logo

SCIENCE CHINA Information Sciences, Volume 59, Issue 6: 062303(2016) https://doi.org/10.1007/s11432-015-5393-8

A beamforming design for weighted sidelobe power leakage minimization

More info
  • ReceivedMay 25, 2015
  • AcceptedJun 8, 2015
  • PublishedOct 29, 2015

Abstract

In this paper, a beamforming scheme for minimizing the weighted sidelobe power leakage while maintaining the norm of the weight vector at unity is proposed. The proposed criterion is very flexible because weighting factors are added to the sidelobes in the object function, and the weighting factors can be adjusted according to any design purpose, e.g., to minimize the interference within a direction of arrival (DoA) range. To acquire the minimum sidelobe power leakage, we first express the sidelobe power through the sidelobe coefficient matrix. Afterwards, the minimization problem can be treated as the 2-norm minimization of the sidelobe coefficient matrix. The optimal weighting vector design is then derived by singular value decomposition (SVD). Simulation results show that the proposed beamformer can decrease the sidelobe power leakage and efficiently suppress interference with barely any increase in the sidelobes; moreover, this beamforming scheme provides good robustness in consideration of the DOA mismatch.


Acknowledgment

Acknowledgments

This work was jointly supported by Hong-Kong, Macao and Taiwan Science & Technology Cooperation Program of China (Grant no. 2015DFT10170), and Beijing Higher Education Young Elite Teacher Project.


References

[1] Fei Z S, Ni J Q, Zhao D, et al. Sci China Inf Sci, 2014, 57: 102302 Google Scholar

[2] Chu H Y, Xu P P, Sun L, et al. Sci China Inf Sci, 2014, 57: 082303 Google Scholar

[3] Bellofiore S, Foutz J, Balanis C A, et al. Part 2. Beamforming and network throughput. IEEE Antenn Propag Mag, 2002, 44: 106-114 Google Scholar

[4] Xia Y J, Ren G L. Sci China Inf Sci, 2014, 57: 082308-114 Google Scholar

[5] Gershman A B, Sidiropoulos N D, ShahbazPanahi S, et al. IEEE Signal Process Mag, 2010, 27: 62-75 Google Scholar

[6] Liu J, Li H, Himed B. IEEE Signal Process Lett, 2014, 21: 39-42 Google Scholar

[7] Capon J. Proc IEEE, 1969, 57: 1408-1418 Google Scholar

[8] Li J, Stoica P. Robust Adaptive Beamforming. New York: Wiley, 2006. Google Scholar

[9] Guerci J R. Space-Time Adaptive Processing for Radar. Norwood: Artech House, 2003. Google Scholar

[10] Chen C-Y, Vaidyanathan P P. IEEE Trans Signal Process, 2007, 55: 4139-4150 Google Scholar

[11] Li J Z, Guo F C, Jiang W L. Sci China Inf Sci, 2014, 57: 042315-4150 Google Scholar

[12] Bell K L, Ephraim Y, Van Trees H L. IEEE Trans Signal Process, 2000, 48: 386-398 Google Scholar

[13] Cox H, Zeskind R M, Owen M M. IEEE Trans Acoust Speech Signal Process, 1987, 35: 1365-1376 Google Scholar

[14] Carlson B D. IEEE Trans Aerosp Electron Syst, 1988, 24: 397-401 Google Scholar

[15] Chang L, Yeh C-C. IEEE Trans Antenn Propag, 1992, 40: 1336-1347 Google Scholar

[16] Qin G D, Bao D, Liu G G, et al. Sci China Inf Sci, 2015, 58: 020305-1347 Google Scholar

[17] ShahbazPanahi S, Gershman A B, Luo Z-Q, et al. IEEE Trans Signal Process, 2003, 51: 2257-2269 Google Scholar

[18] Xing C, Ma S, Wu Y-C. IEEE Trans Signal Process, 2009, 57: 4942-4945 Google Scholar

[19] Sadek M, Tarighat A, Sayed A H. IEEE Trans Wirel Commun, 2007, 6: 1711-1721 Google Scholar

[20] Spencer Q H, Swindlehurst A L, Haardt M. IEEE Trans Signal Process, 2004, 52: 461-471 Google Scholar

[21] Bengtsson M. A pragmatic approach to multi-user spatial multiplexing. In: Proceedings of the Sensor Array and Multichannel Signal Processing Workshop, Rosslyn, 2002. 130--134. Google Scholar

[22] Chen R, Andews J G, Health Jr R W. Multiuser space-time block coded MIMO with downlink precoding. In: Proceedings of the IEEE International Conference on Communications (ICC), Paris, 2004, 5: 2689--2693. Google Scholar

[23] Yoo T, Goldsmith A. Optimality of zero-forcing beamforming with multiuser diversity. In: Proceedings of the IEEE International Conference on communications (ICC), Seoul, 2005, 1: 542--546. Google Scholar

[24] Fei Z, Xing C, Li N, et al. IET Commun, 2014, 8: 1883-1891 Google Scholar

[25] Sadek M, Tarighat A, Sayed A H. IEEE Trans Signal Process, 2007, 55: 1498-1510 Google Scholar

[26] Liu Y, Wan Q. IEEE Antenn Wirel Propag Lett, 2012, 11: 1218-1221 Google Scholar

[27] Golub G H, van Loan C F. Matrix Computations. 3rd ed. Baltimore: The Johns Hopkins University Press, 1996. Google Scholar

[28] Hogben L. Handbook of Linear Algebra. London: Chapman and Hall/CRC Press, 2007. Google Scholar

[29] Ma M, Huang X, Jiao B, et al. IEEE Trans Commun, 2011, 59: 844-853 Google Scholar

[30] Trump T, Ottersten B. Signal Process, 1996, 50: 57-69 Google Scholar

[31] Pedersen K I, Mogensen P E, Fleury B H. Spatial channel characteristics in outdoor environments and their impact on BS antenna system performance. In: Proceedings of the 48th IEEE Vehicular Technology Conference (VTC 98), Ottawa, 1998, 2: 719--723. Google Scholar

[32] Besson O, Stoica P. IEEE Trans Signal Process, 2000, 48: 1872-1882 Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1