logo

SCIENCE CHINA Information Sciences, Volume 59, Issue 11: 112501(2016) https://doi.org/10.1007/s11432-015-0616-9

Quantum private comparison based on quantum dense coding

More info
  • ReceivedFeb 15, 2016
  • AcceptedMay 22, 2016
  • PublishedSep 28, 2016

Abstract

A serious problem in cloud computing is privacy information protection. This study proposes a new private comparison protocol using Einstein-Podolsky-Rosen (EPR) pairs. This protocol allows two parties to secretly compare their classical information. Quantum dense coding enables the comparison task to be completed with the help of a classical semi-honest center. A one-step transmission scheme and designed decoy photons can be used against various quantum attacks. The new protocol can ensure fairness, efficiency, and security. The classical semi-honest center cannot learn any information about the private inputs of the players. Moreover, this scheme can be easily generalized using the general EPR pairs in order to improve the transmission efficiency.


Funded by

under the International Strategic Cooperation Award(SFI/13/ISCA/2845)

Fundamental Research Funds for the Central Universities(2682014CX095)

National Natural Science Foundation of China(61373131)

Science Foundation Ireland(SFI)

Natural Science Foundation of Shandong Province(ZR2015FL024)

"source" : null , "contract" : "KJR1502"

PAPD and CICAEET Funds Open Foundation of Jiangsu Engineering Center of Network Monitoring(Nanjing University of Information Science & Technology)

Open Foundation of China-USA Computer Science Center(KJR16012)

National Natural Science Foundation of China(61303039)


Acknowledgment

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 61303039, 61373131), Natural Science Foundation of Shandong Province (Grant No. ZR2015FL024), Fundamental Research Funds for the Central Universities (Grant No. 2682014CX095), PAPD and CICAEET Funds, Open Foundation of Jiangsu Engineering Center of Network Monitoring (Nanjing University of Information Science & Technology) (Grant No. KJR1502), Open Foundation of China-USA Computer Science Center (Grant No. KJR16012), and Science Foundation Ireland (SFI) under the International Strategic Cooperation Award (Grant No. SFI/13/ISCA/2845).


References

[1] Fu Z J, Sun X M, Liu Q, et al. Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans Commun, 2015, 98: 190-200 Google Scholar

[2] Li J, Li X L, Yang B, et al. Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inform Forens Secur, 2015, 10: 507-518 CrossRef Google Scholar

[3] Ren Y J, Shen J, Wang J, et al. Mutual verifiable provable data auditing in public cloud storage. J Internet Technol, 2015, 16: 317-324 Google Scholar

[4] Xia Z H, Wang X H, Sun X M, et al. A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans Parall Distrib Syst, 2015, 27: 340-352 Google Scholar

[5] Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, 1984. 175--179. Google Scholar

[6] Zhou C, Bao W S, Fu X Q. Decoy-state quantum key distribution for the heralded pair coherent state photon source with intensity fluctuations. Sci China Inf Sci, 2010, 53: 2485-2494 CrossRef Google Scholar

[7] Qian X D, He G Q, Zeng G H. Realization of error correction and reconciliation of continuous quantum key distribution in detail. Sci China Ser-F: Inf Sci, 2009, 52: 1598-1604 CrossRef Google Scholar

[8] Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895-1899 CrossRef Google Scholar

[9] Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390: 575-579 CrossRef Google Scholar

[10] Furusawa A, S{\o}ensen J L, Braunstein S L, et al. } Unconditional quantum teleportation. Science, 1998, 282: 706-709 CrossRef Google Scholar

[11] Bennett C H, DiVincenzo D P, Shor P Q, et al. } Remote state preparation. Phys Rev Lett, 2001, 87: 077902-709 CrossRef Google Scholar

[12] Luo M X, Deng Y, Chen X B, et al. The faithful remote preparation of general quantum states. Quantum Inform Process, 2013, 12: 279-294 CrossRef Google Scholar

[13] Hillery M, Buzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829-1834 CrossRef Google Scholar

[14] Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Phys Rev Lett, 1999, 83: 648-651 CrossRef Google Scholar

[15] Guo G P, Guo G C. Quantum secret sharing without entanglement. Phys Lett A, 2003, 310: 247-251 CrossRef Google Scholar

[16] Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secret-sharing schemes. Phys Rev A, 2004, 69: 052307-251 CrossRef Google Scholar

[17] Qin S J, Gao F, Wen Q Y, et al. Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys Lett A, 2006, 357: 101-103 CrossRef Google Scholar

[18] Xu J, Chen H W, Liu W J, et al. Selection of unitary operations in quantum secret sharing without entanglement. Sci China Inf Sci, 2011, 54: 1837-1842 CrossRef Google Scholar

[19] Wang T Y, Wen Q Y. Security of a kind of quantum secret sharing with single photons. Quantum Inform Comput, 2011, 11: 434-443 Google Scholar

[20] Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902-443 CrossRef Google Scholar

[21] Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317-443 CrossRef Google Scholar

[22] Wang C, Deng F-G, Li Y-S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305-443 CrossRef Google Scholar

[23] Lin S, Wen Q Y, Gao F, et al. Quantum secure direct communication with $\chi$-type entangled states. Phys Rev A, 2008, 78: 064304-443 CrossRef Google Scholar

[24] Liu Z H, Chen H W, Liu W J, et al. Deterministic secure quantum communication without unitary operation based on highdimensional entanglement swapping. Sci China Inf Sci, 2012, 55: 360-367 CrossRef Google Scholar

[25] Zheng C, Long G F. Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci China Phys Mech Astro, 2014, 57: 1238-1243 CrossRef Google Scholar

[26] Zou X F, Qiu D W. Three-step semiquantum secure direct communication protocol. Sci China Phys Mech Astro, 2014, 57: 1696-1702 CrossRef Google Scholar

[27] Qu Z G, Chen X B, Zhou X J, et al. Novel quantum steganography with large payload. Opt Commun, 2010, 283: 4782-4786 CrossRef Google Scholar

[28] Qu Z G, Chen X B, Luo M X, et al. A large payload of novel quantum steganography with $\chi$-type entangled state. Opt Commun, 2011, 284: 2075-2082 CrossRef Google Scholar

[29] Xu S J, Chen X B, Niu X X, et al. High-efficiency quantum steganography based on the tensor product of Bell states. Sci China Phys Mech Astro, 2013, 56: 1745-1754 CrossRef Google Scholar

[30] Yao A C. Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, Chicago, 1982. 160--164. Google Scholar

[31] Yao A C. How to generate and exchange secrets. In: Proceedings of the 27th Annual Symposium on Foundations of Computer Science, Toronto, 1986. 162--167. Google Scholar

[32] Boudot F, Schoenmakers B, Traore J. A fair and efficient solution to the socialist millionaires problem. Discret Appl Math, 2001, 111: 23-36 CrossRef Google Scholar

[33] Lo H K. Insecurity of quantum secure computations. Phys Rev A, 1997, 56: 1154-1162 CrossRef Google Scholar

[34] Yang Y G, Wen Q Y. An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J Phys A-Math Theor, 2009, 42: 055305-1162 CrossRef Google Scholar

[35] Yang Y G, Cao W F, Wen Q Y. Secure quantum private comparison. Phys Scr, 2009, 80: 065002-1162 CrossRef Google Scholar

[36] Lin J, Tseng H Y, et al. 's quantum private comparison protocol and the improvements. Opt Commun, 2011, 284: 2412-2414 CrossRef Google Scholar

[37] Chen X B, Xu G, Niu X X, et al. An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt Commun, 2010, 283: 1561-1565 CrossRef Google Scholar

[38] Liu W J, Liu C, Wang H B, et al. Secure quantum private comparison of equality based on asymmetric W state. Int J Theor Phys, 2014, 53: 1804-1813 CrossRef Google Scholar

[39] Tseng H Y, Lin J, Hwang T. New quantum private comparison protocol using EPR pairs. Quantum Inf Proc, 2012, 11: 373-384 CrossRef Google Scholar

[40] Liu W J, Liu C, Chen H W, et al. Cryptanalysis and improvement of quantum private comparison protocol based on bell entangled states. Commun Theor Phys, 2014, 62: 210-214 CrossRef Google Scholar

[41] Liu W, Wang Y B, Jiang Z T, et al. A protocol for the quantum private comparison of equality with $\chi$-type state. Int J Theor Phys, 2012, 51: 69-77 CrossRef Google Scholar

[42] Xu G A, Chen X B, Wei Z H, et al. An efficient protocol for the quantum private comparison of equality with a four-qubit cluster state. Int J Quantum Inf, 2012, 10: 1250045-77 CrossRef Google Scholar

[43] Liu W, Wang Y B, Jiang Z T. An efficient protocol for the quantum private comparison of equality with W state. Opt Commun, 2011, 284: 3160-3163 CrossRef Google Scholar

[44] Liu B, Gao F, Jia H Y, et al. Efficient quantum private comparison employing single photons and collective detection. Quantum Inf Proc, 2013, 12: 887-897 CrossRef Google Scholar

[45] Li Y B, Qin S J, Yuan Z, et al. Quantum private comparison against decoherence noise. Quantum Inf Proc, 2013, 12: 2191-2205 CrossRef Google Scholar

[46] Zhang W W, Zhang K J. Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf Proc, 2013, 12: 1981-1990 CrossRef Google Scholar

[47] Chen X B, Su Y, Niu X X, et al. Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf Proc, 2013, 12: 2871-2875 CrossRef Google Scholar

[48] Zukowski M, Zeilinger A, Horne M A, et al. Event-ready-detectors Bell experiment via entanglement swapping. Phys Rev Lett, 1993, 71: 4287-4290 CrossRef Google Scholar

[49] Pan J W, Bouwmeester D, Weinfurter H, et al. Experimental entanglement swapping: entangling photons that never interacted. Phys Rev Lett, 1998, 80: 3891-3894 CrossRef Google Scholar

[50] Barencoa A, Ekerta A K. Dense coding based on quantum entanglement. J Mod Opt, 1995, 42: 1253-1259 CrossRef Google Scholar

[51] Yeo Y, Chua W K. Teleportation and dense coding with genuine multipartite entanglement. Phys Rev Lett, 2006, 96: 060502-1259 CrossRef Google Scholar

[52] Shadman Z, Kampermann H, Macchiavello C, et al. Optimal super dense coding over noisy quantum channels. New J Phys, 2010, 12: 073042-1259 CrossRef Google Scholar

[53] Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A, 2006, 351: 23-25 CrossRef Google Scholar

[54] Deng F G, Li X H, Zhou H Y, et al. Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys Rev A, 2006, 73: 049901-25 CrossRef Google Scholar

[55] Qin S J, Wen Q Y, Zhu F C. Cryptanalysis of multiparty quantum secret sharing of quantum state using entangled states. Chin Phys Lett, 2008, 25: 3551-3554 CrossRef Google Scholar

[56] Li X H, Deng F G, Zhou H Y. Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A, 2006, 74: 054302-3554 CrossRef Google Scholar

[57] Yang C W, Hwang T, Luo Y P. Enhancement on quantum blind signature based on two-state vector formalism. Quantum Inf Proc, 2013, 12: 109-117 CrossRef Google Scholar

[58] Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys Rev Lett, 1996, 76: 722-725 CrossRef Google Scholar

[59] Sheng Y B, Zhou L. Deterministic entanglement distillation for secure double-server blind quantum computation. Sci Rep, 2015, 5: 7815-725 CrossRef Google Scholar

[60] Sheng Y B, Zhou L. Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys Lett, 2014, 11: 085203-725 CrossRef Google Scholar

[61] Sheng Y B, Zhou L, Long G L. Hybrid entanglement purification for quantum repeaters. Phys Rev A, 2013, 88: \-725 Google Scholar

[62] Bennett C H, Bernstein H J, Popescu S, et al. Concentrating partial entanglement by local operations. Phys Rev A, 1996, 53: 2046-2052 CrossRef Google Scholar

[63] Zhao Z, Yang T, Chen Y A, et al. Experimental realization of entanglement concentration and a quantum repeater. Phys Rev Lett, 2003, 90: 207901-2052 CrossRef Google Scholar

[64] Sheng Y B, Zhou L, Zhao S M, et al. Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys Rev A, 2012, 85: 012307-2052 CrossRef Google Scholar

[65] Ren B C, Du F F, Deng F G. Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys Rev A, 2013, 88: 012302-2052 CrossRef Google Scholar

[66] Zhao Z, Pan J W, Zhan M S. Practical scheme for entanglement concentration. Phys Rev A, 2001, 64: 014301-2052 CrossRef Google Scholar

[67] Sheng Y B, Deng F G, Zhou H Y. Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys Rev A, 2008, 77: 062325-2052 CrossRef Google Scholar

[68] Shi B S, Jiang Y K, Guo G C. Optimal entanglement purification via entanglement swapping. Phys Rev A, 2000, 62: 054301-2052 CrossRef Google Scholar

[69] Luo M X, Chen X B, Yang Y X, et al. Hyperentanglement concentration for $n$-photon $2n$-qubit systems with linear optics. J Opt Soc Amer B-Opt Phys, 2014, 31: 67-74 Google Scholar

[70] Luo M X, Li H R, Wang X. Efficient atomic and photonic multipartite W state concentration via photonic faraday rotation. Eur Phys J D, 2014, 68: 190-74 CrossRef Google Scholar

[71] Chrzanowski H M, Walk N, Assad S M, et al. Measurement-based noiseless linear amplification for quantum communication. Nat Photon, 2014, 8: 333-338 CrossRef Google Scholar

[72] Eleftheriadou E, Barnett S M, Jeffers J. Quantum optical state comparison amplifier. Phys Rev Lett, 2013, 111: 213601-338 CrossRef Google Scholar

[73] Kocsis S, Xiang G Y, Ralph T C, et al. Heralded noiseless amplification of a photon polarization qubit. Nat Phys, 2013, 9: 23-28 Google Scholar

[74] Zhou L, Sheng Y B. Recyclable amplification protocol for the single-photon entangled state. Laser Phys Lett, 2015, 12: 045203-28 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1