logo

SCIENCE CHINA Information Sciences, Volume 59, Issue 1: 012107(2016) https://doi.org/10.1007/s11432-015-5321-y

Constructing ECOC based on confusion matrix for multiclass learning problems

More info
  • ReceivedDec 24, 2014
  • AcceptedFeb 11, 2015
  • PublishedDec 4, 2015

Abstract

There is no abstract available for this article.


References

[1] Dietterich T G, Bakiri G. J Artif Intell Res, 1995, 2: 263-286 Google Scholar

[2] Windeatt T, Ardeshir G. Boosted ECOC ensembles for face recognition. In: Proceedings of International Conference on Visual Information Engineering. California: AAAI Press, 2003. 165--168. Google Scholar

[3] Windeatt T, Smith R S. Weighted decoding ECOC for facial action unit classification. In: Proceedings of International Conference on Artificial Intelligence. California: AAAI Press, 2008. 26--30. Google Scholar

[4] Ghani R. Combining labeled and unlabeled data for text classification with a large number of categories. In: Proceedings of International Conference on Data Mining. California: AAAI Press, 2001. 597--598. Google Scholar

[5] Escalera S, Pujol O, Radeva P. IEEE Trans Patt Anal Mach Intell, 2010, 32: 120-134 CrossRef Google Scholar

[6] Pujol O, Radeva P, Vitria J. IEEE Trans Patt Anal Mach Intell, 2006, 28: 1001-1007 CrossRef Google Scholar

[7] Alpaydin E, Mayoraz E. Learning error-correcting output codes from data. In: Proceedings of International Conference on Artificial Neural Networks. California: AAAI Press, 1999. 743--748. Google Scholar

[8] Utschick W, Weichselberger W. Neural Comput, 2001, 13: 1065-1102 CrossRef Google Scholar

[9] Escalera S, Tax D M J, Pujol O, et al. IEEE Trans Patt Anal Mach Intell, 2008, 30: 1-14 CrossRef Google Scholar

[10] Escalera S, Masip D, Puertas E, et al. Patt Recognit Lett, 2011, 32: 458-467 CrossRef Google Scholar

[11] Simeone P, Marrocco C, Tortorella F. Patt Recognit, 2012, 2: 863-875 Google Scholar

[12] Garcia-Pedrajas N, Ortiz-Boyer D. Inf Fusion, 2011, 2: 111-130 Google Scholar

[13] Zhou J, Suen C. Unconstrained numeral pair recognition using enhanced error correcting output coding: a holistic approach. In: Proceedings of International Conference on Document Analysis and Recognition. California: AAAI Press, 2005. 484--488. Google Scholar

[14] Allwein E, Schapire R, Singer Y. Mach Learn Res, 2002, 1: 113-141 Google Scholar

[15] Ruda H, Snorrason M, Shue D. Framework for automatic target recognition optimization. Cambridge Charles River Analytics Technical Report No. R96451. 1997. Google Scholar

[16] Jain A K, Duin R P W, Mao J C. IEEE Trans Patt Anal Mach Intell, 2000, 22: 4-37 CrossRef Google Scholar

[17] Sun J X. Modern Pattern Recognition (in Chinese). Changsha: National Defense Industry Press, 2002. 112--118. Google Scholar

[18] Song R, Zhang J, Xia S P, et al. Acta Electron Sin, 2001, 29: 1950-1953 Google Scholar

[19] Logan J D. Applied Mathematics. 2nd ed. Hoboken: Wiley-Interscience Ltd., 1996. 54--60. Google Scholar

[20] UCI Machine Learning Repository. School of Information and Computer Sciences, University of California, Irvine, 2007. Google Scholar

[21] Zhang Y X, Wang X D, Yao X, et al. Syst Eng Electron, 2012, 34: 1366-1372 Google Scholar

[22] Hastie T, Tibshirani R. Classification by pairwise grouping. In: Jordan M I, Kearns M J, Solla S A, eds. Advances in Neural Information Processing Systems 10. Cambridge: MIT Press, 1998. 451--471. Google Scholar

[23] Chapelle O, Vapnik V, Bousquet O, et al. Mach Learn, 2002, 46: 131-159 CrossRef Google Scholar

[24] Demsar J. J Mach Learn Res, 2006, 2: 1-30 Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1