logo

SCIENCE CHINA Information Sciences, Volume 59, Issue 3: 032203(2016) https://doi.org/10.1007/s11432-015-5358-y

High precision intelligent flexible grasping front-end with CMOS interface for robots application

More info
  • ReceivedNov 26, 2015
  • AcceptedMay 8, 2015
  • PublishedJan 20, 2016

Abstract

This paper presents a high-precision intelligent flexible robot grasping front-end with an integrated capacitive tactile sensor array and a conditioning chip. The capacitive tactile sensor is the primary part of the front-end, it determines the overall performance. The micro-needle array sandwich structure in the tactile sensor increases the repeatability and stability, and ensures the sensitivity. The assembled sensor exhibits a saturation at 10.53 N (421 kPa) with a sensitivity of 1.9%/kPa. Furthermore, a conditioning chip is utilized in a custom readout interface to achieve better performance by reducing signal attenuation, and to increase the compatibility of the front-end. The chip is optimized for the parasitic shunt capacitance in the capacitor array. A dual bidirectional charge-discharge conversion method and a two-port detection method are matched to achieve the goal of reducing the shunting influence, and attenuating the offset voltage or the noise input effects. A prototype of the interface has been fabricated using 180-nm CMOS technology. Sensor with the value of 0.5 pF shunted by capacitors of 47 pF has been detected with an error of 1% within 100 us.


References

[1] Khasnobish A, Singh G, Jati A. Med Biol Eng Comput, 2014, 52: 353-362 CrossRef Google Scholar

[2] Decherchi S, Gastaldo P. IEEE Trans Robotics, 2011, 27: 635-639 CrossRef Google Scholar

[3] Teshigawara S, Tadakuma K. High sensitivity initial slip sensor for dexterous grasp. In: Proceedings of IEEE International Conference on Robotics and Automation, Anchorage, 2010. 4867--4872. Google Scholar

[4] Haris M, Qu H. A CMOS-MEMS nano-newton force sensor for biomedical applications. In: Proceedings of Nano/Micro Engineered and Molecular Systems, Xiamen, 2010. 177--181. Google Scholar

[5] Noda K, Shimoyama I. A shear stress sensing for robot hands-orthogonal arrayed piezoresistive cantilevers standing in elastic material. In: Proceedings of Haptic Interfaces for Virtual Environment and Teleoperator Systems, Alexandria, 2006. 63--66. Google Scholar

[6] Kim K, Lee K R, Kim Y K. 3-axes flexible tactile sensor fabricated by Si micromachining and packaging technology. In: Proceedings of Micro Electro Mechanical Systems, Istanbul, 2006. 678--681. Google Scholar

[7] Yang Y J, Cheng M Y, Chang W Y. Sensors Actuat A: Phys, 2008, 143: 143-153 CrossRef Google Scholar

[8] u X H, Zhang X, Liu M, et al. Sci China Inf Sci, 2014, 57: 120204-153 Google Scholar

[9] i P, Liu M, Zhang X, et al. Sci China Inf Sci, 2014, 57: 122303-153 Google Scholar

[10] an J Q, Zhang X, Pei W H, et al. Sci China Tech Sci, 2013, 56: 2808-2813 CrossRef Google Scholar

[11] da-Rocha J G V, da-Rocha P F A, Lanceros-Mendez S. IEEE Trans Instrum Meas, 2009, 58: 2830-2836 CrossRef Google Scholar

[12] Cheng M Y, Lin C L, Yang Y J. Tactile and shear stress sensing array using capacitive mechanisms with floating electrodes. In: Proceedings of IEEE 23rd International Conference on Micro Electro Mechanical Systems, Wanchai, 2010. 228--231. Google Scholar

[13] Peng P, Rajamani R, Erdman A G. J Microelectromech Syst, 2009, 18: 1226-1233 CrossRef Google Scholar

[14] Hoshi T, Shinoda H. Robot skin based on touch-area-sensitive tactile element. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Florida, 2006. 3463--3468. Google Scholar

[15] Xu Z, Ming L, Bo W, et al. IEEE Trans Circuits Syst I: Regular Papers, 2014, 61: 2-11 CrossRef Google Scholar

[16] Lei K F, Lee K, Lee M. Microelectron Eng, 2012, 99: 1-5 CrossRef Google Scholar

[17] Pritchard E, Mahfouz M, Evans Iii B, et al. Flexible capacitive sensors for high resolution pressure measurement. In: Proceedings of IEEE Sensors Conference, Lecce, 2008. 1484--1487. Google Scholar

[18] Lee H K, Jaehoon C, Chang S I, et al. Microelectromech Syst, 2008, 17: 934-942 CrossRef Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号