logo

SCIENCE CHINA Information Sciences, Volume 59, Issue 1: 012204(2016) https://doi.org/10.1007/s11432-015-5311-0

Stability of nonlinear feedback shift registers

More info
  • ReceivedNov 27, 2014
  • AcceptedJan 5, 2015
  • PublishedDec 21, 2015

Abstract

There is no abstract available for this article.


Acknowledgment

Acknowledgments

This work was supported in part by strategic Priority Research Program of CAS (Grant No. XDA06010701), national Basic Research Program of China (973 Program) (Grant No. 2011CB302400), and National Natural Science Foundation of China (Grant Nos. 61379139, 61104075), and in part by China Postdoctoral Science Foundation Funded Project (Grant No. 2014M550100) and Department of Science and Technology of Shandong Province in China (Grant No. BS2012DX008).


References

[1] Massey J L, Liu R W. IEEE Trans Inf Theory, 1964, 10: 248-250 CrossRef Google Scholar

[2] Laselle J, Lefschetz S. Stability by Liapunov's Direct method with Applications. New York: Academic Press, 1961. Google Scholar

[3] Mowle F J. IEEE Trans Electron Comput, 1996, EC-15: 375-378 Google Scholar

[4] Mowle F J. J ACM, 1967, 14: 529-542 CrossRef Google Scholar

[5] Fontaine C. Nonlinear feedback shift register. In: van Tilborg H C A, Jajodia S, eds., Encryclopedia of Cryptography and Security. New York: Springer, 2011. 846--848. Google Scholar

[6] Golomb S W. Shift Register Sequences. Laguna Hills: Holden-Day, 1967. Google Scholar

[7] Qi H. On shift register via semi-tensor product approach. In: Proceedings of the 32nd Chinese Control Conference. Piscataway: IEEE Conference Publication Operations, 2013. 208--212. Google Scholar

[8] Zhong J, Lin D. On maximum length nonlinear feedback shift registers using a Boolean network approach. In: Proceedings of the 33rd Chinese Control Conference. Piscataway: IEEE Conference Publication Operations, 2014. 2502--2507. Google Scholar

[9] Zhao D, Peng H, Li L, et al. Sci China Inf Sci, 2014, 9: 092114-542 Google Scholar

[10] Kauffman S A. J Theor Biol, 1969, 22: 437-467 CrossRef Google Scholar

[11] Harris S E, Sawhill B K, Wuensche A, et al. Complexity, 2002, 7: 23-40 CrossRef Google Scholar

[12] Huang S, Ingber I. Exp Cell Res, 2000, 261: 91-103 CrossRef Google Scholar

[13] Shmulevich I, Dougherty R, Kim S, et al. Bioinformatics, 2002, 2: 261-274 Google Scholar

[14] Albert R, Barabasi A L. Phys Rev Lett, 2000, 84: 5660-5663 CrossRef Google Scholar

[15] Aldana M. Phys D, 2003, 185: 45-66 CrossRef Google Scholar

[16] Samuelsson B, Troein C. Phys Rev Lett, 20003, 90: 098701-66 Google Scholar

[17] Cheng D. IEEE Trans Neural Netw, 2009, 20: 512-521 CrossRef Google Scholar

[18] Cheng D. IEEE Trans Automat Control, 2011, 56: 2-10 CrossRef Google Scholar

[19] Cheng D, Qi H. IEEE Trans Automat Control, 2010, 55: 2251-2258 CrossRef Google Scholar

[20] Cheng D, Qi H. IEEE Trans Neural Netw, 2010, 21: 584-594 CrossRef Google Scholar

[21] Cheng D, Qi H, Li Z. Analysis and Control of Boolean networks. London: Springer-Verlag, 2011. Google Scholar

[22] Zhong J, Lu J, Huang T, et al. Neurocomputing, 2014, 143: 269-274 CrossRef Google Scholar

[23] Chen H, Sun J. Neural Netw, 2013, 39: 12-17 CrossRef Google Scholar

[24] Wang Y, Li H. On definition and construction of Lyapunov functions for Boolean networks. In: Proceeding of the 10th World Congress on Intelligent Control and Automation. Piscataway: IEEE Conference Publication Operations, 2012. 1247--1252. Google Scholar

[25] Cheng D, Qi H, Li Z, et al. Int J Robust Nonlinear Contr, 2011, 21: 134-156 CrossRef Google Scholar

[26] Li F, Sun J. Nonlinear Anal-Real World App, 2011, 12: 3701-3712 CrossRef Google Scholar

[27] Li F, Sun J. Syst Control Lett, 2012, 61: 1-5 CrossRef Google Scholar

[28] Liu Y, Lu J, Wu B. ESAIM Control Optim Calc Var, 2014, 20: 158-173 CrossRef Google Scholar

[29] Zhong J, Lu J, Liu Y, et al. IEEE Trans Neural Netw Learn Syst, 2014, 25: 2288-2294 CrossRef Google Scholar

[30] Roger A H, Johnson C R. Topics in Matrix Analysis. Cambridge: Cambridge University Press, 1991. Google Scholar

[31] Qi H, Cheng D. J Contr Theory Appl, 2008, 6: 123-133 Google Scholar

[32] Cheng D, Qi H, Zhao Y. An Introduction to Semi-tensor Product of Matrices and its Applications. Singapore: World Scientific Publishing Company, 2012. Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1