SCIENCE CHINA Information Sciences, Volume 60, Issue 2: 022301(2017) https://doi.org/10.1007/s11432-015-0979-5

CP-based MIMO OFDM radar IRCI free range reconstruction using real orthogonal designs

More info
  • ReceivedJan 30, 2016
  • AcceptedMay 23, 2016
  • PublishedNov 8, 2016


In this paper, we propose a range reconstruction method for a frequency-band shared multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) radar with sufficient cyclic prefix (CP) by using real orthogonal designs. Compared with the application of complex orthogonal designs in our previous work, the application of real orthogonal designs can significantly reduce the number of the all-zero-valued pulses in a coherent processing interval (CPI) for each transmitter and increase the efficiency of radar transmitters. Meanwhile, it still maintains the advantages of full spatial diversity without inter-range-cell interference (IRCI). We also apply the rate-$1$ real orthogonal designs for different numbers of transmitters and pulses for range reconstruction without any idleness of radar transmitters. Simulation results are presented to illustrate the performances of the OFDM pulse design and the CP-based MIMO OFDM radar using real orthogonal designs.

Funded by

National Natural Science Foundation of China(61501083)

National Natural Science Foundation of China(61178068)

Fundamental Research Funds of Central Universities(Grants No. ZYGX2015KYQD056)

Program for New Century Excellent Talents in University(A1098524023901001063)



This work was supported by National Natural Science Foundation of China (Grant Nos. 61501083, 61178068), Fundamental Research Funds of Central Universities (Grants No. ZYGX2015KYQD056), and Program for New Century Excellent Talents in University (Grant No. A1098524023901001063).


[1] Li J, Stoica P. {MIMO} radar with colocated antennas. IEEE Signal Process Mag, 2007, 24: 106-114 Google Scholar

[2] Li J, Stoica P. {MIMO} Radar Signal Processing. New York: Wiley Online Library, 2008. Google Scholar

[3] Wu X H, Kishk A A, Glisson A W. {MIMO}-{OFDM} radar for direction estimation. IET Radar Sonar Nav, 2010, 4: 28-36 CrossRef Google Scholar

[4] Cao Y-H, Xia X-G, Wang S-H. IRCI free co-located MIMO radar based on sufficient cyclic prefix OFDM waveforms. IEEE Trans Aerosp Electron Syst, 2015, 51: 2107-2120 CrossRef Google Scholar

[5] Cao Y-H, Xia X-G. {IRCI}-free {MIMO}-{OFDM} {SAR} using circularly shifted {Zadoff}-{Chu} sequences. IEEE Geosci Remote Sens Lett, 2015, 12: 1126-1130 CrossRef Google Scholar

[6] Meng C Z, Xu J, Xia X-G, et al. MIMO-SAR waveforms separation based on virtual polarization filter. Sci China Inf Sci, 2015, 58: 042301-1130 Google Scholar

[7] He F, Chen Q, Dong Z, et al. Modeling and high-precision processing of the azimuth shift variation for spaceborne HRWS SAR. Sci China Inf Sci, 2013, 56: 102304-1130 Google Scholar

[8] Haimovich A M, Blum R S, Cimini L J. {MIMO} radar with widely separated antennas. IEEE Signal Process Mag, 2008, 25: 116-129 CrossRef Google Scholar

[9] Chernyak V. Multisite radar systems composed of {MIMO} radars. IEEE Aerospace Electron Syst Mag, 2014, 29: 28-37 Google Scholar

[10] Xu J, Dai X-Z, Xia X-G, et al. Optimizations of multisite radar system with {MIMO} radars for target detection. IEEE Trans Aerospace Electron Syst, 2011, 47: 2329-2343 CrossRef Google Scholar

[11] Antonio G S, Fuhrmann D R, Robey F C. {MIMO} radar ambiguity functions. IEEE J Sel Topics Signal Process, 2007, 1: 167-177 CrossRef Google Scholar

[12] Somaini U. Binary sequences with good autocorrelation and cross correlation properties. IEEE Trans Aerospace Electron Syst, 1975, 11: 1226-1231 Google Scholar

[13] Deng H. Synthesis of binary sequences with good autocorrelation and crosscorrelation properties by simulated annealing. IEEE Trans Aerospace Electron Syst, 1996, 32: 98-107 CrossRef Google Scholar

[14] Deng H. Polyphase code design for orthogonal netted radar systems. IEEE Trans Signal Process, 2004, 52: 3126-3135 CrossRef Google Scholar

[15] Khan H A, Zhang Y Y, Ji C L, et al. Optimizing polyphase sequences for orthogonal netted radar. IEEE Signal Process Lett, 2006, 13: 589-592 CrossRef Google Scholar

[16] He H, Stoica P, Li J. Designing unimodular sequence sets with good correlations-{Including} an application to {MIMO} radar. IEEE Trans Signal Process, 2009, 57: 4391-4405 CrossRef Google Scholar

[17] Song X F, Zhou S L, Willett P. Reducing the waveform cross correlation of {MIMO} radar with space-time coding. IEEE Trans Signal Process, 2010, 58: 4213-4224 CrossRef Google Scholar

[18] Xu L, Liang Q L. Zero correlation zone sequence pair sets for {MIMO} radar. IEEE Trans Aerospace Electron Syst, 2012, 48: 2100-2113 CrossRef Google Scholar

[19] Jin Y, Wang H, Jiang W, et al. Complementary-based chaotic phase-coded waveforms design for {MIMO} radar. IET Radar Sonar Nav, 2013, 7: 371-382 CrossRef Google Scholar

[20] Xia X-G, Zhang T X, Kong L J. {MIMO} {OFDM} radar {IRCI} free range reconstruction with sufficient cyclic prefix. IEEE Trans Aerospace Electron Syst, 2015, 51: 2276-2293 CrossRef Google Scholar

[21] Zhang T X, Xia X-G. {OFDM} synthetic aperture radar imaging with sufficient cyclic prefix. IEEE Trans Geosci Remote Sens, 2015, 53: 394-404 CrossRef Google Scholar

[22] Zhang T X, Xia X-G, Kong L J. {IRCI} free range reconstruction for {SAR} imaging with arbitrary length {OFDM} pulse. IEEE Trans Signal Process, 2014, 62: 4748-4759 CrossRef Google Scholar

[23] Kim J-H, Younis M, Moreira A, et al. A novel {OFDM} chirp waveform scheme for use of multiple transmitters in {SAR}. IEEE Geosci Remote Sens Lett, 2013, 10: 568-572 CrossRef Google Scholar

[24] Sit Y L, Sturm C, Baier J, et al. Direction of arrival estimation using the {MUSIC} algorithm for a {MIMO} {OFDM} radar. In: Proceedings of IEEE Radar Conference, Atlanta, 2012. 0226--0229. Google Scholar

[25] Sen S, Nehorai A. {OFDM} {MIMO} radar with mutual-information waveform design for low-grazing angle tracking. IEEE Trans Signal Process, 2010, 58: 3152-3162 CrossRef Google Scholar

[26] Lu K J, Fu S L, Xia X-G. Closed-form designs of complex orthogonal space-time block codes of rates $(k+1)/(2k)$ for $2k-1$ or $2k$ transmit antennas. IEEE Trans Inf Theory, 2005, 51: 4340-4347 CrossRef Google Scholar

[27] Liang X-B. Orthogonal designs with maximal rates. IEEE Trans Inf Theory, 2003, 49: 2468-2503 CrossRef Google Scholar

[28] Geramita A V, Seberry J. Orthogonal Designs, Quadratic Forms and Hadamard Matrices, Lecture Notes in Pure and Applied Mathematics, Vol. 43. New York and Basel: Marcel Dekker, 1979. Google Scholar

[29] Armstrong J. Peak-to-average power reduction for {OFDM} by repeated clipping and frequency domain filtering. Electron Lett, 2002, 38: 246-247 CrossRef Google Scholar

[30] Han S H, Lee J H. An overview of peak-to-average power ratio reduction techniques for multicarrier transmission. IEEE Wirel Commun, 2005, 12: 56-65 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有