logo

SCIENCE CHINA Information Sciences, Volume 59, Issue 3: 032109(2016) https://doi.org/10.1007/s11432-015-5303-0

A strongly secure pairing-free certificateless authenticated key agreement protocol under the CDH assumption

More info
  • ReceivedSep 13, 2015
  • AcceptedNov 12, 2015
  • PublishedJan 26, 2016

Abstract

There is no abstract available for this article.


Funded by

national Natural Science Foundation of China(61502436)

fundamental Research Funds for the Central Universities(2015RC23)

national Natural Science Foundation of China(61300181)

national Natural Science Foundation of China(61502044)


References

[1] Shamir A. Identity-based cryptosystems and signature schemes. In: Proceedings of the 4th Annual International Cryptology Conference, Santa Barbara, 1984. 47--53. Google Scholar

[2] Al-Riyami S, Paterson K G. Certificateless public key cryptography. In: Proceedings of 9th International Conference on the Theory and Application of Cryptology and Information Security, Taipei, 2003. 452--473. Google Scholar

[3] Li H, Wu C K. Sci China Inf Sci, 2012, 55: 1666-1674 CrossRef Google Scholar

[4] Ni L, Chen G L, Li J H, et al. Sci China Inf Sci, 2013, 56: 082113-1674 Google Scholar

[5] Wang S B, Cao Z F, Dong X. J Inf Comput Sci, 2006, 3: 575-581 Google Scholar

[6] Shi Y J, Li J H. Wuhan Univ J Nat Sci, 2007, 12: 71-74 CrossRef Google Scholar

[7] Luo M, Wen Y Y, Zhao H. An enhanced authentication and key agreement mechanism for SIP using certificateless public-key cryptography. In: Proceedings of the 9th International Conference for Young Computer Scientists, Hunan, 2008. 1577--1582. Google Scholar

[8] Mandt T K, Tan C H. Certificateless authenticated two-party key agreement protocols. In: Proceedings of the 11th Asian Computing Science Conference, Tokyo, 2006. 37--44. Google Scholar

[9] Wang F J, Zhang Y Q. Comput Commun, 2008, 31: 2142-2149 CrossRef Google Scholar

[10] Swanson C, Jao D. A study of two-party certificateless authenticated key agreement protocols. In: Proceedings of 10th International Conference on Cryptology in India, New Delhi, 2009. 57--71. Google Scholar

[11] Lippold G, Boyd C, Manuel González Nieto J. Strongly secure certificateless key agreement. In: Proceedings of 3rd International Conference on Pairing-Based Cryptography, Palo Alto, 2009. 206--230. Google Scholar

[12] Zhang L, Zhang F T, Wu Q H, et al. Inf Sci, 2010, 180: 1020-1030 CrossRef Google Scholar

[13] He D J, Chen C, Chan S, et al. IEEE Trans Wirel Commun, 2012, 11: 48-53 CrossRef Google Scholar

[14] Hou M B, Xu Q L. A two-party certificateless authenticated key agreement protocol without pairing. In: Proceedings of the 2nd IEEE International Conference on Computer Science and Information Technology, Beijing, 2009. 412--416. Google Scholar

[15] He D B, Chen Y T, Hu J. Int J Commun Syst, 2012, 25: 221-230 CrossRef Google Scholar

[16] He D B, Chen Y T, Chen J H, et al. Math Comput Model, 2011, 54: 3143-3152 CrossRef Google Scholar

[17] Xiong H, Wu Q H, Chen Z. Toward pairing-free certificateless authenticated key exchanges. In: Proceedings of 14th International Conference on Information Security, Xi'an, 2011. 79--94. Google Scholar

[18] Geng M M, Zhang F T. Provably secure certificateless two-party authenticated key agreement protocol without pairing. In: Proceedings of the 2009 International Conference on Computational Intelligence and Security, Jinan, 2009. 208--212. Google Scholar

[19] He D B, Padhye S, Chen J H. Comput Math Appl, 2012, 64: 1914-1926 CrossRef Google Scholar

[20] Yang G M, Tan C H. Strongly secure certificateless key exchange without pairing. In: Proceedings of the 6th ACM Symposium on Information Computer and Communications Security, New York, 2011. 71--79. Google Scholar

[21] Sun H Y, Wen Q Y, Zhang H, et al. Inf Technol Control, 2013, 42: 113-123 Google Scholar

[22] Sun H Y, Wen Q Y, Zhang H, et al. Front Comput Sci, 2013, 7: 544-557 CrossRef Google Scholar

[23] Bellare M, Rogaway P. Entity authentication and key distribution. In: Proceedings of 13th Annual International Cryptology Conference on Advances in Cryptology. Berlin: Springer-Verlag, 1993. 232--249. Google Scholar

[24] Blake-Wilson S, Johnson D, Menezes A. Key agreement protocols and their security analysis. In: Proceedings of 6th IMA International Conference on Cryptography and Coding. Berlin: Springer-Verlag, 1997. 30--45. Google Scholar

[25] Canetti R, Krawczyk H. Analysis of key-exchange protocols and their use for building secure channels. In: Proceedings of International Conference on the Theory and Application of Cryptographic Techniques, Innsbruck, 2001. 453--474. Google Scholar

[26] LaMacchia B, Lauter K, Mityagin A. Stronger security of authenticated key exchange. In: Proceedings of 1st International Conference on Provable Security. Berlin: Springer-Verlag, 2007. 1--16. Google Scholar

[27] Sarr A P, Elbaz-Vincent P, Bajard J. A new security model for authenticated key agreement. In: Proceedings of 7th International Conference on Security and Cryptography for Networks, Amalfi, 2010. 219--234. Google Scholar

[28] Boneh D, Gentry C, Lynn B, et al. CryptoBytes, 2003, 6: 1-11 Google Scholar

[29] Cash D, Kiltz E, Shoup V. The twin Diffie-Hellman problem and applications. In: Proceedings of 27th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Istanbul, 2008. 127--145. Google Scholar

[30] Pointcheval D, Stern J. J Cryptol, 2000, 13: 361-369 CrossRef Google Scholar

[31] Shamus Software Ltd. Miracl library. http://www.certivox.com/miracl/. Google Scholar

[32] The Certicom Corporation. SEC2: Recommended domain parameters. Version 1.0, 2000. Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1