediction approach to collaborative filtering. In: Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL'05), Denver, 2005. 141-142.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huang Z, Li X, Chen H. Link prediction approach to collaborative filtering. In: Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL'05), Denver, 2005. 141-142&
[119]
Rowe M, Stankovic M, Alani H. Who will follow whom? exploiting semantics for link prediction in attention information networks. In: Proceedings of the 11th International Semantic Web Conference (ISWC'12), Boston, 2012. 476-491.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rowe M, Stankovic M, Alani H. Who will follow whom? exploiting semantics for link prediction in attention information networks. In: Proceedings of the 11th International Semantic Web Conference (ISWC'12), Boston, 2012. 476-491&
[120]
Esslimani I, Brun A, Boyer A. Densifying a behavioral recommender system by social networks link prediction methods. Soc Netw Anal Min, 2011, 1: 159-172.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Esslimani I, Brun A, Boyer A. Densifying a behavioral recommender system by social networks link prediction methods. Soc Netw Anal Min, 2011, 1: 159-172&
[121]
Hopcroft J, Lou T, Tang J. Who will follow you back? reciprocal relationship prediction. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM11), Glasgow, 2011. 1137-1146.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hopcroft J, Lou T, Tang J. Who will follow you back? reciprocal relationship prediction. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM11), Glasgow, 2011. 1137-1146&
[122]
Zhang H, Dantu R. Predicting social ties in mobile phone networks. In: Proceedings of 2010 IEEE International Conference on Intelligence and Security Informatics, Vancouver, 2010. 25-30.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang H, Dantu R. Predicting social ties in mobile phone networks. In: Proceedings of 2010 IEEE International Conference on Intelligence and Security Informatics, Vancouver, 2010. 25-30&
[123]
Gilbert E, Karahalios K. Predicting tie strength with social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Boston, 2009. 211-220.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gilbert E, Karahalios K. Predicting tie strength with social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Boston, 2009. 211-220&
[124]
Xiang R, Neville J, Rogati M. Modeling relationship strength in online social networks. In: Proceedings of the 19th International Conference on World Wide Web (WWW'10), Raleigh, 2010. 981-990.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xiang R, Neville J, Rogati M. Modeling relationship strength in online social networks. In: Proceedings of the 19th International Conference on World Wide Web (WWW'10), Raleigh, 2010. 981-990&
[125]
Tang W, Zhuang H, Tang J. Learning to infer social ties in large networks. In: Proceedings of Machine Learning and Knowledge Discovery in Databases European Conference (ECML/PKDD), Athens, 2011. 381-397.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tang W, Zhuang H, Tang J. Learning to infer social ties in large networks. In: Proceedings of Machine Learning and Knowledge Discovery in Databases European Conference (ECML/PKDD), Athens, 2011. 381-397&
[126]
Zhuang H, Tang J, Tang W, et al. Actively learning to infer social ties. Data Min Knowl Discov, 2012, 25: 270-297.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhuang H, Tang J, Tang W, et al. Actively learning to infer social ties. Data Min Knowl Discov, 2012, 25: 270-297&
[127]
Tang J, Lou T, Kleinberg J. Inferring social ties across heterogeneous networks. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining (WSDM'12), Seattle, 2012. 743-752.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tang J, Lou T, Kleinberg J. Inferring social ties across heterogeneous networks. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining (WSDM'12), Seattle, 2012. 743-752&
[128]
Liu W, Lü L. Link prediction based on local random walk. Europhys Lett, 2010, 89: 58007.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu W, Lü L. Link prediction based on local random walk. Europhys Lett, 2010, 89: 58007&
[129]
Liu Z, Zhang Q, Lü L, et al. Link prediction in complex networks: a local näve Bayes model. Europhys Lett, 2011, 96: 48007.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu Z, Zhang Q, Lü L, et al. Link prediction in complex networks: a local näve Bayes model. Europhys Lett, 2011, 96: 48007&
[130]
Yin Z, Gupta M, Weninger T, et al. LINKREC: a unified framework for link recommendation with user attributes and graph structure. In: Proceedings of the 19th International Conference on World Wide Web (WWW'10), Raleigh, 2010. 1211-1212.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yin Z, Gupta M, Weninger T, et al. LINKREC: a unified framework for link recommendation with user attributes and graph structure. In: Proceedings of the 19th International Conference on World Wide Web (WWW'10), Raleigh, 2010. 1211-1212&
[131]
Sachan M, Ichise R. Using semantic information to improve link prediction results in network datasets. Int J Comput Theory Eng, 2011, 3: 71-76.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sachan M, Ichise R. Using semantic information to improve link prediction results in network datasets. Int J Comput Theory Eng, 2011, 3: 71-76&