logo

SCIENCE CHINA Information Sciences, Volume 59, Issue 5: 052101(2016) https://doi.org/10.1007/s11432-015-5372-0

Rotated neighbor learning-based auto-configured evolutionary algorithm

More info
  • ReceivedFeb 26, 2015
  • AcceptedMar 30, 2015
  • PublishedJan 20, 2016

Abstract

More and more evolutionary operators have been integrated and manually configured together to solve a wider range of problems. Considering the very limited progress made on the automatic configuration of evolutionary algorithms (EAs), a rotated neighbor learning-based auto-configured evolutionary algorithm (RNL-ACEA) is presented. In this framework, multiple EAs are combined as candidates and automatically screened for different scenarios with a rotated neighbor structure. According to a ranking record and a group of constraints, the algorithms can be better scheduled to improve the searching efficiency and accelerate the searching pace. Experimental studies based on 14 classical EAs and 22 typical benchmark problems demonstrate that RNL-ACEA outperforms other six representative auto-adaptive EAs and has high scalability and robustness in solving different kinds of numerical optimization problems.


References

[1] Osman I H, Kelly J P. Meta-heuristics: an overview. In: Meta-Heuristics. Berlin: Springer, 1996. 1--21. Google Scholar

[2] Kochenberger G A. Handbook in Metaheuristics. Berlin: Springer, 2003. Google Scholar

[3] Talbi E G. Metaheuristics: From Design to Implementation. Hoboken: John Wiley & Sons, 2009. Google Scholar

[4] Paz A, Moran S. Theoretical Comput Sci, 1981, 15: 251-277 Google Scholar

[5] Yu Y, Yao X, Zhou Z H. Artif Intell, 2012, 180--181: 20-33 Google Scholar

[6] Qian C, Yu Y, Zhou Z H. Artif Intell, 2013, 204: 99-119 Google Scholar

[7] Yang X S. Engineering Optimization: an Introduction With Metaheuristic Applications. Hoboken: John Wiley & Sons, 2010. Google Scholar

[8] Wang Y, Li B, Yuan B. Sci China Inf Sci, 2010, 53: 1566-1573 Google Scholar

[9] Zhang X J, Guan X M, Hwang I, et al. Sci China Inf Sci, 2013, 56: 128202-1573 Google Scholar

[10] Burke E K, Kendall G, Newall J, et al. Hyper-heuristics: an emerging direction in modern search technology. In: International Series in Operations Research and Management Science. Dordrecht: Kluwer Academic Publishers, 2003. 457--474. Google Scholar

[11] Burke E K, Hyde M, Kendall G, et al. A classification of hyper-heuristic approaches. In: Handbook of Metaheuristics. Beilin: Springer, 2010. 449--468. Google Scholar

[12] Burke E K, McCollum B, Meisels A, et al. Eur J Oper Res, 2007, 176: 177-192 Google Scholar

[13] Qu R, Burke E K. J Oper Res Soc, 2009, 60: 1273-1285 Google Scholar

[14] Moscato P. Caltech Concurrent Computation Program, C3P Report, 1989, 826: 1989-1285 Google Scholar

[15] Ong Y S, Keane A J. IEEE Trans Evolut Comput, 2004, 8: 99-110 Google Scholar

[16] Ong Y S, Lim M H, Zhu N, et al. IEEE Trans Syst Man Cybernet Part B: Cybernet, 2006, 36: 141-152 Google Scholar

[17] Vrugt J A, Robinson B A. Proc National Academy Sci, 2007, 104: 708-711 Google Scholar

[18] Vrugt J A, Robinson B A, Hyman J M. IEEE Trans Evolut Comput, 2009, 13: 243-259 Google Scholar

[19] Tao F, Laili Y J, Liu Y, et al. IEEE Syst J, 2014, 8: 28-42 Google Scholar

[20] Bechikh S, Said L B, Ghédira K. Negotiating decision Makers' reference points for group preference-based evolutionary multi-objective optimization. In: Proceedings of the 11th IEEE International Conference on Hybrid Intelligent Systems, Malaysia, 2011. 377--382. Google Scholar

[21] Bechikh S, Said L B, Ghédira K. Int J Comput Inf Syst Indus Manag Appl, 2013, 5: 278-288 Google Scholar

[22] Krasnogor N, Simth J. IEEE Trans Evolut Comput, 2005, 9: 474-488 Google Scholar

[23] Schwefel H P. Evolution and Optimum Seeking. Hoboken: John Wiley & Sons, 1995. Google Scholar

[24] Nguyen Q H, Ong Y S, Krasnogor N. A study on the design issues of memetic algorithm. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, 2007. 2390--2397. Google Scholar

[25] Le M N, Ong Y S, Jin Y, et al. Memetic Comput, 2009, 1: 175-190 Google Scholar

[26] Sudholt D. Theor Comput Sci, 2009, 410: 2511-2528 Google Scholar

[27] Tang J, Lim M H, Ong Y S. Soft Comput, 2007, 11: 873-888 Google Scholar

[28] Liu D, Tan K C, Goh C K, et al. IEEE Trans Syst Man Cybernet Part B: Cybernet, 2007, 37: 42-50 Google Scholar

[29] Caponio A, Neri F, Tirronen V. Soft Comput, 2009, 13: 811-831 Google Scholar

[30] Gong M G, Jiao L C, Liu F, et al. Sci China Inf Sci, 2010, 53: 1519-1527 Google Scholar

[31] Smith J E. IEEE Trans Syst Man Cybernet Part B: Cybernet, 2007, 37: 6-17 Google Scholar

[32] Lacca G, Neri F, Mininno E, et al. Inf Sci, 2012, 188: 17-43 Google Scholar

[33] Meuth R, Lim M H, Ong Y S, et al. Memetic Comput, 2009, 1: 85-100 Google Scholar

[34] Hadka D, Reed P. Evolut Comput, 2012, 20: 423-452 Google Scholar

[35] Hadka D, Reed P. Evolut Comput, 2013, 21: 231-259 Google Scholar

[36] Grobler J, Engelbrecht A P, Kendall G, et al. Alternative hyper-heuristic strategies for multi-method global optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, Barcelona, 2010. 1--8. Google Scholar

[37] Peng F, Tang K, Chen G, et al. IEEE Trans Evolut Comput, 2010, 14: 782-800 Google Scholar

[38] Gong W, Cai Z, Ling C X, et al. IEEE Trans Syst Man Cybernet Part B: Cybernet, 2011, 41: 397-413 Google Scholar

[39] Elsayed S M, Sarker R A, Essam D L. IEEE Trans Ind Inf, 2013, 9: 89-99 Google Scholar

[40] Zhang X, Srinivasan R, Liew M V. Hydrol Process, 2010, 24: 955-969 Google Scholar

[41] Dane J H, Vrugt J A, Unsal E. Vadose Zone J, 2011, 10: 459-465 Google Scholar

[42] Burke E K, Kendall G, Soubeiga E. J Heuristics, 2003, 9: 451-470 Google Scholar

[43] Beckers M L M, Derks E P P A, Melssen W J, et al. Comput Chem, 1996, 20: 449-457 Google Scholar

[44] Fukuyama Y, Chiang H D. IEEE Trans Power Syst, 1996, 11: 955-961 Google Scholar

[45] Tao F, Laili Y J, Xu L, et al. FC-PACO-RM: a parallel method for service composition optimal-selection in cloud manufacturing system. IEEE Trans Ind Inf, 2013, 9, 2023--2033. Google Scholar

[46] Matsumura T, Nakamura M, Okech J, et al. IEICE Trans Fund Electr Commun Comput Sci, 1998, 81: 540-546 Google Scholar

[47] Lourenco H R, Martin O C, Stutzle T. Iterated local search. In: Handbook of Metaheuristics. Beilin: Springer, 2003. 320--353. Google Scholar

[48] Karaboga D, Basturk B. J Global Optimiz, 2007, 39: 459-471 Google Scholar

[49] Geem Z W, Kim J H, Loganathan G V. Simulation, 2001, 76: 60-68 Google Scholar

[50] Yang X S, Deb S. Cuckoo search via levy flights. In: IEEE World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), Coimbatore, 2009. 210--214. Google Scholar

[51] Mladenovic N, Hansen P. Comput Oper Res, 1997, 24: 1097-1100 Google Scholar

[52] Feo T A, Resende M G. J Global Optim, 1995, 6: 109-133 Google Scholar

[53] Socha K, Dorigo M. Eur J Oper Res, 2008, 185: 1155-1173 Google Scholar

[54] Hu M, Wu T, Weir J D. IEEE Trans Evolut Comput, 2013, 17: 705-720 Google Scholar

[55] Suganthan P N, Hansen N, Liang J J, et al. Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. KanGAL Report 2005005. 2005. Google Scholar

[56] Wineberg M, Christensen S. An introduction to statistical analysis for evolutionary computation. In: Proceedings of the 10th Annual Conference Companion on Genetic and Evolutionary Computation. New York: ACM, 2008. 2639--2664. Google Scholar

[57] Tao F, Feng Y, Zhang L, et al. Appl Soft Comput, 2014, 19: 264-279 Google Scholar

[58] Tao F, Cheng Y, Xu L, et al. IEEE Trans Ind Inf, 2014, 10: 1435-1442 Google Scholar

[59] Tao F, Zuo Y, Xu L, et al. IEEE Trans Ind Inf, 2014, 10: 1547-1557 Google Scholar

[60] Tao F, Zuo Y, Xu L, et al. IEEE Trans Ind Inf, 2014, 10: 1252-1264 Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1